Properties

Label 552.2.bb.a.13.9
Level $552$
Weight $2$
Character 552.13
Analytic conductor $4.408$
Analytic rank $0$
Dimension $480$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 552 = 2^{3} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 552.bb (of order \(22\), degree \(10\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.40774219157\)
Analytic rank: \(0\)
Dimension: \(480\)
Relative dimension: \(48\) over \(\Q(\zeta_{22})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 13.9
Character \(\chi\) \(=\) 552.13
Dual form 552.2.bb.a.85.9

$q$-expansion

\(f(q)\) \(=\) \(q+(-1.23417 - 0.690530i) q^{2} +(0.540641 - 0.841254i) q^{3} +(1.04634 + 1.70446i) q^{4} +(0.282332 + 0.128937i) q^{5} +(-1.24815 + 0.664919i) q^{6} +(-2.03550 - 0.597678i) q^{7} +(-0.114374 - 2.82611i) q^{8} +(-0.415415 - 0.909632i) q^{9} +O(q^{10})\) \(q+(-1.23417 - 0.690530i) q^{2} +(0.540641 - 0.841254i) q^{3} +(1.04634 + 1.70446i) q^{4} +(0.282332 + 0.128937i) q^{5} +(-1.24815 + 0.664919i) q^{6} +(-2.03550 - 0.597678i) q^{7} +(-0.114374 - 2.82611i) q^{8} +(-0.415415 - 0.909632i) q^{9} +(-0.259410 - 0.354088i) q^{10} +(-2.44920 - 2.12224i) q^{11} +(1.99957 + 0.0412657i) q^{12} +(0.746025 + 2.54073i) q^{13} +(2.09944 + 2.14321i) q^{14} +(0.261109 - 0.167804i) q^{15} +(-1.81036 + 3.56687i) q^{16} +(-0.439560 - 3.05721i) q^{17} +(-0.115437 + 1.40949i) q^{18} +(-5.09241 - 0.732178i) q^{19} +(0.0756470 + 0.616135i) q^{20} +(-1.60327 + 1.38925i) q^{21} +(1.55725 + 4.31044i) q^{22} +(-2.97624 - 3.76059i) q^{23} +(-2.43931 - 1.43169i) q^{24} +(-3.21122 - 3.70594i) q^{25} +(0.833729 - 3.65083i) q^{26} +(-0.989821 - 0.142315i) q^{27} +(-1.11110 - 4.09480i) q^{28} +(3.10286 - 0.446125i) q^{29} +(-0.438126 + 0.0267952i) q^{30} +(7.94222 - 5.10415i) q^{31} +(4.69732 - 3.15201i) q^{32} +(-3.10948 + 0.913025i) q^{33} +(-1.56860 + 4.07664i) q^{34} +(-0.497625 - 0.431195i) q^{35} +(1.11577 - 1.65984i) q^{36} +(-4.16590 + 1.90250i) q^{37} +(5.77930 + 4.42009i) q^{38} +(2.54073 + 0.746025i) q^{39} +(0.332099 - 0.812650i) q^{40} +(2.96470 - 6.49179i) q^{41} +(2.93802 - 0.607451i) q^{42} +(-6.68988 + 10.4097i) q^{43} +(1.05459 - 6.39513i) q^{44} -0.310381i q^{45} +(1.07638 + 6.69637i) q^{46} -9.79663 q^{47} +(2.02189 + 3.45137i) q^{48} +(-2.10272 - 1.35134i) q^{49} +(1.40411 + 6.79119i) q^{50} +(-2.80953 - 1.28307i) q^{51} +(-3.54997 + 3.93002i) q^{52} +(-0.793158 + 2.70125i) q^{53} +(1.12333 + 0.859142i) q^{54} +(-0.417852 - 0.914968i) q^{55} +(-1.45630 + 5.82092i) q^{56} +(-3.36911 + 3.88816i) q^{57} +(-4.13752 - 1.59203i) q^{58} +(-3.65887 - 12.4610i) q^{59} +(0.559223 + 0.269469i) q^{60} +(4.26144 + 6.63092i) q^{61} +(-13.3266 + 0.815038i) q^{62} +(0.301912 + 2.09984i) q^{63} +(-7.97384 + 0.646468i) q^{64} +(-0.116966 + 0.813519i) q^{65} +(4.46809 + 1.02036i) q^{66} +(2.86686 - 2.48415i) q^{67} +(4.75096 - 3.94808i) q^{68} +(-4.77268 + 0.470644i) q^{69} +(0.316400 + 0.875792i) q^{70} +(4.09465 + 4.72548i) q^{71} +(-2.52321 + 1.27805i) q^{72} +(-1.30557 + 9.08045i) q^{73} +(6.45515 + 0.528672i) q^{74} +(-4.85375 + 0.697864i) q^{75} +(-4.08041 - 9.44591i) q^{76} +(3.71693 + 5.78366i) q^{77} +(-2.62053 - 2.67517i) q^{78} +(1.58653 - 0.465846i) q^{79} +(-0.971024 + 0.773622i) q^{80} +(-0.654861 + 0.755750i) q^{81} +(-8.14171 + 5.96474i) q^{82} +(3.67870 - 1.68001i) q^{83} +(-4.04548 - 1.27910i) q^{84} +(0.270085 - 0.919824i) q^{85} +(15.4446 - 8.22769i) q^{86} +(1.30223 - 2.85149i) q^{87} +(-5.71757 + 7.16444i) q^{88} +(2.05200 + 1.31874i) q^{89} +(-0.214327 + 0.383062i) q^{90} -5.61754i q^{91} +(3.29562 - 9.00771i) q^{92} -9.44093i q^{93} +(12.0907 + 6.76487i) q^{94} +(-1.34335 - 0.863317i) q^{95} +(-0.112078 - 5.65574i) q^{96} +(5.20118 - 11.3890i) q^{97} +(1.66197 + 3.11977i) q^{98} +(-0.913025 + 3.10948i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 480q + 4q^{2} + 4q^{6} + 8q^{7} + 4q^{8} + 48q^{9} + O(q^{10}) \) \( 480q + 4q^{2} + 4q^{6} + 8q^{7} + 4q^{8} + 48q^{9} - 4q^{10} - 4q^{14} - 8q^{15} - 8q^{16} - 4q^{18} + 20q^{20} + 20q^{22} - 8q^{23} - 4q^{24} + 48q^{25} + 16q^{30} + 16q^{31} + 4q^{32} + 6q^{34} - 22q^{36} + 90q^{38} - 74q^{40} + 90q^{42} - 130q^{44} + 96q^{46} - 88q^{48} - 48q^{49} + 142q^{50} - 142q^{52} + 18q^{54} - 82q^{56} + 22q^{58} + 2q^{60} - 40q^{62} - 8q^{63} + 16q^{66} - 44q^{68} + 16q^{71} - 4q^{72} + 10q^{74} - 138q^{76} - 40q^{79} - 170q^{80} - 48q^{81} - 124q^{82} - 8q^{84} - 216q^{86} - 108q^{88} + 4q^{90} - 198q^{92} - 238q^{94} + 80q^{95} + 4q^{96} - 132q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/552\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(185\) \(277\) \(415\)
\(\chi(n)\) \(e\left(\frac{7}{11}\right)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.23417 0.690530i −0.872688 0.488278i
\(3\) 0.540641 0.841254i 0.312139 0.485698i
\(4\) 1.04634 + 1.70446i 0.523168 + 0.852229i
\(5\) 0.282332 + 0.128937i 0.126263 + 0.0576623i 0.477545 0.878607i \(-0.341527\pi\)
−0.351282 + 0.936270i \(0.614254\pi\)
\(6\) −1.24815 + 0.664919i −0.509556 + 0.271452i
\(7\) −2.03550 0.597678i −0.769348 0.225901i −0.126574 0.991957i \(-0.540398\pi\)
−0.642774 + 0.766056i \(0.722216\pi\)
\(8\) −0.114374 2.82611i −0.0404373 0.999182i
\(9\) −0.415415 0.909632i −0.138472 0.303211i
\(10\) −0.259410 0.354088i −0.0820328 0.111973i
\(11\) −2.44920 2.12224i −0.738461 0.639880i 0.202155 0.979354i \(-0.435206\pi\)
−0.940615 + 0.339474i \(0.889751\pi\)
\(12\) 1.99957 + 0.0412657i 0.577227 + 0.0119124i
\(13\) 0.746025 + 2.54073i 0.206910 + 0.704671i 0.995916 + 0.0902853i \(0.0287779\pi\)
−0.789006 + 0.614386i \(0.789404\pi\)
\(14\) 2.09944 + 2.14321i 0.561098 + 0.572797i
\(15\) 0.261109 0.167804i 0.0674180 0.0433269i
\(16\) −1.81036 + 3.56687i −0.452590 + 0.891719i
\(17\) −0.439560 3.05721i −0.106609 0.741482i −0.971072 0.238786i \(-0.923251\pi\)
0.864463 0.502696i \(-0.167659\pi\)
\(18\) −0.115437 + 1.40949i −0.0272087 + 0.332221i
\(19\) −5.09241 0.732178i −1.16828 0.167973i −0.469250 0.883066i \(-0.655476\pi\)
−0.699030 + 0.715092i \(0.746385\pi\)
\(20\) 0.0756470 + 0.616135i 0.0169152 + 0.137772i
\(21\) −1.60327 + 1.38925i −0.349863 + 0.303158i
\(22\) 1.55725 + 4.31044i 0.332006 + 0.918990i
\(23\) −2.97624 3.76059i −0.620588 0.784136i
\(24\) −2.43931 1.43169i −0.497923 0.292244i
\(25\) −3.21122 3.70594i −0.642243 0.741188i
\(26\) 0.833729 3.65083i 0.163508 0.715988i
\(27\) −0.989821 0.142315i −0.190491 0.0273885i
\(28\) −1.11110 4.09480i −0.209979 0.773845i
\(29\) 3.10286 0.446125i 0.576188 0.0828433i 0.151940 0.988390i \(-0.451448\pi\)
0.424247 + 0.905546i \(0.360539\pi\)
\(30\) −0.438126 + 0.0267952i −0.0799905 + 0.00489212i
\(31\) 7.94222 5.10415i 1.42646 0.916733i 0.426540 0.904469i \(-0.359732\pi\)
0.999925 0.0122642i \(-0.00390390\pi\)
\(32\) 4.69732 3.15201i 0.830377 0.557202i
\(33\) −3.10948 + 0.913025i −0.541291 + 0.158937i
\(34\) −1.56860 + 4.07664i −0.269013 + 0.699138i
\(35\) −0.497625 0.431195i −0.0841140 0.0728852i
\(36\) 1.11577 1.65984i 0.185961 0.276640i
\(37\) −4.16590 + 1.90250i −0.684869 + 0.312769i −0.727290 0.686331i \(-0.759220\pi\)
0.0424206 + 0.999100i \(0.486493\pi\)
\(38\) 5.77930 + 4.42009i 0.937526 + 0.717034i
\(39\) 2.54073 + 0.746025i 0.406842 + 0.119460i
\(40\) 0.332099 0.812650i 0.0525094 0.128491i
\(41\) 2.96470 6.49179i 0.463009 1.01385i −0.523783 0.851852i \(-0.675480\pi\)
