Properties

Label 552.2.bb.a.85.18
Level $552$
Weight $2$
Character 552.85
Analytic conductor $4.408$
Analytic rank $0$
Dimension $480$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 552 = 2^{3} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 552.bb (of order \(22\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.40774219157\)
Analytic rank: \(0\)
Dimension: \(480\)
Relative dimension: \(48\) over \(\Q(\zeta_{22})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 85.18
Character \(\chi\) \(=\) 552.85
Dual form 552.2.bb.a.13.18

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.507861 + 1.31988i) q^{2} +(-0.540641 - 0.841254i) q^{3} +(-1.48415 - 1.34063i) q^{4} +(-0.282332 + 0.128937i) q^{5} +(1.38492 - 0.286340i) q^{6} +(-2.03550 + 0.597678i) q^{7} +(2.52321 - 1.27805i) q^{8} +(-0.415415 + 0.909632i) q^{9} +O(q^{10})\) \(q+(-0.507861 + 1.31988i) q^{2} +(-0.540641 - 0.841254i) q^{3} +(-1.48415 - 1.34063i) q^{4} +(-0.282332 + 0.128937i) q^{5} +(1.38492 - 0.286340i) q^{6} +(-2.03550 + 0.597678i) q^{7} +(2.52321 - 1.27805i) q^{8} +(-0.415415 + 0.909632i) q^{9} +(-0.0267952 - 0.438126i) q^{10} +(2.44920 - 2.12224i) q^{11} +(-0.325415 + 1.97335i) q^{12} +(-0.746025 + 2.54073i) q^{13} +(0.244892 - 2.99015i) q^{14} +(0.261109 + 0.167804i) q^{15} +(0.405427 + 3.97940i) q^{16} +(-0.439560 + 3.05721i) q^{17} +(-0.989630 - 1.01026i) q^{18} +(5.09241 - 0.732178i) q^{19} +(0.591881 + 0.187141i) q^{20} +(1.60327 + 1.38925i) q^{21} +(1.55725 + 4.31044i) q^{22} +(-2.97624 + 3.76059i) q^{23} +(-2.43931 - 1.43169i) q^{24} +(-3.21122 + 3.70594i) q^{25} +(-2.97457 - 2.27500i) q^{26} +(0.989821 - 0.142315i) q^{27} +(3.82226 + 1.84181i) q^{28} +(-3.10286 - 0.446125i) q^{29} +(-0.354088 + 0.259410i) q^{30} +(7.94222 + 5.10415i) q^{31} +(-5.45822 - 1.48587i) q^{32} +(-3.10948 - 0.913025i) q^{33} +(-3.81191 - 2.13280i) q^{34} +(0.497625 - 0.431195i) q^{35} +(1.83602 - 0.793117i) q^{36} +(4.16590 + 1.90250i) q^{37} +(-1.61985 + 7.09321i) q^{38} +(2.54073 - 0.746025i) q^{39} +(-0.547596 + 0.686169i) q^{40} +(2.96470 + 6.49179i) q^{41} +(-2.64787 + 1.41058i) q^{42} +(6.68988 + 10.4097i) q^{43} +(-6.48012 - 0.133732i) q^{44} -0.310381i q^{45} +(-3.45200 - 5.83813i) q^{46} -9.79663 q^{47} +(3.12849 - 2.49249i) q^{48} +(-2.10272 + 1.35134i) q^{49} +(-3.26054 - 6.12052i) q^{50} +(2.80953 - 1.28307i) q^{51} +(4.51339 - 2.77069i) q^{52} +(0.793158 + 2.70125i) q^{53} +(-0.314854 + 1.37872i) q^{54} +(-0.417852 + 0.914968i) q^{55} +(-4.37214 + 4.10954i) q^{56} +(-3.36911 - 3.88816i) q^{57} +(2.16465 - 3.86883i) q^{58} +(3.65887 - 12.4610i) q^{59} +(-0.162562 - 0.599098i) q^{60} +(-4.26144 + 6.63092i) q^{61} +(-10.7704 + 7.89055i) q^{62} +(0.301912 - 2.09984i) q^{63} +(4.73319 - 6.44957i) q^{64} +(-0.116966 - 0.813519i) q^{65} +(2.78426 - 3.64044i) q^{66} +(-2.86686 - 2.48415i) q^{67} +(4.75096 - 3.94808i) q^{68} +(4.77268 + 0.470644i) q^{69} +(0.316400 + 0.875792i) q^{70} +(4.09465 - 4.72548i) q^{71} +(0.114374 + 2.82611i) q^{72} +(-1.30557 - 9.08045i) q^{73} +(-4.62677 + 4.53227i) q^{74} +(4.85375 + 0.697864i) q^{75} +(-8.53950 - 5.74037i) q^{76} +(-3.71693 + 5.78366i) q^{77} +(-0.305675 + 3.73233i) q^{78} +(1.58653 + 0.465846i) q^{79} +(-0.627556 - 1.07124i) q^{80} +(-0.654861 - 0.755750i) q^{81} +(-10.0740 + 0.616115i) q^{82} +(-3.67870 - 1.68001i) q^{83} +(-0.517044 - 4.21125i) q^{84} +(-0.270085 - 0.919824i) q^{85} +(-17.1370 + 3.54316i) q^{86} +(1.30223 + 2.85149i) q^{87} +(3.46751 - 8.48505i) q^{88} +(2.05200 - 1.31874i) q^{89} +(0.409664 + 0.157630i) q^{90} -5.61754i q^{91} +(9.45875 - 1.59126i) q^{92} -9.44093i q^{93} +(4.97533 - 12.9304i) q^{94} +(-1.34335 + 0.863317i) q^{95} +(1.70094 + 5.39507i) q^{96} +(5.20118 + 11.3890i) q^{97} +(-0.715709 - 3.46162i) q^{98} +(0.913025 + 3.10948i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 480q + 4q^{2} + 4q^{6} + 8q^{7} + 4q^{8} + 48q^{9} + O(q^{10}) \) \( 480q + 4q^{2} + 4q^{6} + 8q^{7} + 4q^{8} + 48q^{9} - 4q^{10} - 4q^{14} - 8q^{15} - 8q^{16} - 4q^{18} + 20q^{20} + 20q^{22} - 8q^{23} - 4q^{24} + 48q^{25} + 16q^{30} + 16q^{31} + 4q^{32} + 6q^{34} - 22q^{36} + 90q^{38} - 74q^{40} + 90q^{42} - 130q^{44} + 96q^{46} - 88q^{48} - 48q^{49} + 142q^{50} - 142q^{52} + 18q^{54} - 82q^{56} + 22q^{58} + 2q^{60} - 40q^{62} - 8q^{63} + 16q^{66} - 44q^{68} + 16q^{71} - 4q^{72} + 10q^{74} - 138q^{76} - 40q^{79} - 170q^{80} - 48q^{81} - 124q^{82} - 8q^{84} - 216q^{86} - 108q^{88} + 4q^{90} - 198q^{92} - 238q^{94} + 80q^{95} + 4q^{96} - 132q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/552\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(185\) \(277\) \(415\)
\(\chi(n)\) \(e\left(\frac{4}{11}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.507861 + 1.31988i −0.359112 + 0.933294i
\(3\) −0.540641 0.841254i −0.312139 0.485698i
\(4\) −1.48415 1.34063i −0.742077 0.670315i
\(5\) −0.282332 + 0.128937i −0.126263 + 0.0576623i −0.477545 0.878607i \(-0.658473\pi\)
0.351282 + 0.936270i \(0.385746\pi\)
\(6\) 1.38492 0.286340i 0.565392 0.116898i
\(7\) −2.03550 + 0.597678i −0.769348 + 0.225901i −0.642774 0.766056i \(-0.722216\pi\)
−0.126574 + 0.991957i \(0.540398\pi\)
\(8\) 2.52321 1.27805i 0.892090 0.451858i
\(9\) −0.415415 + 0.909632i −0.138472 + 0.303211i
\(10\) −0.0267952 0.438126i −0.00847340 0.138548i
\(11\) 2.44920 2.12224i 0.738461 0.639880i −0.202155 0.979354i \(-0.564794\pi\)
0.940615 + 0.339474i \(0.110249\pi\)
\(12\) −0.325415 + 1.97335i −0.0939392 + 0.569657i
\(13\) −0.746025 + 2.54073i −0.206910 + 0.704671i 0.789006 + 0.614386i \(0.210596\pi\)
−0.995916 + 0.0902853i \(0.971222\pi\)
\(14\) 0.244892 2.99015i 0.0654500 0.799152i
\(15\) 0.261109 + 0.167804i 0.0674180 + 0.0433269i
\(16\) 0.405427 + 3.97940i 0.101357 + 0.994850i
\(17\) −0.439560 + 3.05721i −0.106609 + 0.741482i 0.864463 + 0.502696i \(0.167659\pi\)
−0.971072 + 0.238786i \(0.923251\pi\)
\(18\) −0.989630 1.01026i −0.233258 0.238121i
\(19\) 5.09241 0.732178i 1.16828 0.167973i 0.469250 0.883066i \(-0.344524\pi\)
0.699030 + 0.715092i \(0.253615\pi\)
\(20\) 0.591881 + 0.187141i 0.132349 + 0.0418459i
\(21\) 1.60327 + 1.38925i 0.349863 + 0.303158i
\(22\) 1.55725 + 4.31044i 0.332006 + 0.918990i
\(23\) −2.97624 + 3.76059i −0.620588 + 0.784136i
\(24\) −2.43931 1.43169i −0.497923 0.292244i
\(25\) −3.21122 + 3.70594i −0.642243 + 0.741188i
\(26\) −2.97457 2.27500i −0.583362 0.446164i
\(27\) 0.989821 0.142315i 0.190491 0.0273885i
