Properties

Label 5520.2.a.bs
Level $5520$
Weight $2$
Character orbit 5520.a
Self dual yes
Analytic conductor $44.077$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 5520 = 2^{4} \cdot 3 \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5520.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(44.0774219157\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Defining polynomial: \( x^{2} - x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 690)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{17}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + q^{5} + (\beta + 1) q^{7} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{3} + q^{5} + (\beta + 1) q^{7} + q^{9} + ( - \beta - 1) q^{11} + 2 q^{13} + q^{15} + (\beta + 3) q^{17} - 4 q^{19} + (\beta + 1) q^{21} - q^{23} + q^{25} + q^{27} + 2 q^{29} + ( - \beta - 1) q^{33} + (\beta + 1) q^{35} + ( - \beta - 3) q^{37} + 2 q^{39} + 2 q^{41} + q^{45} + 8 q^{47} + (2 \beta + 11) q^{49} + (\beta + 3) q^{51} + ( - 2 \beta + 4) q^{53} + ( - \beta - 1) q^{55} - 4 q^{57} + (2 \beta + 6) q^{59} + ( - \beta + 5) q^{61} + (\beta + 1) q^{63} + 2 q^{65} + 8 q^{67} - q^{69} + ( - 2 \beta + 2) q^{71} + (2 \beta + 4) q^{73} + q^{75} + ( - 2 \beta - 18) q^{77} + (\beta + 1) q^{79} + q^{81} + ( - 3 \beta + 1) q^{83} + (\beta + 3) q^{85} + 2 q^{87} + (\beta - 1) q^{89} + (2 \beta + 2) q^{91} - 4 q^{95} + (2 \beta - 8) q^{97} + ( - \beta - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 2 q^{5} + 2 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{3} + 2 q^{5} + 2 q^{7} + 2 q^{9} - 2 q^{11} + 4 q^{13} + 2 q^{15} + 6 q^{17} - 8 q^{19} + 2 q^{21} - 2 q^{23} + 2 q^{25} + 2 q^{27} + 4 q^{29} - 2 q^{33} + 2 q^{35} - 6 q^{37} + 4 q^{39} + 4 q^{41} + 2 q^{45} + 16 q^{47} + 22 q^{49} + 6 q^{51} + 8 q^{53} - 2 q^{55} - 8 q^{57} + 12 q^{59} + 10 q^{61} + 2 q^{63} + 4 q^{65} + 16 q^{67} - 2 q^{69} + 4 q^{71} + 8 q^{73} + 2 q^{75} - 36 q^{77} + 2 q^{79} + 2 q^{81} + 2 q^{83} + 6 q^{85} + 4 q^{87} - 2 q^{89} + 4 q^{91} - 8 q^{95} - 16 q^{97} - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.56155
2.56155
0 1.00000 0 1.00000 0 −3.12311 0 1.00000 0
1.2 0 1.00000 0 1.00000 0 5.12311 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(-1\)
\(23\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5520.2.a.bs 2
4.b odd 2 1 690.2.a.l 2
12.b even 2 1 2070.2.a.t 2
20.d odd 2 1 3450.2.a.bi 2
20.e even 4 2 3450.2.d.v 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
690.2.a.l 2 4.b odd 2 1
2070.2.a.t 2 12.b even 2 1
3450.2.a.bi 2 20.d odd 2 1
3450.2.d.v 4 20.e even 4 2
5520.2.a.bs 2 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5520))\):

\( T_{7}^{2} - 2T_{7} - 16 \) Copy content Toggle raw display
\( T_{11}^{2} + 2T_{11} - 16 \) Copy content Toggle raw display
\( T_{13} - 2 \) Copy content Toggle raw display
\( T_{17}^{2} - 6T_{17} - 8 \) Copy content Toggle raw display
\( T_{19} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T - 1)^{2} \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 2T - 16 \) Copy content Toggle raw display
$11$ \( T^{2} + 2T - 16 \) Copy content Toggle raw display
$13$ \( (T - 2)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 6T - 8 \) Copy content Toggle raw display
$19$ \( (T + 4)^{2} \) Copy content Toggle raw display
$23$ \( (T + 1)^{2} \) Copy content Toggle raw display
$29$ \( (T - 2)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 6T - 8 \) Copy content Toggle raw display
$41$ \( (T - 2)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( (T - 8)^{2} \) Copy content Toggle raw display
$53$ \( T^{2} - 8T - 52 \) Copy content Toggle raw display
$59$ \( T^{2} - 12T - 32 \) Copy content Toggle raw display
$61$ \( T^{2} - 10T + 8 \) Copy content Toggle raw display
$67$ \( (T - 8)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 4T - 64 \) Copy content Toggle raw display
$73$ \( T^{2} - 8T - 52 \) Copy content Toggle raw display
$79$ \( T^{2} - 2T - 16 \) Copy content Toggle raw display
$83$ \( T^{2} - 2T - 152 \) Copy content Toggle raw display
$89$ \( T^{2} + 2T - 16 \) Copy content Toggle raw display
$97$ \( T^{2} + 16T - 4 \) Copy content Toggle raw display
show more
show less