0.986791 0.161996i \(-0.0517930\pi\)
\(42\) 2.93802 0.607451i 0.453347 0.0937318i
\(43\) −6.68988 + 10.4097i −1.02020 + 1.58746i −0.231348 + 0.972871i \(0.574314\pi\)
−0.788849 + 0.614587i \(0.789323\pi\)
\(44\) 1.05459 6.39513i 0.158985 0.964103i
\(45\) 0.310381i 0.0462688i
\(46\) 1.07638 + 6.69637i 0.158703 + 0.987326i
\(47\) −9.79663 −1.42899 −0.714493 0.699643i \(-0.753342\pi\)
−0.714493 + 0.699643i \(0.753342\pi\)
\(48\) 2.02189 + 3.45137i 0.291835 + 0.498162i
\(49\) −2.10272 1.35134i −0.300389 0.193048i
\(50\) 1.40411 + 6.79119i 0.198572 + 0.960420i
\(51\) −2.80953 1.28307i −0.393413 0.179666i
\(52\) −3.54997 + 3.93002i −0.492293 + 0.544996i
\(53\) −0.793158 + 2.70125i −0.108949 + 0.371045i −0.995861 0.0908935i \(-0.971028\pi\)
0.886912 + 0.461938i \(0.152846\pi\)
\(54\) 1.12333 + 0.859142i 0.152866 + 0.116914i
\(55\) −0.417852 0.914968i −0.0563432 0.123374i
\(56\) −1.45630 + 5.82092i −0.194606 + 0.777853i
\(57\) −3.36911 + 3.88816i −0.446250 + 0.515000i
\(58\) −4.13752 1.59203i −0.543282 0.209044i
\(59\) −3.65887 12.4610i −0.476344 1.62228i −0.750695 0.660649i \(-0.770281\pi\)
0.274350 0.961630i \(-0.411537\pi\)
\(60\) 0.559223 + 0.269469i 0.0721954 + 0.0347883i
\(61\) 4.26144 + 6.63092i 0.545621 + 0.849003i 0.999107 0.0422608i \(-0.0134560\pi\)
−0.453486 + 0.891264i \(0.649820\pi\)
\(62\) −13.3266 + 0.815038i −1.69248 + 0.103510i
\(63\) 0.301912 + 2.09984i 0.0380373 + 0.264555i
\(64\) −7.97384 + 0.646468i −0.996730 + 0.0808085i
\(65\) −0.116966 + 0.813519i −0.0145079 + 0.100905i
\(66\) 4.46809 + 1.02036i 0.549983 + 0.125598i
\(67\) 2.86686 2.48415i 0.350243 0.303487i −0.461916 0.886924i \(-0.652838\pi\)
0.812159 + 0.583437i \(0.198292\pi\)
\(68\) 4.75096 3.94808i 0.576139 0.478775i
\(69\) −4.77268 + 0.470644i −0.574563 + 0.0566589i
\(70\) 0.316400 + 0.875792i 0.0378170 + 0.104677i
\(71\) 4.09465 + 4.72548i 0.485946 + 0.560811i 0.944778 0.327712i \(-0.106278\pi\)
−0.458832 + 0.888523i \(0.651732\pi\)
\(72\) −2.52321 + 1.27805i −0.297363 + 0.150619i
\(73\) −1.30557 + 9.08045i −0.152806 + 1.06279i 0.758683 + 0.651460i \(0.225843\pi\)
−0.911488 + 0.411326i \(0.865066\pi\)
\(74\) 6.45515 + 0.528672i 0.750395 + 0.0614569i
\(75\) −4.85375 + 0.697864i −0.560463 + 0.0805824i
\(76\) −4.08041 9.44591i −0.468055 1.08352i
\(77\) 3.71693 + 5.78366i 0.423584 + 0.659109i
\(78\) −2.62053 2.67517i −0.296717 0.302903i
\(79\) 1.58653 0.465846i 0.178498 0.0524118i −0.191262 0.981539i \(-0.561258\pi\)
0.369760 + 0.929127i \(0.379440\pi\)
\(80\) −0.971024 + 0.773622i −0.108564 + 0.0864935i
\(81\) −0.654861 + 0.755750i −0.0727623 + 0.0839722i
\(82\) −8.14171 + 5.96474i −0.899102 + 0.658695i
\(83\) 3.67870 1.68001i 0.403790 0.184405i −0.203159 0.979146i \(-0.565121\pi\)
0.606948 + 0.794741i \(0.292393\pi\)
\(84\) −4.04548 1.27910i −0.441398 0.139561i
\(85\) 0.270085 0.919824i 0.0292948 0.0997689i
\(86\) 15.4446 8.22769i 1.66544 0.887215i
\(87\) 1.30223 2.85149i 0.139614 0.305712i
\(88\) −5.71757 + 7.16444i −0.609495 + 0.763732i
\(89\) 2.05200 + 1.31874i 0.217512 + 0.139786i 0.644860 0.764301i \(-0.276916\pi\)
−0.427348 + 0.904087i \(0.640552\pi\)
\(90\) −0.214327 + 0.383062i −0.0225921 + 0.0403782i
\(91\) 5.61754i 0.588878i
\(92\) 3.29562 9.00771i 0.343592 0.939119i
\(93\) 9.44093i 0.978979i
\(94\) 12.0907 + 6.76487i 1.24706 + 0.697743i
\(95\) −1.34335 0.863317i −0.137825 0.0885744i
\(96\) −0.112078 5.65574i −0.0114389 0.577237i
\(97\) 5.20118 11.3890i 0.528099 1.15638i −0.438182 0.898886i \(-0.644377\pi\)
0.966281 0.257490i \(-0.0828954\pi\)
\(98\) 1.66197 + 3.11977i 0.167884 + 0.315144i
\(99\) −0.913025 + 3.10948i −0.0917625 + 0.312514i