\(28\) 3.82226 + 1.84181i 0.722340 + 0.348069i
\(29\) −3.10286 0.446125i −0.576188 0.0828433i −0.151940 0.988390i \(-0.548552\pi\)
−0.424247 + 0.905546i \(0.639461\pi\)
\(30\) −0.354088 + 0.259410i −0.0646474 + 0.0473616i
\(31\) 7.94222 + 5.10415i 1.42646 + 0.916733i 0.999925 + 0.0122642i \(0.00390390\pi\)
0.426540 + 0.904469i \(0.359732\pi\)
\(32\) −5.45822 1.48587i −0.964887 0.262667i
\(33\) −3.10948 0.913025i −0.541291 0.158937i
\(34\) −3.81191 2.13280i −0.653737 0.365773i
\(35\) 0.497625 0.431195i 0.0841140 0.0728852i
\(36\) 1.83602 0.793117i 0.306003 0.132186i
\(37\) 4.16590 + 1.90250i 0.684869 + 0.312769i 0.727290 0.686331i \(-0.240780\pi\)
−0.0424206 + 0.999100i \(0.513507\pi\)
\(38\) −1.61985 + 7.09321i −0.262775 + 1.15067i
\(39\) 2.54073 0.746025i 0.406842 0.119460i
\(40\) −0.547596 + 0.686169i −0.0865826 + 0.108493i
\(41\) 2.96470 + 6.49179i 0.463009 + 1.01385i 0.986791 + 0.161996i \(0.0517930\pi\)
−0.523783 + 0.851852i \(0.675480\pi\)
\(42\) −2.64787 + 1.41058i −0.408576 + 0.217658i
\(43\) 6.68988 + 10.4097i 1.02020 + 1.58746i 0.788849 + 0.614587i \(0.210677\pi\)
0.231348 + 0.972871i \(0.425686\pi\)
\(44\) −6.48012 0.133732i −0.976915 0.0201609i
\(45\) 0.310381i 0.0462688i
\(46\) −3.45200 5.83813i −0.508969 0.860785i
\(47\) −9.79663 −1.42899 −0.714493 0.699643i \(-0.753342\pi\)
−0.714493 + 0.699643i \(0.753342\pi\)
\(48\) 3.12849 2.49249i 0.451559 0.359760i
\(49\) −2.10272 + 1.35134i −0.300389 + 0.193048i
\(50\) −3.26054 6.12052i −0.461110 0.865572i
\(51\) 2.80953 1.28307i 0.393413 0.179666i
\(52\) 4.51339 2.77069i 0.625894 0.384225i
\(53\) 0.793158 + 2.70125i 0.108949 + 0.371045i 0.995861 0.0908935i \(-0.0289723\pi\)
−0.886912 + 0.461938i \(0.847154\pi\)
\(54\) −0.314854 + 1.37872i −0.0428462 + 0.187620i
\(55\) −0.417852 + 0.914968i −0.0563432 + 0.123374i
\(56\) −4.37214 + 4.10954i −0.584252 + 0.549160i
\(57\) −3.36911 3.88816i −0.446250 0.515000i
\(58\) 2.16465 3.86883i 0.284233 0.508003i
\(59\) 3.65887 12.4610i 0.476344 1.62228i −0.274350 0.961630i \(-0.588463\pi\)
0.750695 0.660649i \(-0.229719\pi\)
\(60\) −0.162562 0.599098i −0.0209867 0.0773432i
\(61\) −4.26144 + 6.63092i −0.545621 + 0.849003i −0.999107 0.0422608i \(-0.986544\pi\)
0.453486 + 0.891264i \(0.350180\pi\)
\(62\) −10.7704 + 7.89055i −1.36784 + 1.00210i
\(63\) 0.301912 2.09984i 0.0380373 0.264555i
\(64\) 4.73319 6.44957i 0.591648 0.806196i
\(65\) −0.116966 0.813519i −0.0145079 0.100905i
\(66\) 2.78426 3.64044i 0.342719 0.448107i
\(67\) −2.86686 2.48415i −0.350243 0.303487i 0.461916 0.886924i \(-0.347162\pi\)
−0.812159 + 0.583437i \(0.801708\pi\)
\(68\) 4.75096 3.94808i 0.576139 0.478775i
\(69\) 4.77268 + 0.470644i 0.574563 + 0.0566589i
\(70\) 0.316400 + 0.875792i 0.0378170 + 0.104677i
\(71\) 4.09465 4.72548i 0.485946 0.560811i −0.458832 0.888523i \(-0.651732\pi\)
0.944778 + 0.327712i \(0.106278\pi\)
\(72\) 0.114374 + 2.82611i 0.0134791 + 0.333061i
\(73\) −1.30557 9.08045i −0.152806 1.06279i −0.911488 0.411326i \(-0.865066\pi\)
0.758683 0.651460i \(-0.225843\pi\)
\(74\) −4.62677 + 4.53227i −0.537851 + 0.526865i
\(75\) 4.85375 + 0.697864i 0.560463 + 0.0805824i
\(76\) −8.53950 5.74037i −0.979548 0.658466i
\(77\) −3.71693 + 5.78366i −0.423584 + 0.659109i
\(78\) −0.305675 + 3.73233i −0.0346109 + 0.422603i
\(79\) 1.58653 + 0.465846i 0.178498 + 0.0524118i 0.369760 0.929127i \(-0.379440\pi\)
−0.191262 + 0.981539i \(0.561258\pi\)
\(80\) −0.627556 1.07124i −0.0701629 0.119768i
\(81\) −0.654861 0.755750i −0.0727623 0.0839722i
\(82\) −10.0740 + 0.616115i −1.11249 + 0.0680385i
\(83\) −3.67870 1.68001i −0.403790 0.184405i 0.203159 0.979146i \(-0.434879\pi\)
−0.606948 + 0.794741i \(0.707607\pi\)
\(84\) −0.517044 4.21125i −0.0564141 0.459485i
\(85\) −0.270085 0.919824i −0.0292948 0.0997689i
\(86\) −17.1370 + 3.54316i −1.84793 + 0.382069i
\(87\) 1.30223 + 2.85149i 0.139614 + 0.305712i
\(88\) 3.46751 8.48505i 0.369638 0.904510i
\(89\) 2.05200 1.31874i 0.217512 0.139786i −0.427348 0.904087i \(-0.640552\pi\)
0.644860 + 0.764301i \(0.276916\pi\)
\(90\) 0.409664 + 0.157630i 0.0431824 + 0.0166157i
\(91\) 5.61754i 0.588878i
\(92\) 9.45875 1.59126i 0.986143 0.165900i
\(93\) 9.44093i 0.978979i
\(94\) 4.97533 12.9304i 0.513166 1.33366i
\(95\) −1.34335 + 0.863317i −0.137825 + 0.0885744i
\(96\) 1.70094 + 5.39507i 0.173602 + 0.550632i
\(97\) 5.20118 + 11.3890i 0.528099 + 1.15638i 0.966281 + 0.257490i \(0.0828954\pi\)
−0.438182 + 0.898886i \(0.644377\pi\)
\(98\) −0.715709 3.46162i −0.0722975 0.349677i
\(99\) 0.913025 + 3.10948i 0.0917625 + 0.312514i
\(100\) 9.73423 1.19514i 0.973423 0.119514i
\(101\) 3.56977 + 1.63026i 0.355206 + 0.162217i 0.585023 0.811017i \(-0.301086\pi\)
−0.229817 + 0.973234i \(0.573813\pi\)
\(102\) 0.266644 + 4.35986i 0.0264017 + 0.431691i
\(103\) −1.71994 1.98492i −0.169471 0.195580i 0.664661 0.747145i \(-0.268576\pi\)
−0.834132 + 0.551566i \(0.814031\pi\)
\(104\) 1.36479 + 7.36425i 0.133829 + 0.722124i
\(105\) −0.631781 0.185508i −0.0616555 0.0181037i
\(106\) −3.96813 0.324987i −0.385419 0.0315656i
\(107\) 3.82103 5.94564i 0.369393 0.574787i −0.605944 0.795507i \(-0.707204\pi\)
0.975337 + 0.220720i \(0.0708408\pi\)
\(108\) −1.65984 1.11577i −0.159718 0.107365i
\(109\) −6.31166 0.907480i −0.604548 0.0869208i −0.166757 0.985998i \(-0.553330\pi\)
−0.437790 + 0.899077i \(0.644239\pi\)
\(110\) −0.995436 1.01619i −0.0949111 0.0968900i
\(111\) −0.651768 4.53314i −0.0618631 0.430267i
\(112\) −3.20365 7.85777i −0.302716 0.742489i
\(113\) 8.79321 10.1479i 0.827196 0.954635i −0.172342 0.985037i \(-0.555133\pi\)
0.999538 + 0.0304024i \(0.00967886\pi\)
\(114\) 6.84294 2.47217i 0.640900 0.231540i
\(115\) 0.355410 1.44548i 0.0331421 0.134792i
\(116\) 4.00704 + 4.82191i 0.372044 + 0.447703i
\(117\) −2.00122 1.73406i −0.185013 0.160314i
\(118\) 14.5887 + 11.1577i 1.34300 + 1.02715i
\(119\) −0.932499 6.48568i −0.0854821 0.594541i
\(120\) 0.873295 + 0.0896963i 0.0797205 + 0.00818812i
\(121\) −0.0708058 + 0.492465i −0.00643689 + 0.0447696i
\(122\) −6.58779 8.99216i −0.596431 0.814112i
\(123\) 3.85840 6.00379i 0.347901 0.541344i
\(124\) −4.94470 18.2229i −0.444047 1.63647i
\(125\) 0.866019 2.94939i 0.0774591 0.263802i
\(126\) 2.61821 + 1.46492i 0.233248 + 0.130505i
\(127\) 12.9567 + 14.9528i 1.14972 + 1.32685i 0.936834 + 0.349773i \(0.113741\pi\)
0.212887 + 0.977077i \(0.431713\pi\)
\(128\) 6.10884 + 9.52271i 0.539951 + 0.841697i
\(129\) 5.14034 11.2558i 0.452582 0.991015i