\(100\) 2.95661 9.35105i 0.295661 0.935105i
\(101\) −3.56977 + 1.63026i −0.355206 + 0.162217i −0.585023 0.811017i \(-0.698914\pi\)
0.229817 + 0.973234i \(0.426187\pi\)
\(102\) 2.58143 + 3.52359i 0.255600 + 0.348887i
\(103\) −1.71994 + 1.98492i −0.169471 + 0.195580i −0.834132 0.551566i \(-0.814031\pi\)
0.664661 + 0.747145i \(0.268576\pi\)
\(104\) 7.09506 2.39894i 0.695728 0.235236i
\(105\) −0.631781 + 0.185508i −0.0616555 + 0.0181037i
\(106\) 2.84418 2.78609i 0.276251 0.270609i
\(107\) −3.82103 5.94564i −0.369393 0.574787i 0.605944 0.795507i \(-0.292796\pi\)
−0.975337 + 0.220720i \(0.929159\pi\)
\(108\) −0.793117 1.83602i −0.0763177 0.176671i
\(109\) 6.31166 0.907480i 0.604548 0.0869208i 0.166757 0.985998i \(-0.446670\pi\)
0.437790 + 0.899077i \(0.355761\pi\)
\(110\) −0.116114 + 1.41776i −0.0110710 + 0.135178i
\(111\) −0.651768 + 4.53314i −0.0618631 + 0.430267i
\(112\) 5.81683 6.17837i 0.549639 0.583801i
\(113\) 8.79321 + 10.1479i 0.827196 + 0.954635i 0.999538 0.0304024i \(-0.00967886\pi\)
−0.172342 + 0.985037i \(0.555133\pi\)
\(114\) 6.84294 2.47217i 0.640900 0.231540i
\(115\) −0.355410 1.44548i −0.0331421 0.134792i
\(116\) 4.00704 + 4.82191i 0.372044 + 0.447703i
\(117\) 2.00122 1.73406i 0.185013 0.160314i
\(118\) −4.08901 + 17.9055i −0.376424 + 1.64833i
\(119\) −0.932499 + 6.48568i −0.0854821 + 0.594541i
\(120\) −0.504099 0.718731i −0.0460177 0.0656108i
\(121\) −0.0708058 0.492465i −0.00643689 0.0447696i
\(122\) −0.680472 11.1263i −0.0616070 1.00733i
\(123\) −3.85840 6.00379i −0.347901 0.541344i
\(124\) 17.0101 + 8.19652i 1.52755 + 0.736069i
\(125\) −0.866019 2.94939i −0.0774591 0.263802i
\(126\) 1.07740 2.80004i 0.0959820 0.249447i
\(127\) 12.9567 14.9528i 1.14972 1.32685i 0.212887 0.977077i \(-0.431713\pi\)
0.936834 0.349773i \(-0.113741\pi\)
\(128\) 10.2875 + 4.70833i 0.909291 + 0.416161i
\(129\) 5.14034 + 11.2558i 0.452582 + 0.991015i
\(130\) 0.706115 0.923250i 0.0619304 0.0809744i
\(131\) −1.82660 + 6.22083i −0.159591 + 0.543516i 0.840408 + 0.541954i \(0.182315\pi\)
−0.999999 + 0.00156190i \(0.999503\pi\)
\(132\) −4.80977 4.34465i −0.418637 0.378153i
\(133\) 9.92802 + 4.53397i 0.860868 + 0.393145i
\(134\) −5.25357 + 1.08620i −0.453839 + 0.0938335i
\(135\) −0.261109 0.167804i −0.0224727 0.0144423i
\(136\) −8.58975 + 1.59191i −0.736565 + 0.136505i
\(137\) −9.47639 −0.809623 −0.404811 0.914400i \(-0.632663\pi\)
−0.404811 + 0.914400i \(0.632663\pi\)
\(138\) 6.21528 + 2.71483i 0.529080 + 0.231101i
\(139\) 8.33370i 0.706855i −0.935462 0.353427i \(-0.885016\pi\)
0.935462 0.353427i \(-0.114984\pi\)
\(140\) 0.214270 1.29936i 0.0181091 0.109816i
\(141\) −5.29646 + 8.24145i −0.446042 + 0.694055i
\(142\) −1.79040 8.65951i −0.150247 0.726690i
\(143\) 3.56487 7.80599i 0.298110 0.652769i
\(144\) 3.99659 + 0.165028i 0.333050 + 0.0137523i
\(145\) 0.933560 + 0.274118i 0.0775280 + 0.0227643i
\(146\) 7.88162 10.3053i 0.652287 0.852869i
\(147\) −2.27363 + 1.03833i −0.187526 + 0.0856403i
\(148\) −7.60166 5.10994i −0.624853 0.420035i
\(149\) 16.7180 + 14.4862i 1.36959 + 1.18676i 0.961822 + 0.273676i \(0.0882396\pi\)
0.407772 + 0.913084i \(0.366306\pi\)
\(150\) 6.47224 + 2.49038i 0.528456 + 0.203339i
\(151\) 22.6227 6.64263i 1.84101 0.540570i 0.841012 0.541016i \(-0.181960\pi\)
1.00000 0.000446619i \(0.000142163\pi\)
\(152\) −1.48678 + 14.4755i −0.120594 + 1.17412i
\(153\) −2.59834 + 1.66985i −0.210063 + 0.134999i
\(154\) −0.593524 9.70465i −0.0478276 0.782023i
\(155\) 2.90046 0.417023i 0.232970 0.0334961i
\(156\) 1.38689 + 5.11116i 0.111040 + 0.409220i
\(157\) 2.42589 + 0.348791i 0.193607 + 0.0278365i 0.238436 0.971158i \(-0.423365\pi\)
−0.0448290 + 0.998995i \(0.514274\pi\)
\(158\) −2.27972 0.520612i −0.181365 0.0414177i
\(159\) 1.84362 + 2.12765i 0.146209 + 0.168734i
\(160\) 1.73262 0.284257i 0.136975 0.0224725i
\(161\) 3.81052 + 9.43352i 0.300311 + 0.743465i
\(162\) 1.33008 0.480520i 0.104501 0.0377532i
\(163\) 13.7415 11.9070i 1.07631 0.932631i 0.0783825 0.996923i \(-0.475024\pi\)
0.997931 + 0.0642923i \(0.0204790\pi\)
\(164\) 14.1671 1.73939i 1.10626 0.135823i
\(165\) −0.995628 0.143150i −0.0775096 0.0111442i
\(166\) −5.70022 0.466845i −0.442423 0.0362342i
\(167\) −0.763769 5.31213i −0.0591022 0.411065i −0.997798 0.0663195i \(-0.978874\pi\)
0.938696 0.344745i \(-0.112035\pi\)
\(168\) 4.10954 + 4.37214i 0.317058 + 0.337318i
\(169\) 5.03755 3.23744i 0.387504 0.249034i
\(170\) −0.968496 + 0.948715i −0.0742802 + 0.0727631i
\(171\) 1.44945 + 4.93638i 0.110842 + 0.377494i
\(172\) −24.7427 0.510622i −1.88661 0.0389345i
\(173\) 0.491897 + 0.426231i 0.0373982 + 0.0324058i 0.673359 0.739315i \(-0.264851\pi\)
−0.635961 + 0.771721i \(0.719396\pi\)
\(174\) −3.57621 + 2.61998i −0.271112 + 0.198620i
\(175\) 4.32148 + 9.46273i 0.326673 + 0.715315i
\(176\) 12.0037 4.89396i 0.904813 0.368896i
\(177\) −12.4610 3.65887i −0.936623 0.275017i
\(178\) −1.62188 3.04452i −0.121565 0.228196i
\(179\) −8.62260 3.93781i −0.644483 0.294326i 0.0662333 0.997804i \(-0.478902\pi\)
−0.710717 + 0.703479i \(0.751629\pi\)
\(180\) 0.529031 0.324763i 0.0394316 0.0242064i
\(181\) 2.03281 3.16311i 0.151097 0.235112i −0.757451 0.652892i \(-0.773555\pi\)
0.908548 + 0.417780i \(0.137192\pi\)
\(182\) −3.87908 + 6.93298i −0.287537 + 0.513907i
\(183\) 7.88219 0.582669
\(184\) −10.2874 + 8.84130i −0.758400 + 0.651789i
\(185\) −1.42147 −0.104508
\(186\) −6.51925 + 11.6517i −0.478014 + 0.854343i
\(187\) −5.41157 + 8.42056i −0.395733 + 0.615772i
\(188\) −10.2506 16.6980i −0.747600 1.21782i
\(189\) 1.92973 + 0.881276i 0.140367 + 0.0641034i
\(190\) 1.06177 + 1.99310i 0.0770288 + 0.144595i
\(191\) −17.9601 5.27356i −1.29955 0.381581i −0.442476 0.896780i \(-0.645900\pi\)
−0.857071 + 0.515199i \(0.827718\pi\)
\(192\) −3.76714 + 7.05753i −0.271870 + 0.509333i
\(193\) 1.09583 + 2.39952i 0.0788792 + 0.172721i 0.944963 0.327178i \(-0.106098\pi\)
−0.866084 + 0.499899i \(0.833370\pi\)
\(194\) −14.2836 + 10.4643i −1.02550 + 0.751296i
\(195\) 0.621139 + 0.538220i 0.0444807 + 0.0385427i
\(196\) 0.103144 4.99795i 0.00736743 0.356997i
\(197\) −2.65182 9.03127i −0.188934 0.643451i −0.998414 0.0563031i \(-0.982069\pi\)
0.809479 0.587148i \(-0.199749\pi\)
\(198\) 3.27401 3.20714i 0.232674 0.227922i
\(199\) −10.7606 + 6.91539i −0.762796 + 0.490219i −0.863283 0.504719i \(-0.831596\pi\)
0.100488 + 0.994938i \(0.467960\pi\)
\(200\) −10.1061 + 9.49913i −0.714612 + 0.671690i
\(201\) −0.539857 3.75479i −0.0380786 0.264842i
\(202\) 5.53144 + 0.453022i 0.389191 + 0.0318745i
\(203\) −6.58253 0.946425i −0.462003 0.0664260i
\(204\) −0.752776 6.13126i −0.0527048 0.429274i
\(205\) 1.67406 1.45058i 0.116922 0.101313i
\(206\) 3.49334 1.26205i 0.243392 0.0879311i
\(207\) −2.18438 + 4.26949i −0.151825 + 0.296750i
\(208\) −10.4130 1.93865i −0.722014 0.134421i
\(209\) 10.9185 + 12.6006i 0.755246 + 0.871600i
\(210\) 0.907822 + 0.207316i 0.0626456 + 0.0143062i
\(211\) 22.1431 + 3.18369i 1.52439 + 0.219175i 0.852994 0.521921i \(-0.174785\pi\)
0.671399 + 0.741096i \(0.265694\pi\)
\(212\) −5.43407 + 1.47451i −0.373214 + 0.101270i
\(213\) 6.18906 0.889853i 0.424067 0.0609717i
\(214\) 0.610147 + 9.97645i 0.0417088 + 0.681976i
\(215\) −3.23096 + 2.07641i −0.220349 + 0.141610i
\(216\) −0.288988 + 2.81363i −0.0196632 + 0.191443i
\(217\) −19.2170 + 5.64263i −1.30454 + 0.383047i