\(130\) 1.13315 + 0.258773i 0.0993837 + 0.0226959i
\(131\) 1.82660 + 6.22083i 0.159591 + 0.543516i 0.999999 + 0.00156190i \(0.000497168\pi\)
−0.840408 + 0.541954i \(0.817685\pi\)
\(132\) 3.39092 + 5.52373i 0.295141 + 0.480779i
\(133\) −9.92802 + 4.53397i −0.860868 + 0.393145i
\(134\) 4.73474 2.52230i 0.409019 0.217894i
\(135\) −0.261109 + 0.167804i −0.0224727 + 0.0144423i
\(136\) 2.79816 + 8.27576i 0.239940 + 0.709641i
\(137\) −9.47639 −0.809623 −0.404811 0.914400i \(-0.632663\pi\)
−0.404811 + 0.914400i \(0.632663\pi\)
\(138\) −3.04505 + 6.06033i −0.259212 + 0.515890i
\(139\) 8.33370i 0.706855i −0.935462 0.353427i \(-0.885016\pi\)
0.935462 0.353427i \(-0.114984\pi\)
\(140\) −1.31663 0.0271715i −0.111275 0.00229641i
\(141\) 5.29646 + 8.24145i 0.446042 + 0.694055i
\(142\) 4.15754 + 7.80432i 0.348893 + 0.654924i
\(143\) 3.56487 + 7.80599i 0.298110 + 0.652769i
\(144\) −3.78821 1.28431i −0.315684 0.107026i
\(145\) 0.933560 0.274118i 0.0775280 0.0227643i
\(146\) 12.6481 + 2.88841i 1.04677 + 0.239047i
\(147\) 2.27363 + 1.03833i 0.187526 + 0.0856403i
\(148\) −3.63228 8.40853i −0.298572 0.691177i
\(149\) −16.7180 + 14.4862i −1.36959 + 1.18676i −0.407772 + 0.913084i \(0.633694\pi\)
−0.961822 + 0.273676i \(0.911760\pi\)
\(150\) −3.38613 + 6.05194i −0.276476 + 0.494139i
\(151\) 22.6227 + 6.64263i 1.84101 + 0.540570i 1.00000 0.000446619i \(-0.000142163\pi\)
0.841012 + 0.541016i \(0.181960\pi\)
\(152\) 11.9135 8.35579i 0.966310 0.677744i
\(153\) −2.59834 1.66985i −0.210063 0.134999i
\(154\) −5.74604 7.84319i −0.463029 0.632022i
\(155\) −2.90046 0.417023i −0.232970 0.0334961i
\(156\) −4.77097 2.29896i −0.381984 0.184064i
\(157\) −2.42589 + 0.348791i −0.193607 + 0.0278365i −0.238436 0.971158i \(-0.576635\pi\)
0.0448290 + 0.998995i \(0.485726\pi\)
\(158\) −1.42059 + 1.85744i −0.113016 + 0.147770i
\(159\) 1.84362 2.12765i 0.146209 0.168734i
\(160\) 1.73262 0.284257i 0.136975 0.0224725i
\(161\) 3.81052 9.43352i 0.300311 0.743465i
\(162\) 1.33008 0.480520i 0.104501 0.0377532i
\(163\) −13.7415 11.9070i −1.07631 0.932631i −0.0783825 0.996923i \(-0.524976\pi\)
−0.997931 + 0.0642923i \(0.979521\pi\)
\(164\) 4.30301 13.6094i 0.336009 1.06271i
\(165\) 0.995628 0.143150i 0.0775096 0.0111442i
\(166\) 4.08567 4.00222i 0.317109 0.310633i
\(167\) −0.763769 + 5.31213i −0.0591022 + 0.411065i 0.938696 + 0.344745i \(0.112035\pi\)
−0.997798 + 0.0663195i \(0.978874\pi\)
\(168\) 5.82092 + 1.45630i 0.449094 + 0.112356i
\(169\) 5.03755 + 3.23744i 0.387504 + 0.249034i
\(170\) 1.35122 + 0.110664i 0.103634 + 0.00848755i
\(171\) −1.44945 + 4.93638i −0.110842 + 0.377494i
\(172\) 4.02668 24.4182i 0.307031 1.86187i
\(173\) −0.491897 + 0.426231i −0.0373982 + 0.0324058i −0.673359 0.739315i \(-0.735149\pi\)
0.635961 + 0.771721i \(0.280604\pi\)
\(174\) −4.42497 + 0.270626i −0.335456 + 0.0205161i
\(175\) 4.32148 9.46273i 0.326673 0.715315i
\(176\) 9.43822 + 8.88592i 0.711432 + 0.669802i
\(177\) −12.4610 + 3.65887i −0.936623 + 0.275017i
\(178\) 0.698446 + 3.37813i 0.0523507 + 0.253202i
\(179\) 8.62260 3.93781i 0.644483 0.294326i −0.0662333 0.997804i \(-0.521098\pi\)
0.710717 + 0.703479i \(0.248371\pi\)
\(180\) −0.416105 + 0.460653i −0.0310147 + 0.0343350i
\(181\) −2.03281 3.16311i −0.151097 0.235112i 0.757451 0.652892i \(-0.226445\pi\)
−0.908548 + 0.417780i \(0.862808\pi\)
\(182\) 7.41447 + 2.85293i 0.549597 + 0.211473i
\(183\) 7.88219 0.582669
\(184\) −2.70346 + 13.2925i −0.199302 + 0.979938i
\(185\) −1.42147 −0.104508
\(186\) 12.4609 + 4.79468i 0.913676 + 0.351563i
\(187\) 5.41157 + 8.42056i 0.395733 + 0.615772i
\(188\) 14.5397 + 13.1337i 1.06042 + 0.957870i
\(189\) −1.92973 + 0.881276i −0.140367 + 0.0641034i
\(190\) −0.457239 2.21150i −0.0331716 0.160439i
\(191\) −17.9601 + 5.27356i −1.29955 + 0.381581i −0.857071 0.515199i \(-0.827718\pi\)
−0.442476 + 0.896780i \(0.645900\pi\)
\(192\) −7.98468 0.494908i −0.576244 0.0357169i
\(193\) 1.09583 2.39952i 0.0788792 0.172721i −0.866084 0.499899i \(-0.833370\pi\)
0.944963 + 0.327178i \(0.106098\pi\)
\(194\) −17.6735 + 1.08089i −1.26889 + 0.0776035i
\(195\) −0.621139 + 0.538220i −0.0444807 + 0.0385427i
\(196\) 4.93240 + 0.813377i 0.352314 + 0.0580984i
\(197\) 2.65182 9.03127i 0.188934 0.643451i −0.809479 0.587148i \(-0.800251\pi\)
0.998414 0.0563031i \(-0.0179313\pi\)
\(198\) −4.56782 0.374102i −0.324621 0.0265863i
\(199\) −10.7606 6.91539i −0.762796 0.490219i 0.100488 0.994938i \(-0.467960\pi\)
−0.863283 + 0.504719i \(0.831596\pi\)
\(200\) −3.36620 + 13.4550i −0.238027 + 0.951410i
\(201\) −0.539857 + 3.75479i −0.0380786 + 0.264842i
\(202\) −3.96469 + 3.88372i −0.278955 + 0.273257i
\(203\) 6.58253 0.946425i 0.462003 0.0664260i
\(204\) −5.88990 1.86227i −0.412376 0.130385i
\(205\) −1.67406 1.45058i −0.116922 0.101313i
\(206\) 3.49334 1.26205i 0.243392 0.0879311i
\(207\) −2.18438 4.26949i −0.151825 0.296750i
\(208\) −10.4130 1.93865i −0.722014 0.134421i
\(209\) 10.9185 12.6006i 0.755246 0.871600i
\(210\) 0.565704 0.739661i 0.0390373 0.0510415i
\(211\) −22.1431 + 3.18369i −1.52439 + 0.219175i −0.852994 0.521921i \(-0.825215\pi\)
−0.671399 + 0.741096i \(0.734306\pi\)
\(212\) 2.44420 5.07240i 0.167869 0.348374i
\(213\) −6.18906 0.889853i −0.424067 0.0609717i
\(214\) 5.90697 + 8.06286i 0.403792 + 0.551166i
\(215\) −3.23096 2.07641i −0.220349 0.141610i
\(216\) 2.31564 1.62413i 0.157560 0.110508i
\(217\) −19.2170 5.64263i −1.30454 0.383047i
\(218\) 4.40321 7.86975i 0.298223 0.533007i
\(219\) −6.93311 + 6.00758i −0.468496 + 0.405954i
\(220\) 1.84679 0.797769i 0.124511 0.0537856i
\(221\) −7.43961 3.39756i −0.500443 0.228544i
\(222\) 6.31420 + 1.44195i 0.423782 + 0.0967776i
\(223\) −12.2796 + 3.60562i −0.822303 + 0.241450i −0.665707 0.746213i \(-0.731870\pi\)
−0.156596 + 0.987663i \(0.550052\pi\)
\(224\) 11.9983 0.237765i 0.801670 0.0158864i
\(225\) −2.03706 4.46053i −0.135804 0.297369i
\(226\) 8.92827 + 16.7597i 0.593899 + 1.11484i
\(227\) −9.00232 14.0079i −0.597505 0.929736i −0.999898 0.0142690i \(-0.995458\pi\)
0.402393 0.915467i \(-0.368178\pi\)
\(228\) −0.212303 + 10.2874i −0.0140601 + 0.681298i
\(229\) 9.55860i 0.631650i −0.948817 0.315825i \(-0.897719\pi\)
0.948817 0.315825i \(-0.102281\pi\)
\(230\) 1.72736 + 1.20320i 0.113899 + 0.0793367i
\(231\) 6.87505 0.452345
\(232\) −8.39935 + 2.83994i −0.551444 + 0.186452i
\(233\) −0.768576 + 0.493934i −0.0503511 + 0.0323587i −0.565574 0.824697i \(-0.691345\pi\)
0.515223 + 0.857056i \(0.327709\pi\)