\(218\) −8.41629 3.23841i −0.570023 0.219333i
\(219\) 6.93311 + 6.00758i 0.468496 + 0.405954i
\(220\) 1.12231 1.66958i 0.0756663 0.112563i
\(221\) 7.43961 3.39756i 0.500443 0.228544i
\(222\) 3.93466 5.14459i 0.264077 0.345282i
\(223\) −12.2796 3.60562i −0.822303 0.241450i −0.156596 0.987663i \(-0.550052\pi\)
−0.665707 + 0.746213i \(0.731870\pi\)
\(224\) −11.4453 + 3.60845i −0.764721 + 0.241099i
\(225\) −2.03706 + 4.46053i −0.135804 + 0.297369i
\(226\) −3.84486 18.5962i −0.255756 1.23700i
\(227\) 9.00232 14.0079i 0.597505 0.929736i −0.402393 0.915467i \(-0.631822\pi\)
0.999898 0.0142690i \(-0.00454212\pi\)
\(228\) −10.1524 1.67419i −0.672362 0.110876i
\(229\) 9.55860i 0.631650i −0.948817 0.315825i \(-0.897719\pi\)
0.948817 0.315825i \(-0.102281\pi\)
\(230\) −0.559513 + 2.02939i −0.0368932 + 0.133814i
\(231\) 6.87505 0.452345
\(232\) −1.61569 8.71802i −0.106075 0.572366i
\(233\) −0.768576 0.493934i −0.0503511 0.0323587i 0.515223 0.857056i \(-0.327709\pi\)
−0.565574 + 0.824697i \(0.691345\pi\)
\(234\) −3.66726 + 0.758225i −0.239736 + 0.0495667i
\(235\) −2.76590 1.26315i −0.180428 0.0823986i
\(236\) 17.4108 19.2748i 1.13335 1.25468i
\(237\) 0.465846 1.58653i 0.0302600 0.103056i
\(238\) 5.62941 7.36049i 0.364901 0.477110i
\(239\) 9.22254 + 20.1945i 0.596556 + 1.30628i 0.931398 + 0.364002i \(0.118590\pi\)
−0.334842 + 0.942274i \(0.608683\pi\)
\(240\) 0.125837 + 1.23513i 0.00812272 + 0.0797272i
\(241\) −12.4181 + 14.3313i −0.799921 + 0.923158i −0.998377 0.0569516i \(-0.981862\pi\)
0.198456 + 0.980110i \(0.436407\pi\)
\(242\) −0.252676 + 0.656678i −0.0162426 + 0.0422129i
\(243\) 0.281733 + 0.959493i 0.0180732 + 0.0615515i
\(244\) −6.84324 + 14.2016i −0.438094 + 0.909166i
\(245\) −0.419429 0.652644i −0.0267963 0.0416959i
\(246\) 0.616115 + 10.0740i 0.0392820 + 0.642297i
\(247\) −1.93880 13.4847i −0.123363 0.858008i
\(248\) −15.3333 21.8618i −0.973666 1.38823i
\(249\) 0.575544 4.00300i 0.0364736 0.253680i
\(250\) −0.967831 + 4.23805i −0.0612110 + 0.268038i
\(251\) −3.17575 + 2.75180i −0.200451 + 0.173692i −0.749302 0.662228i \(-0.769611\pi\)
0.548851 + 0.835920i \(0.315066\pi\)
\(252\) −3.26319 + 2.71174i −0.205562 + 0.170823i
\(253\) −0.691479 + 15.5267i −0.0434729 + 0.976156i
\(254\) −26.3161 + 9.50730i −1.65122 + 0.596541i
\(255\) −0.627787 0.724504i −0.0393135 0.0453702i
\(256\) −9.44519 12.9147i −0.590325 0.807166i
\(257\) 0.0190142 0.132247i 0.00118607 0.00824933i −0.989220 0.146438i \(-0.953219\pi\)
0.990406 + 0.138189i \(0.0441281\pi\)
\(258\) 1.42841 17.4411i 0.0889291 1.08583i
\(259\) 9.61678 1.38268i 0.597557 0.0859158i
\(260\) −1.50900 + 0.651850i −0.0935840 + 0.0404260i
\(261\) −1.69479 2.63714i −0.104905 0.163235i
\(262\) 6.54999 6.41622i 0.404660 0.396395i
\(263\) −21.2656 + 6.24415i −1.31129 + 0.385031i −0.861344 0.508023i \(-0.830377\pi\)
−0.449951 + 0.893053i \(0.648558\pi\)
\(264\) 2.93596 + 8.68331i 0.180696 + 0.534421i
\(265\) −0.572224 + 0.660382i −0.0351514 + 0.0405669i
\(266\) −9.12198 12.4513i −0.559305 0.763436i
\(267\) 2.21879 1.01329i 0.135788 0.0620123i
\(268\) 7.23383 + 2.28719i 0.441877 + 0.139712i
\(269\) −2.75651 + 9.38781i −0.168067 + 0.572385i 0.831783 + 0.555101i \(0.187320\pi\)
−0.999851 + 0.0172843i \(0.994498\pi\)
\(270\) 0.206378 + 0.387402i 0.0125598 + 0.0235765i
\(271\) −2.04849 + 4.48556i −0.124437 + 0.272478i −0.961590 0.274490i \(-0.911491\pi\)
0.837153 + 0.546968i \(0.184218\pi\)
\(272\) 11.7004 + 3.96679i 0.709444 + 0.240522i
\(273\) −4.72578 3.03707i −0.286017 0.183812i
\(274\) 11.6954 + 6.54373i 0.706548 + 0.395321i
\(275\) 15.8916i 0.958297i
\(276\) −5.79602 7.64239i −0.348880 0.460018i