\(234\) 3.30509 1.76070i 0.216061 0.115100i
\(235\) 2.76590 1.26315i 0.180428 0.0823986i
\(236\) −22.1359 + 13.5888i −1.44092 + 0.884556i
\(237\) −0.465846 1.58653i −0.0302600 0.103056i
\(238\) 9.03388 + 2.06304i 0.585579 + 0.133727i
\(239\) 9.22254 20.1945i 0.596556 1.30628i −0.334842 0.942274i \(-0.608683\pi\)
0.931398 0.364002i \(-0.118590\pi\)
\(240\) −0.561901 + 1.10709i −0.0362705 + 0.0714623i
\(241\) −12.4181 14.3313i −0.799921 0.923158i 0.198456 0.980110i \(-0.436407\pi\)
−0.998377 + 0.0569516i \(0.981862\pi\)
\(242\) −0.614034 0.343559i −0.0394716 0.0220848i
\(243\) −0.281733 + 0.959493i −0.0180732 + 0.0615515i
\(244\) 15.2142 4.12831i 0.973992 0.264288i
\(245\) 0.419429 0.652644i 0.0267963 0.0416959i
\(246\) 5.96474 + 8.14171i 0.380298 + 0.519097i
\(247\) −1.93880 + 13.4847i −0.123363 + 0.858008i
\(248\) 26.5632 + 2.72832i 1.68677 + 0.173248i
\(249\) 0.575544 + 4.00300i 0.0364736 + 0.253680i
\(250\) 3.45302 + 2.64092i 0.218388 + 0.167026i
\(251\) 3.17575 + 2.75180i 0.200451 + 0.173692i 0.749302 0.662228i \(-0.230389\pi\)
−0.548851 + 0.835920i \(0.684934\pi\)
\(252\) −3.26319 + 2.71174i −0.205562 + 0.170823i
\(253\) 0.691479 + 15.5267i 0.0434729 + 0.976156i
\(254\) −26.3161 + 9.50730i −1.65122 + 0.596541i
\(255\) −0.627787 + 0.724504i −0.0393135 + 0.0453702i
\(256\) −15.6713 + 3.22671i −0.979454 + 0.201669i
\(257\) 0.0190142 + 0.132247i 0.00118607 + 0.00824933i 0.990406 0.138189i \(-0.0441281\pi\)
−0.989220 + 0.146438i \(0.953219\pi\)
\(258\) 12.2457 + 12.5010i 0.762382 + 0.778278i
\(259\) −9.61678 1.38268i −0.597557 0.0859158i
\(260\) −0.917031 + 1.36420i −0.0568719 + 0.0846039i
\(261\) 1.69479 2.63714i 0.104905 0.163235i
\(262\) −9.13839 0.748428i −0.564571 0.0462380i
\(263\) −21.2656 6.24415i −1.31129 0.385031i −0.449951 0.893053i \(-0.648558\pi\)
−0.861344 + 0.508023i \(0.830377\pi\)
\(264\) −9.01276 + 1.67031i −0.554697 + 0.102800i
\(265\) −0.572224 0.660382i −0.0351514 0.0405669i
\(266\) −0.942236 15.4064i −0.0577722 0.944627i
\(267\) −2.21879 1.01329i −0.135788 0.0620123i
\(268\) 0.924541 + 7.53026i 0.0564753 + 0.459984i
\(269\) 2.75651 + 9.38781i 0.168067 + 0.572385i 0.999851 + 0.0172843i \(0.00550205\pi\)
−0.831783 + 0.555101i \(0.812680\pi\)
\(270\) −0.0888743 0.429853i −0.00540872 0.0261600i
\(271\) −2.04849 4.48556i −0.124437 0.272478i 0.837153 0.546968i \(-0.184218\pi\)
−0.961590 + 0.274490i \(0.911491\pi\)
\(272\) −12.3441 0.509713i −0.748469 0.0309059i
\(273\) −4.72578 + 3.03707i −0.286017 + 0.183812i
\(274\) 4.81269 12.5077i 0.290745 0.755616i
\(275\) 15.8916i 0.958297i
\(276\) −6.45244 7.09691i −0.388391 0.427183i
\(277\) 11.8332i 0.710987i 0.934679 + 0.355494i \(0.115687\pi\)
−0.934679 + 0.355494i \(0.884313\pi\)
\(278\) 10.9995 + 4.23236i 0.659704 + 0.253840i
\(279\) −7.94222 + 5.10415i −0.475488 + 0.305578i
\(280\) 0.704526 1.72398i 0.0421035 0.103028i
\(281\) 13.3432 + 29.2175i 0.795986 + 1.74297i 0.658659 + 0.752442i \(0.271124\pi\)
0.137327 + 0.990526i \(0.456149\pi\)
\(282\) −13.5676 + 2.80516i −0.807937 + 0.167045i
\(283\) 6.37463 + 21.7100i 0.378933 + 1.29053i 0.899581 + 0.436755i \(0.143872\pi\)
−0.520648 + 0.853771i \(0.674310\pi\)
\(284\) −12.4122 + 1.52393i −0.736529 + 0.0904286i
\(285\) 1.45254 + 0.663351i 0.0860408 + 0.0392935i
\(286\) −12.1134 + 0.740841i −0.716281 + 0.0438068i
\(287\) −9.91466 11.4421i −0.585244 0.675407i
\(288\) 3.61902 4.34772i 0.213253 0.256192i
\(289\) 7.15806 + 2.10180i 0.421062 + 0.123635i
\(290\) −0.112317 + 1.37140i −0.00659547 + 0.0805314i
\(291\) 6.76906 10.5329i 0.396809 0.617447i
\(292\) −10.2358 + 15.2271i −0.599008 + 0.891097i
\(293\) 7.26497 + 1.04455i 0.424424 + 0.0610230i 0.351218 0.936294i \(-0.385768\pi\)
0.0732066 + 0.997317i \(0.476677\pi\)
\(294\) −2.52516 + 2.47359i −0.147270 + 0.144263i
\(295\) 0.573660 + 3.98989i 0.0333998 + 0.232301i
\(296\) 12.9429 0.523805i 0.752292 0.0304456i
\(297\) 2.12224 2.44920i 0.123145 0.142117i
\(298\) −10.6296 29.4227i −0.615759 1.70441i
\(299\) −7.33428 10.3673i −0.424152 0.599556i
\(300\) −6.26814 7.54282i −0.361891 0.435485i
\(301\) −19.8389 17.1905i −1.14349 0.990844i
\(302\) −20.2567 + 26.4857i −1.16564 + 1.52408i
\(303\) −0.558503 3.88447i −0.0320851 0.223157i
\(304\) 4.97823 + 19.9679i 0.285521 + 1.14524i
\(305\) 0.348171 2.42158i 0.0199362 0.138659i
\(306\) 3.52359 2.58143i 0.201430 0.147571i
\(307\) −9.32588 + 14.5113i −0.532256 + 0.828206i −0.998403 0.0565012i \(-0.982006\pi\)
0.466147 + 0.884707i \(0.345642\pi\)
\(308\) 13.2702 3.60081i 0.756142 0.205175i
\(309\) −0.739949 + 2.52003i −0.0420942 + 0.143360i
\(310\) 2.02345 3.61646i 0.114924 0.205401i
\(311\) −5.10731 5.89415i −0.289609 0.334227i 0.592237 0.805764i \(-0.298245\pi\)
−0.881846 + 0.471537i \(0.843699\pi\)
\(312\) 5.45734 5.12955i 0.308961 0.290404i
\(313\) −9.64947 + 21.1294i −0.545421 + 1.19430i 0.413467 + 0.910519i \(0.364318\pi\)
−0.958888 + 0.283785i \(0.908410\pi\)
\(314\) 0.771655 3.37902i 0.0435470 0.190689i
\(315\) 0.185508 + 0.631781i 0.0104522 + 0.0355968i
\(316\) −1.73012 2.81833i −0.0973270 0.158544i
\(317\) 16.7062 7.62945i 0.938312 0.428513i 0.113257 0.993566i \(-0.463872\pi\)
0.825055 + 0.565053i \(0.191144\pi\)
\(318\) 1.87194 + 3.51390i 0.104973 + 0.197050i
\(319\) −8.54631 + 5.49238i −0.478502 + 0.307514i
\(320\) −0.504744 + 2.43120i −0.0282160 + 0.135908i
\(321\) −7.06760 −0.394475
\(322\) 10.5159 + 9.82034i 0.586027 + 0.547266i
\(323\) 15.8904i 0.884166i
\(324\) −0.0412657 + 1.99957i −0.00229254 + 0.111087i
\(325\) −7.02014 10.9236i −0.389407 0.605930i
\(326\) 22.6946 12.0899i 1.25694 0.669598i
\(327\) 2.64892 + 5.80033i 0.146486 + 0.320759i
\(328\) 15.7774 + 12.5911i 0.871161 + 0.695229i
\(329\) 19.9411 5.85523i 1.09939 0.322809i
\(330\) −0.316701 + 1.38681i −0.0174338 + 0.0763413i
\(331\) 5.21621 + 2.38217i 0.286709 + 0.130936i 0.553578 0.832797i \(-0.313262\pi\)
−0.266869 + 0.963733i \(0.585989\pi\)
\(332\) 3.20749 + 7.42516i 0.176034 + 0.407508i
\(333\) −3.46115 + 2.99910i −0.189670 + 0.164350i
\(334\) −6.62347 3.70591i −0.362420 0.202778i
\(335\) 1.12971 + 0.331711i 0.0617224 + 0.0181233i
\(336\) −4.87835 + 6.94331i −0.266136 + 0.378789i
\(337\) 6.14780 + 3.95095i 0.334892 + 0.215222i 0.697269 0.716810i \(-0.254398\pi\)
−0.362377 + 0.932032i \(0.618035\pi\)
\(338\) −6.83140 + 5.00478i −0.371579 + 0.272224i
\(339\) −13.2909 1.91095i −0.721864 0.103788i
\(340\) −0.832296 + 1.72724i −0.0451376 + 0.0936730i
\(341\) 30.2843 4.35422i 1.63999 0.235794i
\(342\) −5.77930 4.42009i −0.312509 0.239011i
\(343\) 13.1971 15.2303i 0.712579 0.822360i
\(344\) 30.1840 + 17.7158i 1.62741 + 0.955170i
\(345\) −1.40817 + 0.482496i −0.0758131 + 0.0259767i
\(346\) −0.312758 0.865710i −0.0168140 0.0465409i
\(347\) 2.40912 + 2.08752i 0.129329 + 0.112064i 0.717123 0.696946i \(-0.245458\pi\)
−0.587795 + 0.809010i \(0.700004\pi\)
\(348\) 1.89008 5.97786i 0.101319 0.320447i
\(349\) −1.53362 + 0.220502i −0.0820929 + 0.0118032i −0.183239 0.983068i \(-0.558658\pi\)
0.101146 + 0.994872i \(0.467749\pi\)
\(350\) 10.2949 + 10.5096i 0.550287 + 0.561761i
\(351\) −0.376848 + 2.62104i −0.0201147 + 0.139901i
\(352\) −16.5216 + 7.94448i −0.880606 + 0.423442i
\(353\) 2.30810 + 1.48333i 0.122848 + 0.0789495i 0.600622 0.799533i \(-0.294920\pi\)
−0.477774 + 0.878483i \(0.658556\pi\)
\(354\) 1.49918 18.3051i 0.0796805 0.972907i
\(355\) −0.546764 + 1.86211i −0.0290192 + 0.0988303i
\(356\) −4.81343 0.793758i −0.255111 0.0420691i
\(357\) −4.95195 + 4.29089i −0.262085 + 0.227098i
\(358\) 0.818343 + 13.3806i 0.0432508 + 0.707189i
\(359\) −5.93818 + 13.0028i −0.313405 + 0.686261i −0.999135 0.0415953i \(-0.986756\pi\)
0.685730 + 0.727856i \(0.259483\pi\)
\(360\) −0.396681 0.783156i −0.0209069 0.0412759i
\(361\) 7.16622 2.10419i 0.377169 0.110747i
\(362\) 5.20730 1.07664i 0.273689 0.0565867i
\(363\) 0.452569 0.206681i 0.0237537 0.0108479i
\(364\) −7.53104 + 8.33730i −0.394734 + 0.436993i
\(365\) 1.53941 + 2.39537i 0.0805763 + 0.125379i
\(366\) −4.00306 + 10.4035i −0.209243 + 0.543801i
\(367\) 12.3509 0.644714 0.322357 0.946618i \(-0.395525\pi\)
0.322357 + 0.946618i \(0.395525\pi\)
\(368\) −16.1715 10.3190i −0.842999 0.537915i
\(369\) −7.13672 −0.371523
\(370\) 0.721909 1.87617i 0.0375303 0.0975372i
\(371\) −3.22895 5.02434i −0.167639 0.260851i
\(372\) −12.6568 + 14.0118i −0.656224 + 0.726478i
\(373\) 30.0708 13.7329i 1.55701 0.711062i 0.563639 0.826021i \(-0.309401\pi\)
0.993370 + 0.114959i \(0.0366736\pi\)
\(374\) −13.8624 + 2.86613i −0.716809 + 0.148204i
\(375\) −2.94939 + 0.866019i −0.152306 + 0.0447210i
\(376\) −24.7190 + 12.5206i −1.27478 + 0.645699i
\(377\) 3.44830 7.55071i 0.177596 0.388882i
\(378\) −0.183144 2.99457i −0.00941991 0.154024i
\(379\) 15.2385 13.2042i 0.782749 0.678256i −0.168835 0.985644i \(-0.554001\pi\)
0.951584 + 0.307388i \(0.0994551\pi\)
\(380\) 3.15112 + 0.519635i 0.161649 + 0.0266567i
\(381\) 5.57420 18.9840i 0.285575 0.972579i
\(382\) 2.16078 26.3834i 0.110555 1.34989i
\(383\) −10.2315 6.57539i −0.522806 0.335987i 0.252475 0.967603i \(-0.418755\pi\)
−0.775281 + 0.631617i \(0.782392\pi\)
\(384\) 4.70833 10.2875i 0.240271 0.524979i
\(385\) 0.303683 2.11216i 0.0154771 0.107646i
\(386\) 2.61055 + 2.66498i 0.132873 + 0.135644i
\(387\) −12.2480 + 1.76100i −0.622603 + 0.0895167i
\(388\) 7.54906 23.8759i 0.383246 1.21211i
\(389\) 0.438711 + 0.380145i 0.0222435 + 0.0192741i 0.665912 0.746031i \(-0.268043\pi\)
−0.643668 + 0.765305i \(0.722588\pi\)
\(390\) −0.394932 1.09317i −0.0199982 0.0553547i
\(391\) −10.1887 10.7520i −0.515263 0.543751i
\(392\) −3.57853 + 6.09708i −0.180743 + 0.307949i
\(393\) 4.24576 4.89986i 0.214170 0.247165i
\(394\) 10.5734 + 8.08671i 0.532681 + 0.407403i
\(395\) −0.507992 + 0.0730382i −0.0255599 + 0.00367495i
\(396\) 2.81359 5.83897i 0.141388 0.293419i
\(397\) 17.7178 + 2.54744i 0.889232 + 0.127852i 0.571766 0.820417i \(-0.306259\pi\)
0.317467 + 0.948269i \(0.397168\pi\)
\(398\) 14.5923 10.6906i 0.731448 0.535869i
\(399\) 9.18171 + 5.90073i 0.459660 + 0.295406i
\(400\) −16.0493 11.2762i −0.802467 0.563812i
\(401\) 0.732222 + 0.215000i 0.0365654 + 0.0107366i 0.299964 0.953950i \(-0.403025\pi\)
−0.263399 + 0.964687i \(0.584843\pi\)
\(402\) −4.68169 2.61946i −0.233502 0.130647i
\(403\) −18.8934 + 16.3712i −0.941145 + 0.815507i
\(404\) −3.11252 7.20530i −0.154854 0.358477i
\(405\) 0.282332 + 0.128937i 0.0140292 + 0.00640692i
\(406\) −2.09385 + 9.16879i −0.103916 + 0.455039i
\(407\) 14.2407 4.18144i 0.705884 0.207266i
\(408\) 5.44922 6.82818i 0.269776 0.338045i
\(409\) 1.67560 + 3.66906i 0.0828532 + 0.181423i 0.946524 0.322633i \(-0.104568\pi\)
−0.863671 + 0.504056i \(0.831841\pi\)
\(410\) 2.76478 1.47286i 0.136543 0.0727395i
\(411\) 5.12332 + 7.97205i 0.252715 + 0.393232i
\(412\) −0.108381 + 5.25173i −0.00533956 + 0.258734i
\(413\) 27.5512i 1.35570i
\(414\) 6.74456 0.714803i 0.331477 0.0351307i
\(415\) 1.25523 0.0616168
\(416\) 7.84716 12.7594i 0.384739 0.625579i
\(417\) −7.01075 + 4.50554i −0.343318 + 0.220637i
\(418\) 11.0862 + 20.8104i 0.542242 + 1.01787i
\(419\) −31.4574 + 14.3661i −1.53680 + 0.701831i −0.990722 0.135906i \(-0.956605\pi\)
−0.546074 + 0.837737i \(0.683878\pi\)
\(420\) 0.688963 + 1.12231i 0.0336180 + 0.0547629i
\(421\) −3.52357 12.0002i −0.171728 0.584853i −0.999710 0.0240970i \(-0.992329\pi\)
0.827981 0.560756i \(-0.189489\pi\)
\(422\) 7.04352 30.8430i 0.342873 1.50142i
\(423\) 4.06967 8.91133i 0.197874 0.433284i
\(424\) 5.45363 + 5.80212i 0.264852 + 0.281776i
\(425\) −9.91832 11.4463i −0.481109 0.555229i
\(426\) 4.31768 7.71688i 0.209192 0.373884i
\(427\) 4.71101 16.0442i 0.227982 0.776435i
\(428\) −13.6419 + 3.70166i −0.659406 + 0.178927i
\(429\) 4.63950 7.21920i 0.223997 0.348546i
\(430\) 4.38148 3.20994i 0.211294 0.154797i
\(431\) 4.10694 28.5644i 0.197824 1.37590i −0.612757 0.790272i \(-0.709939\pi\)
0.810581 0.585627i \(-0.199152\pi\)
\(432\) 0.967628 + 3.88120i 0.0465550 + 0.186734i
\(433\) 2.53923 + 17.6607i 0.122028 + 0.848721i 0.955254 + 0.295788i \(0.0955823\pi\)
−0.833226 + 0.552933i \(0.813509\pi\)
\(434\) 17.2072 22.4985i 0.825971 1.07996i
\(435\) −0.735324 0.637162i −0.0352561 0.0305496i
\(436\) 8.15089 + 9.80844i 0.390357 + 0.469739i
\(437\) −12.4028 + 21.3296i −0.593307 + 1.02033i
\(438\) −4.40821 12.2019i −0.210632 0.583028i
\(439\) 20.6780 23.8637i 0.986907 1.13895i −0.00339139 0.999994i \(-0.501080\pi\)
0.990298 0.138957i \(-0.0443750\pi\)
\(440\) 0.115045 + 2.84269i 0.00548455 + 0.135520i
\(441\) −0.355717 2.47407i −0.0169389 0.117813i
\(442\) 8.26265 8.09389i 0.393014 0.384987i
\(443\) 35.1878 + 5.05925i 1.67182 + 0.240372i 0.912128 0.409906i \(-0.134438\pi\)
0.759697 + 0.650278i \(0.225347\pi\)
\(444\) −5.10994 + 7.60166i −0.242507 + 0.360759i
\(445\) −0.409312 + 0.636902i −0.0194032 + 0.0301920i
\(446\) 1.47736 18.0387i 0.0699551 0.854159i
\(447\) 21.2251 + 6.23224i 1.00391 + 0.294775i