\(277\) 11.8332i 0.710987i 0.934679 + 0.355494i \(0.115687\pi\)
−0.934679 + 0.355494i \(0.884313\pi\)
\(278\) −5.75467 + 10.2852i −0.345142 + 0.616864i
\(279\) −7.94222 5.10415i −0.475488 0.305578i
\(280\) −1.16169 + 1.45566i −0.0694243 + 0.0869925i
\(281\) 13.3432 29.2175i 0.795986 1.74297i 0.137327 0.990526i \(-0.456149\pi\)
0.658659 0.752442i \(-0.271124\pi\)
\(282\) 12.2277 6.51396i 0.728148 0.387901i
\(283\) −6.37463 + 21.7100i −0.378933 + 1.29053i 0.520648 + 0.853771i \(0.325690\pi\)
−0.899581 + 0.436755i \(0.856128\pi\)
\(284\) −3.77000 + 11.9236i −0.223708 + 0.707536i
\(285\) −1.45254 + 0.663351i −0.0860408 + 0.0392935i
\(286\) −9.78992 + 7.17224i −0.578890 + 0.424103i
\(287\) −9.91466 + 11.4421i −0.585244 + 0.675407i
\(288\) −4.81851 2.96344i −0.283933 0.174622i
\(289\) 7.15806 2.10180i 0.421062 0.123635i
\(290\) −0.962883 0.982959i −0.0565424 0.0577213i
\(291\) −6.76906 10.5329i −0.396809 0.617447i
\(292\) −16.8433 + 7.27591i −0.985681 + 0.425791i
\(293\) −7.26497 + 1.04455i −0.424424 + 0.0610230i −0.351218 0.936294i \(-0.614232\pi\)
−0.0732066 + 0.997317i \(0.523323\pi\)
\(294\) 3.52304 + 0.288535i 0.205468 + 0.0168277i
\(295\) 0.573660 3.98989i 0.0333998 0.232301i
\(296\) 5.85315 + 11.5557i 0.340208 + 0.671661i
\(297\) 2.12224 + 2.44920i 0.123145 + 0.142117i
\(298\) −10.6296 29.4227i −0.615759 1.70441i
\(299\) 7.33428 10.3673i 0.424152 0.599556i
\(300\) −6.26814 7.54282i −0.361891 0.435485i
\(301\) 19.8389 17.1905i 1.14349 0.990844i
\(302\) −32.5072 7.42356i −1.87058 0.427178i
\(303\) −0.558503 + 3.88447i −0.0320851 + 0.223157i
\(304\) 11.8307 16.8385i 0.678537 0.965754i
\(305\) 0.348171 + 2.42158i 0.0199362 + 0.138659i
\(306\) 4.35986 0.266644i 0.249237 0.0152430i
\(307\) 9.32588 + 14.5113i 0.532256 + 0.828206i 0.998403 0.0565012i \(-0.0179945\pi\)
−0.466147 + 0.884707i \(0.654358\pi\)
\(308\) −5.96885 + 12.3870i −0.340107 + 0.705815i
\(309\) 0.739949 + 2.52003i 0.0420942 + 0.143360i
\(310\) −3.86761 1.48818i −0.219666 0.0845228i
\(311\) −5.10731 + 5.89415i −0.289609 + 0.334227i −0.881846 0.471537i \(-0.843699\pi\)
0.592237 + 0.805764i \(0.298245\pi\)
\(312\) 1.81776 7.26571i 0.102910 0.411340i
\(313\) −9.64947 21.1294i −0.545421 1.19430i −0.958888 0.283785i \(-0.908410\pi\)
0.413467 0.910519i \(-0.364318\pi\)
\(314\) −2.75311 2.10562i −0.155367 0.118827i
\(315\) −0.185508 + 0.631781i −0.0104522 + 0.0355968i
\(316\) 2.45406 + 2.21674i 0.138051 + 0.124701i
\(317\) −16.7062 7.62945i −0.938312 0.428513i −0.113257 0.993566i \(-0.536128\pi\)
−0.825055 + 0.565053i \(0.808856\pi\)
\(318\) −0.806128 3.89895i −0.0452054 0.218642i
\(319\) −8.54631 5.49238i −0.478502 0.307514i
\(320\) −2.33462 0.845602i −0.130509 0.0472706i
\(321\) −7.06760 −0.394475
\(322\) 1.81130 14.2738i 0.100940 0.795449i
\(323\) 15.8904i 0.884166i
\(324\) −1.97335 0.325415i −0.109630 0.0180786i
\(325\) 7.02014 10.9236i 0.389407 0.605930i
\(326\) −25.1814 + 5.20639i −1.39467 + 0.288355i
\(327\) 2.64892 5.80033i 0.146486 0.320759i
\(328\) −18.6856 7.63609i −1.03174 0.421633i
\(329\) 19.9411 + 5.85523i 1.09939 + 0.322809i
\(330\) 1.12992 + 0.864182i 0.0622002 + 0.0475717i
\(331\) −5.21621 + 2.38217i −0.286709 + 0.130936i −0.553578 0.832797i \(-0.686738\pi\)
0.266869 + 0.963733i \(0.414011\pi\)
\(332\) 6.71266 + 4.51234i 0.368405 + 0.247647i
\(333\) 3.46115 + 2.99910i 0.189670 + 0.164350i
\(334\) −2.72557 + 7.08346i −0.149136 + 0.387590i
\(335\) 1.12971 0.331711i 0.0617224 0.0181233i
\(336\) −2.05276 8.23371i −0.111987 0.449186i
\(337\) 6.14780 3.95095i 0.334892 0.215222i −0.362377 0.932032i \(-0.618035\pi\)
0.697269 + 0.716810i \(0.254398\pi\)
\(338\) −8.45273 + 0.516958i −0.459768 + 0.0281188i