\(448\) −5.77965 + 15.9570i −0.273063 + 0.753899i
\(449\) 2.46783 + 2.84802i 0.116464 + 0.134407i 0.810988 0.585063i \(-0.198930\pi\)
−0.694524 + 0.719470i \(0.744385\pi\)
\(450\) 6.92189 0.423334i 0.326301 0.0199562i
\(451\) 21.0383 + 9.60786i 0.990654 + 0.452417i
\(452\) −26.6551 + 3.27262i −1.25375 + 0.153931i
\(453\) −6.64263 22.6227i −0.312098 1.06291i
\(454\) 23.0606 4.76790i 1.08229 0.223769i
\(455\) 0.724308 + 1.58601i 0.0339561 + 0.0743534i
\(456\) −13.4702 5.50477i −0.630802 0.257784i
\(457\) 0.806402 0.518243i 0.0377219 0.0242424i −0.521644 0.853163i \(-0.674681\pi\)
0.559366 + 0.828921i \(0.311045\pi\)
\(458\) 12.6162 + 4.85444i 0.589515 + 0.226833i
\(459\) 3.08865i 0.144166i
\(460\) −2.46534 + 1.66884i −0.114947 + 0.0778102i
\(461\) 23.2407i 1.08243i −0.840886 0.541213i \(-0.817965\pi\)
0.840886 0.541213i \(-0.182035\pi\)
\(462\) −3.49157 + 9.07422i −0.162443 + 0.422171i
\(463\) 3.28629 2.11197i 0.152727 0.0981516i −0.462045 0.886856i \(-0.652884\pi\)
0.614772 + 0.788705i \(0.289248\pi\)
\(464\) 0.517325 12.5284i 0.0240162 0.581617i
\(465\) 1.21728 + 2.66548i 0.0564502 + 0.123609i
\(466\) −0.261602 1.26528i −0.0121185 0.0586128i
\(467\) −0.758983 2.58486i −0.0351215 0.119613i 0.940066 0.340991i \(-0.110763\pi\)
−0.975188 + 0.221378i \(0.928944\pi\)
\(468\) 0.645377 + 5.25651i 0.0298326 + 0.242982i
\(469\) 7.32023 + 3.34304i 0.338017 + 0.154367i
\(470\) 0.262503 + 4.29216i 0.0121084 + 0.197983i
\(471\) 1.60496 + 1.85222i 0.0739525 + 0.0853458i
\(472\) −6.69361 36.1178i −0.308099 1.66246i
\(473\) 38.4766 + 11.2978i 1.76916 + 0.519472i
\(474\) 2.33061 + 0.190875i 0.107048 + 0.00876719i
\(475\) −13.6394 + 21.2234i −0.625820 + 0.973795i
\(476\) −7.31091 + 10.8759i −0.335095 + 0.498495i
\(477\) −2.78663 0.400657i −0.127591 0.0183448i
\(478\) 21.9706 + 22.4286i 1.00491 + 1.02586i
\(479\) −0.231990 1.61352i −0.0105999 0.0737238i 0.983835 0.179078i \(-0.0573114\pi\)
−0.994435 + 0.105354i \(0.966402\pi\)
\(480\) −1.17585 1.30389i −0.0536702 0.0595141i
\(481\) −7.94160 + 9.16509i −0.362106 + 0.417892i
\(482\) 25.2222 9.11210i 1.14884 0.415045i
\(483\) −9.99610 + 1.89453i −0.454838 + 0.0862040i
\(484\) 0.765300 0.635970i 0.0347864 0.0289077i
\(485\) −2.93692 2.54485i −0.133359 0.115556i
\(486\) −1.12333 0.859142i −0.0509554 0.0389715i
\(487\) 2.21012 + 15.3717i 0.100150 + 0.696558i 0.976600 + 0.215065i \(0.0689963\pi\)
−0.876450 + 0.481493i \(0.840095\pi\)
\(488\) −2.27786 + 22.1775i −0.103114 + 1.00393i
\(489\) −2.58765 + 17.9975i −0.117017 + 0.813874i
\(490\) 0.648398 + 0.885047i 0.0292917 + 0.0399823i
\(491\) 22.2407 34.6072i 1.00371 1.56180i 0.188958 0.981985i \(-0.439489\pi\)
0.814749 0.579814i \(-0.196875\pi\)
\(492\) −13.7753 + 3.73787i −0.621040 + 0.168516i
\(493\) 2.72779 9.29001i 0.122854 0.418401i
\(494\) −16.8135 9.40731i −0.756473 0.423255i
\(495\) −0.658703 0.760183i −0.0296065 0.0341677i
\(496\) −17.0915 + 33.6746i −0.767430 + 1.51204i
\(497\) −5.51036 + 12.0660i −0.247173 + 0.541234i
\(498\) −5.57576 1.27332i −0.249856 0.0570588i
\(499\) 2.78804 + 9.49519i 0.124810 + 0.425063i 0.998064 0.0622027i \(-0.0198125\pi\)
−0.873254 + 0.487266i \(0.837994\pi\)
\(500\) −5.23935 + 3.21634i −0.234311 + 0.143839i
\(501\) 4.88177 2.22943i 0.218101 0.0996036i
\(502\) −5.24488 + 2.79407i −0.234090 + 0.124705i
\(503\) −33.4972 + 21.5274i −1.49357 + 0.959857i −0.497864 + 0.867255i \(0.665882\pi\)
−0.995703 + 0.0926025i \(0.970481\pi\)
\(504\) −1.92191 5.68420i −0.0856088 0.253195i
\(505\) −1.21806 −0.0542031
\(506\) −20.8445 6.97274i −0.926652 0.309976i
\(507\) 5.98815i 0.265943i
\(508\) 0.816461 39.5625i 0.0362246 1.75530i
\(509\) −19.1176 29.7475i −0.847371 1.31853i −0.946250 0.323435i \(-0.895162\pi\)
0.0988794 0.995099i \(-0.468474\pi\)
\(510\) −0.637429 1.19655i −0.0282258 0.0529841i
\(511\) 8.08468 + 17.7030i 0.357645 + 0.783133i
\(512\) 3.69996 22.3229i 0.163517 0.986541i
\(513\) 4.93638 1.44945i 0.217946 0.0639949i
\(514\) −0.184206 0.0420666i −0.00812499 0.00185548i
\(515\) 0.741523 + 0.338642i 0.0326754 + 0.0149224i
\(516\) −22.7189 + 9.81401i −1.00014 + 0.432038i
\(517\) −23.9939 + 20.7908i −1.05525 + 0.914379i
\(518\) 6.70896 11.9908i 0.294775 0.526844i
\(519\) 0.624508 + 0.183372i 0.0274129 + 0.00804914i
\(520\) −1.33485 1.90319i −0.0585369 0.0834605i
\(521\) 27.2574 + 17.5173i 1.19417 + 0.767445i 0.977938 0.208897i \(-0.0669873\pi\)
0.216231 + 0.976342i \(0.430624\pi\)
\(522\) 2.61998 + 3.57621i 0.114674 + 0.156526i
\(523\) −37.6411 5.41197i −1.64593 0.236649i −0.743890 0.668302i \(-0.767021\pi\)
−0.902040 + 0.431653i \(0.857930\pi\)
\(524\) 5.62887 11.6815i 0.245898 0.510307i
\(525\) −10.2969 + 1.48047i −0.449395 + 0.0646132i
\(526\) 19.0415 24.8969i 0.830249 1.08555i
\(527\) −19.0956 + 22.0374i −0.831815 + 0.959966i
\(528\) 2.37263 12.7440i 0.103255 0.554612i
\(529\) −5.28402 22.3848i −0.229740 0.973252i
\(530\) 1.16223 0.419884i 0.0504842 0.0182386i
\(531\) 9.81494 + 8.50470i 0.425932 + 0.369072i
\(532\) 20.8131 + 6.58067i 0.902361 + 0.285308i
\(533\) −18.7056 + 2.68946i −0.810230 + 0.116493i
\(534\) 2.46426 2.41392i 0.106639 0.104461i
\(535\) −0.312188 + 2.17132i −0.0134971 + 0.0938743i
\(536\) −10.4086 2.60405i −0.449581 0.112478i
\(537\) −7.97442 5.12485i −0.344122 0.221154i
\(538\) −13.7907 1.12945i −0.594559 0.0486940i
\(539\) −2.28211 + 7.77217i −0.0982976 + 0.334771i
\(540\) 0.612489 + 0.101002i 0.0263573 + 0.00434645i
\(541\) 33.9718 29.4368i 1.46056 1.26559i 0.561711 0.827334i \(-0.310143\pi\)
0.898852 0.438252i \(-0.144402\pi\)
\(542\) 6.96073 0.425710i 0.298989 0.0182858i
\(543\) −1.56196 + 3.42021i −0.0670300 + 0.146775i
\(544\) 6.94183 16.0338i 0.297629 0.687444i
\(545\) 1.89899 0.557595i 0.0813439 0.0238847i
\(546\) −1.60853 7.77986i −0.0688385 0.332947i
\(547\) 0.869522 0.397098i 0.0371781 0.0169787i −0.396739 0.917931i \(-0.629858\pi\)
0.433917 + 0.900953i \(0.357131\pi\)
\(548\) 14.0644 + 12.7043i 0.600802 + 0.542702i
\(549\) −4.26144 6.63092i −0.181874 0.283001i
\(550\) −20.9749 8.07070i −0.894373 0.344136i
\(551\) −16.1277 −0.687064
\(552\) 12.6440 4.91218i 0.538164 0.209076i
\(553\) −3.50780 −0.149167
\(554\) −15.6184 6.00962i −0.663560 0.255324i
\(555\) 0.768504 + 1.19582i 0.0326212 + 0.0507596i
\(556\) −11.1724 + 12.3685i −0.473815 + 0.524541i
\(557\) 38.6047 17.6302i 1.63573 0.747015i 0.636038 0.771658i \(-0.280572\pi\)
0.999696 + 0.0246433i \(0.00784500\pi\)
\(558\) −2.70331 13.0750i −0.114440 0.553507i
\(559\) −31.4389 + 9.23130i −1.32972 + 0.390442i
\(560\) 1.91765 + 1.80543i 0.0810354 + 0.0762935i
\(561\) 4.15811 9.10500i 0.175556 0.384413i
\(562\) −45.3399 + 2.77293i −1.91255 + 0.116969i
\(563\) −32.6901 + 28.3261i −1.37772 + 1.19380i −0.419509 + 0.907751i \(0.637798\pi\)
−0.958214 + 0.286053i \(0.907657\pi\)
\(564\) 3.18797 19.3322i 0.134238 0.814031i
\(565\) −1.17417 + 3.99885i −0.0493976 + 0.168233i
\(566\) −31.8920 2.61193i −1.34052 0.109788i
\(567\) 1.78467 + 1.14693i 0.0749489 + 0.0481667i
\(568\) 4.29228 17.1565i 0.180100 0.719872i
\(569\) 1.64264 11.4248i 0.0688633 0.478954i −0.925983 0.377564i \(-0.876762\pi\)
0.994847 0.101390i \(-0.0323291\pi\)
\(570\) −1.61323 + 1.58028i −0.0675707 + 0.0661907i
\(571\) 38.4841 5.53318i 1.61051 0.231557i 0.722497 0.691374i \(-0.242994\pi\)
0.888014 + 0.459817i \(0.152085\pi\)
\(572\) 5.17411 16.3645i 0.216340 0.684232i
\(573\) 14.1464 + 12.2579i 0.590973 + 0.512081i
\(574\) 20.1375 7.27512i 0.840522 0.303658i
\(575\) −4.37917 23.1058i −0.182624 0.963579i
\(576\) 3.90050 + 6.98471i 0.162521 + 0.291029i
\(577\) 2.83881 3.27616i 0.118181 0.136388i −0.693576 0.720384i \(-0.743966\pi\)
0.811757 + 0.583995i \(0.198511\pi\)
\(578\) −6.40942 + 8.38035i −0.266597 + 0.348576i
\(579\) −2.61106 + 0.375413i −0.108512 + 0.0156016i
\(580\) −1.75304 0.844725i −0.0727910 0.0350753i
\(581\) 8.49210 + 1.22098i 0.352312 + 0.0506548i
\(582\) 10.4643 + 14.2836i 0.433761 + 0.592072i
\(583\) 7.67530 + 4.93261i 0.317878 + 0.204288i
\(584\) −14.8995 21.2433i −0.616545 0.879054i
\(585\) 0.788593 + 0.231552i 0.0326043 + 0.00957348i
\(586\) −5.06827 + 9.05839i −0.209368 + 0.374199i
\(587\) 10.2663 8.89577i 0.423734 0.367168i −0.416734 0.909028i \(-0.636825\pi\)
0.840468 + 0.541861i \(0.182280\pi\)
\(588\) −1.98240 4.58915i −0.0817529 0.189253i
\(589\) 44.1822 + 20.1773i 1.82050 + 0.831393i
\(590\) −5.55751 1.26915i −0.228799 0.0522501i
\(591\) −9.03127 + 2.65182i −0.371497 + 0.109081i
\(592\) −5.88185 + 17.3491i −0.241742 + 0.713043i
\(593\) 10.3159 + 22.5886i 0.423622 + 0.927602i 0.994319 + 0.106441i \(0.0339457\pi\)
−0.570697 + 0.821160i \(0.693327\pi\)
\(594\) 2.15484 + 4.04495i 0.0884140 + 0.165966i
\(595\) 1.09952 + 1.71088i 0.0450758 + 0.0701393i
\(596\) 44.2328 + 0.912844i 1.81185 + 0.0373916i
\(597\) 12.7911i 0.523505i
\(598\) 17.4084 4.41520i 0.711881 0.180551i
\(599\) 41.7860 1.70733 0.853665 0.520822i \(-0.174375\pi\)
0.853665 + 0.520822i \(0.174375\pi\)
\(600\) 13.1389 4.44247i 0.536395 0.181363i
\(601\) −11.2430 + 7.22546i −0.458613 + 0.294733i −0.749475 0.662032i \(-0.769694\pi\)
0.290862 + 0.956765i \(0.406058\pi\)
\(602\) 32.7648 17.4545i 1.33539 0.711393i
\(603\) 3.45060 1.57584i 0.140519 0.0641730i
\(604\) −24.6703 40.1874i −1.00382 1.63520i
\(605\) −0.0435061 0.148168i −0.00176878 0.00602390i
\(606\) 5.41067 + 1.23562i 0.219793 + 0.0501935i
\(607\) 5.05949 11.0787i 0.205358 0.449672i −0.778728 0.627361i \(-0.784135\pi\)
0.984087 + 0.177689i \(0.0568622\pi\)
\(608\) −28.8834 3.57027i −1.17138 0.144794i
\(609\) −4.35497 5.02590i −0.176472 0.203660i
\(610\) 3.01937 + 1.68937i 0.122251 + 0.0684005i
\(611\) 7.30853 24.8906i 0.295672 1.00696i
\(612\) 1.61768 + 5.96172i 0.0653909 + 0.240988i
\(613\) 22.1321 34.4383i 0.893908 1.39095i −0.0263573 0.999653i \(-0.508391\pi\)
0.920265 0.391295i \(-0.127973\pi\)
\(614\) −14.4170 19.6788i −0.581821 0.794170i
\(615\) −0.315242 + 2.19255i −0.0127118 + 0.0884123i
\(616\) −1.98681 + 19.3438i −0.0800507 + 0.779384i
\(617\) 2.58789 + 17.9992i 0.104185 + 0.724620i 0.973221 + 0.229872i \(0.0738307\pi\)
−0.869036 + 0.494748i \(0.835260\pi\)
\(618\) −2.95034 2.25647i −0.118680 0.0907685i
\(619\) −21.4873 18.6189i −0.863649 0.748356i 0.105608 0.994408i \(-0.466321\pi\)
−0.969257 + 0.246052i \(0.920867\pi\)
\(620\) 3.74565 + 4.50736i 0.150429 + 0.181020i
\(621\) −2.41076 + 4.14587i −0.0967403 + 0.166368i
\(622\) 10.3734 3.74762i 0.415934 0.150266i
\(623\) −3.38867 + 3.91074i −0.135764 + 0.156680i
\(624\) 3.99881 + 9.80811i 0.160081 + 0.392639i
\(625\) −3.35354 23.3244i −0.134142 0.932976i
\(626\) −22.9876 23.4669i −0.918771 0.937927i
\(627\) −16.5032 2.37281i −0.659076 0.0947608i
\(628\) 4.06800 + 2.73456i 0.162331 + 0.109121i
\(629\) −7.64751 + 11.8998i −0.304926 + 0.474474i
\(630\) −0.928085 0.0760096i −0.0369758 0.00302830i
\(631\) −35.5369 10.4346i −1.41470 0.415394i −0.516996 0.855988i \(-0.672950\pi\)
−0.897707 + 0.440594i \(0.854768\pi\)
\(632\) 4.59851 0.852229i 0.182919 0.0338999i
\(633\) 14.6497 + 16.9067i 0.582275 + 0.671981i
\(634\) 1.58553 + 25.9248i 0.0629694 + 1.02961i
\(635\) −5.58607 2.55107i −0.221676 0.101236i
\(636\) −5.58861 + 0.686151i −0.221603 + 0.0272077i
\(637\) −1.86470 6.35057i −0.0738819 0.251619i
\(638\) −2.90893 14.0695i −0.115166 0.557015i
\(639\) 2.59747 + 5.68766i 0.102754 + 0.225000i
\(640\) −2.95255 1.90091i −0.116710 0.0751402i
\(641\) −6.61573 + 4.25167i −0.261305 + 0.167931i −0.664734 0.747081i \(-0.731455\pi\)
0.403428 + 0.915011i \(0.367819\pi\)
\(642\) 3.58936 9.32837i 0.141661 0.368161i
\(643\) 8.68477i 0.342494i −0.985228 0.171247i \(-0.945220\pi\)
0.985228 0.171247i \(-0.0547796\pi\)
\(644\) −18.3022 + 8.89229i −0.721210 + 0.350405i
\(645\) 3.84065i 0.151225i
\(646\) −20.9734 8.07012i −0.825187 0.317515i
\(647\) −5.45157 + 3.50351i −0.214323 + 0.137737i −0.643398 0.765532i \(-0.722476\pi\)
0.429075 + 0.903269i \(0.358840\pi\)
\(648\) −2.61824 1.06997i −0.102854 0.0420325i
\(649\) −17.4839 38.2844i −0.686302 1.50279i
\(650\) 17.9830 3.71808i 0.705352 0.145835i
\(651\) 5.64263 + 19.2170i 0.221152 + 0.753175i
\(652\) 4.43151 + 36.0941i 0.173551 + 1.41355i
\(653\) 28.6347 + 13.0770i 1.12056 + 0.511744i 0.887542 0.460727i \(-0.152411\pi\)
0.233022 + 0.972471i \(0.425139\pi\)
\(654\) −9.00101 + 0.550490i −0.351967 + 0.0215259i
\(655\) −1.31780 1.52082i −0.0514907 0.0594235i
\(656\) −24.6315 + 14.4297i −0.961697 + 0.563384i
\(657\) 8.80222 + 2.58457i 0.343407 + 0.100833i
\(658\) −2.39911 + 29.2934i −0.0935272 + 1.14198i
\(659\) −4.53648 + 7.05890i −0.176716 + 0.274976i −0.918301 0.395884i \(-0.870438\pi\)
0.741584 + 0.670860i \(0.234075\pi\)
\(660\) −1.66958 1.12231i −0.0649882 0.0436859i
\(661\) −3.27143 0.470361i −0.127244 0.0182949i 0.0783985 0.996922i \(-0.475019\pi\)
−0.205643 + 0.978627i \(0.565928\pi\)
\(662\) −5.79328 + 5.67495i −0.225162 + 0.220563i
\(663\) 1.16395 + 8.09546i 0.0452041 + 0.314402i
\(664\) −11.4293 + 0.462547i −0.443541 + 0.0179503i
\(665\) 2.21840 2.56017i 0.0860260 0.0992792i
\(666\) −2.20067 6.09143i −0.0852741 0.236038i
\(667\) 10.9126 10.3408i 0.422536 0.400398i
\(668\) 8.25515 6.86009i 0.319401 0.265425i
\(669\) 9.67209 + 8.38092i 0.373945 + 0.324025i
\(670\) −1.01155 + 1.32261i −0.0390797 + 0.0510969i
\(671\) 3.63532 + 25.2842i 0.140340 + 0.976087i
\(672\) −6.68679 9.96507i −0.257949 0.384411i
\(673\) 1.27214 8.84790i 0.0490373 0.341062i −0.950502 0.310718i \(-0.899431\pi\)
0.999540 0.0303440i \(-0.00966027\pi\)
\(674\) −8.33700 + 6.10781i −0.321129 + 0.235264i
\(675\) −2.65112 + 4.12522i −0.102042 + 0.158780i
\(676\) −3.13630 11.5583i −0.120627 0.444552i
\(677\) 11.0367 37.5876i 0.424175 1.44461i −0.419501 0.907755i \(-0.637795\pi\)
0.843676 0.536853i \(-0.180387\pi\)
\(678\) 9.27217 16.5719i 0.356095 0.636440i
\(679\) −17.3940 20.0737i −0.667519 0.770357i
\(680\) −1.85706 1.97573i −0.0712150 0.0757657i
\(681\) −6.91716 + 15.1465i −0.265066 + 0.580414i
\(682\) −9.63317 + 42.1829i −0.368873 + 1.61527i
\(683\) 10.7177 + 36.5012i 0.410102 + 1.39668i 0.863039 + 0.505138i \(0.168558\pi\)
−0.452937 + 0.891543i \(0.649624\pi\)
\(684\) 8.76906 5.38317i 0.335294 0.205831i
\(685\) 2.67549 1.22186i 0.102225 0.0466847i
\(686\) 13.3998 + 25.1535i 0.511608 + 0.960365i
\(687\) −8.04120 + 5.16777i −0.306791 + 0.197163i
\(688\) −38.7119 + 30.8421i −1.47588 + 1.17584i
\(689\) −7.45485 −0.284007
\(690\) 0.0783162 2.10365i 0.00298145 0.0800845i
\(691\) 21.6997i 0.825496i 0.910845 + 0.412748i \(0.135431\pi\)
−0.910845 + 0.412748i \(0.864569\pi\)
\(692\) 1.30147 + 0.0268588i 0.0494744 + 0.00102102i
\(693\) −3.71693 5.78366i −0.141195 0.219703i
\(694\) −3.97877 + 2.11958i −0.151032 + 0.0804582i
\(695\) 1.07452 + 2.35287i 0.0407589 + 0.0892495i
\(696\) 6.93015 + 5.53059i 0.262686 + 0.209637i
\(697\) −21.1499 + 6.21018i −0.801111 + 0.235227i
\(698\) 0.487832 2.13618i 0.0184647 0.0808555i
\(699\) 0.831047 + 0.379527i 0.0314331 + 0.0143550i
\(700\) −19.0998 + 8.25064i −0.721903 + 0.311845i
\(701\) −6.30080 + 5.45967i −0.237978 + 0.206209i −0.765682 0.643219i \(-0.777598\pi\)
0.527704 + 0.849428i \(0.323053\pi\)
\(702\) −3.26806 1.82852i −0.123345 0.0690129i
\(703\) 22.6074 + 6.63814i 0.852655 + 0.250362i
\(704\) −2.09504 25.8412i −0.0789598 0.973928i
\(705\) −2.55799 1.64392i −0.0963394 0.0619136i
\(706\) −3.13000 + 2.29309i −0.117799 + 0.0863014i
\(707\) −8.24066 1.18483i −0.309922 0.0445600i
\(708\) 23.3992 + 11.2752i 0.879395 + 0.423748i
\(709\) −6.65030 + 0.956168i −0.249757 + 0.0359097i −0.266056 0.963958i \(-0.585721\pi\)
0.0162991 + 0.999867i \(0.494812\pi\)
\(710\) −2.18007 1.66735i −0.0818166 0.0625746i
\(711\) −1.08282 + 1.24964i −0.0406087 + 0.0468650i
\(712\) 3.49222 5.95002i 0.130876 0.222986i
\(713\) −42.8325 + 14.6762i −1.60409 + 0.549629i
\(714\) −3.14855 8.71514i −0.117831 0.326156i
\(715\) −2.01296 1.74424i −0.0752803 0.0652308i
\(716\) −18.0764 5.71539i −0.675547 0.213594i
\(717\) −21.9748 + 3.15950i −0.820664 + 0.117994i
\(718\) −14.1463 14.4413i −0.527936 0.538944i
\(719\) −1.42587 + 9.91714i −0.0531760 + 0.369847i 0.945806 + 0.324733i \(0.105274\pi\)
−0.998982 + 0.0451144i \(0.985635\pi\)
\(720\) 1.23513 0.125837i 0.0460305 0.00468965i
\(721\) 4.68729 + 3.01234i 0.174564 + 0.112185i
\(722\) −0.862168 + 10.5272i −0.0320866 + 0.391780i
\(723\) −5.34249 + 18.1949i −0.198689 + 0.676674i
\(724\) −1.22356 + 7.41978i −0.0454731 + 0.275754i
\(725\) 11.6173 10.0664i 0.431455 0.373858i
\(726\) 0.0429518 + 0.702301i 0.00159409 + 0.0260648i
\(727\) 6.96948 15.2610i 0.258484 0.566000i −0.735247 0.677799i \(-0.762934\pi\)
0.993731 + 0.111799i \(0.0356612\pi\)
\(728\) −7.17949 14.1742i −0.266090 0.525332i
\(729\) 0.959493 0.281733i 0.0355368 0.0104345i
\(730\) −3.94340 + 0.815317i −0.145952 + 0.0301763i
\(731\) −34.7651 + 15.8767i −1.28583 + 0.587221i
\(732\) −11.6984 10.5671i −0.432385 0.390571i
\(733\) 8.18962 + 12.7433i 0.302491 + 0.470684i 0.958910 0.283712i \(-0.0915660\pi\)
−0.656419 + 0.754397i \(0.727930\pi\)
\(734\) −6.27256 + 16.3017i −0.231525 + 0.601708i
\(735\) −0.775799 −0.0286158
\(736\) 21.8327 16.1038i 0.804764 0.593595i
\(737\) −12.2935 −0.452836
\(738\) 3.62446 9.41960i 0.133418 0.346740i
\(739\) 1.48235 + 2.30658i 0.0545292 + 0.0848490i 0.867448 0.497528i \(-0.165759\pi\)
−0.812919 + 0.582377i \(0.802123\pi\)
\(740\) 2.10968 + 1.90566i 0.0775533 + 0.0700536i
\(741\) 12.3922 5.65933i 0.455239 0.207901i
\(742\) 8.27138 1.71015i 0.303652 0.0627816i
\(743\) 21.3307 6.26325i 0.782546 0.229776i 0.134030 0.990977i \(-0.457208\pi\)
0.648516 + 0.761201i \(0.275390\pi\)
\(744\) −12.0660 23.8215i −0.442360 0.873337i
\(745\) 2.85223 6.24550i 0.104497 0.228818i
\(746\) 2.85393 + 46.6642i 0.104490 + 1.70850i
\(747\) 3.05637 2.64836i 0.111827 0.0968985i
\(748\) 3.25725 19.7523i 0.119097 0.722216i
\(749\) −4.22415 + 14.3861i −0.154347 + 0.525657i
\(750\) 0.354842 4.33265i 0.0129570 0.158206i
\(751\) 25.7966 + 16.5785i 0.941331 + 0.604957i 0.918772 0.394789i \(-0.129182\pi\)
0.0225589 + 0.999746i \(0.492819\pi\)
\(752\) −3.97181 38.9847i −0.144837 1.42163i
\(753\) 0.598024 4.15935i 0.0217932 0.151575i
\(754\) 8.21476 + 8.38604i 0.299164 + 0.305402i
\(755\) −7.24361 + 1.04147i −0.263622 + 0.0379031i
\(756\) 4.04548 + 1.27910i 0.147133 + 0.0465203i
\(757\) 10.6196 + 9.20197i 0.385977 + 0.334451i 0.826138 0.563468i \(-0.190533\pi\)
−0.440161 + 0.897919i \(0.645079\pi\)
\(758\) 9.68893 + 26.8189i 0.351918 + 0.974105i
\(759\) 12.6881 8.97608i 0.460547 0.325811i
\(760\) −2.28619 + 3.89519i −0.0829287 + 0.141294i
\(761\) 18.3628 21.1918i 0.665652 0.768203i −0.318038 0.948078i \(-0.603024\pi\)
0.983689 + 0.179875i \(0.0575693\pi\)
\(762\) 22.2256 + 16.9985i 0.805149 + 0.615791i
\(763\) 13.3898 1.92516i 0.484743 0.0696955i
\(764\) 33.7254 + 16.2511i 1.22014 + 0.587942i
\(765\) 0.948899 + 0.136431i 0.0343075 + 0.00493267i
\(766\) 13.8749 10.1650i 0.501320 0.367275i
\(767\) 28.9303 + 18.5924i 1.04461 + 0.671332i
\(768\) 11.1870 + 11.4390i 0.403676 + 0.412770i
\(769\) 36.6921 + 10.7738i 1.32315 + 0.388512i 0.865629 0.500686i \(-0.166919\pi\)
0.457522 + 0.889198i \(0.348737\pi\)
\(770\) 2.63357 + 1.47351i 0.0949072 + 0.0531016i
\(771\) 0.100973 0.0874938i 0.00363646 0.00315101i
\(772\) −4.84324 + 2.09217i −0.174312 + 0.0752987i
\(773\) −29.5349 13.4881i −1.06230 0.485134i −0.193907 0.981020i