\(339\) 13.2909 1.91095i 0.721864 0.103788i
\(340\) 1.85040 0.502097i 0.100352 0.0272300i
\(341\) −30.2843 4.35422i −1.63999 0.235794i
\(342\) 1.61985 7.09321i 0.0875916 0.383557i
\(343\) 13.1971 + 15.2303i 0.712579 + 0.822360i
\(344\) 30.1840 + 17.7158i 1.62741 + 0.955170i
\(345\) −1.40817 0.482496i −0.0758131 0.0259767i
\(346\) −0.312758 0.865710i −0.0168140 0.0465409i
\(347\) −2.40912 + 2.08752i −0.129329 + 0.112064i −0.717123 0.696946i \(-0.754542\pi\)
0.587795 + 0.809010i \(0.299996\pi\)
\(348\) 6.22282 0.764017i 0.333578 0.0409556i
\(349\) 1.53362 + 0.220502i 0.0820929 + 0.0118032i 0.183239 0.983068i \(-0.441342\pi\)
−0.101146 + 0.994872i \(0.532251\pi\)
\(350\) 1.20087 14.6627i 0.0641890 0.783754i
\(351\) −0.376848 2.62104i −0.0201147 0.139901i
\(352\) −18.1940 2.24895i −0.969743 0.119869i
\(353\) 2.30810 1.48333i 0.122848 0.0789495i −0.477774 0.878483i \(-0.658556\pi\)
0.600622 + 0.799533i \(0.294920\pi\)
\(354\) 12.8524 + 13.1203i 0.683095 + 0.697337i
\(355\) 0.546764 + 1.86211i 0.0290192 + 0.0988303i
\(356\) −0.100656 + 4.87740i −0.00533477 + 0.258502i
\(357\) 4.95195 + 4.29089i 0.262085 + 0.227098i
\(358\) 7.92255 + 10.8141i 0.418720 + 0.571542i
\(359\) −5.93818 13.0028i −0.313405 0.686261i 0.685730 0.727856i \(-0.259483\pi\)
−0.999135 + 0.0415953i \(0.986756\pi\)
\(360\) −0.877171 + 0.0354995i −0.0462310 + 0.00187099i
\(361\) 7.16622 + 2.10419i 0.377169 + 0.110747i
\(362\) −4.69304 + 2.50009i −0.246661 + 0.131402i
\(363\) −0.452569 0.206681i −0.0237537 0.0108479i
\(364\) 9.57487 5.87784i 0.501859 0.308082i
\(365\) −1.53941 + 2.39537i −0.0805763 + 0.125379i
\(366\) −9.72794 5.44289i −0.508488 0.284505i
\(367\) 12.3509 0.644714 0.322357 0.946618i \(-0.395525\pi\)
0.322357 + 0.946618i \(0.395525\pi\)
\(368\) 18.8016 3.80785i 0.980101 0.198498i
\(369\) −7.13672 −0.371523
\(370\) 1.75433 + 0.981567i 0.0912033 + 0.0510292i
\(371\) 3.22895 5.02434i 0.167639 0.260851i
\(372\) 16.0917 9.87839i 0.834315 0.512171i
\(373\) −30.0708 13.7329i −1.55701 0.711062i −0.563639 0.826021i \(-0.690599\pi\)
−0.993370 + 0.114959i \(0.963326\pi\)
\(374\) 12.4934 6.65553i 0.646020 0.344149i
\(375\) −2.94939 0.866019i −0.152306 0.0447210i
\(376\) 1.12048 + 27.6864i 0.0577843 + 1.42782i
\(377\) 3.44830 + 7.55071i 0.177596 + 0.388882i
\(378\) −1.77306 2.42018i −0.0911962 0.124480i
\(379\) −15.2385 13.2042i −0.782749 0.678256i 0.168835 0.985644i \(-0.445999\pi\)
−0.951584 + 0.307388i \(0.900545\pi\)
\(380\) 0.0658948 3.19300i 0.00338033 0.163797i
\(381\) −5.57420 18.9840i −0.285575 0.972579i
\(382\) 18.5242 + 18.9104i 0.947781 + 0.967542i
\(383\) −10.2315 + 6.57539i −0.522806 + 0.335987i −0.775281 0.631617i \(-0.782392\pi\)
0.252475 + 0.967603i \(0.418755\pi\)
\(384\) 9.52271 6.10884i 0.485954 0.311741i
\(385\) 0.303683 + 2.11216i 0.0154771 + 0.107646i
\(386\) 0.304511 3.71811i 0.0154992 0.189247i
\(387\) 12.2480 + 1.76100i 0.622603 + 0.0895167i
\(388\) 24.8542 3.05152i 1.26178 0.154918i
\(389\) −0.438711 + 0.380145i −0.0222435 + 0.0192741i −0.665912 0.746031i \(-0.731957\pi\)
0.643668 + 0.765305i \(0.277412\pi\)
\(390\) −0.394932 1.09317i −0.0199982 0.0553547i
\(391\) −10.1887 + 10.7520i −0.515263 + 0.543751i
\(392\) −3.57853 + 6.09708i −0.180743 + 0.307949i
\(393\) 4.24576 + 4.89986i 0.214170 + 0.247165i
\(394\) −2.96357 + 12.9773i −0.149303 + 0.653785i
\(395\) 0.507992 + 0.0730382i 0.0255599 + 0.00367495i
\(396\) −6.25531 + 1.69735i −0.314341 + 0.0852949i
\(397\) −17.7178 + 2.54744i −0.889232 + 0.127852i −0.571766 0.820417i \(-0.693741\pi\)
−0.317467 + 0.948269i \(0.602832\pi\)
\(398\) 18.0556 1.10426i 0.905046 0.0553515i
\(399\) 9.18171 5.90073i 0.459660 0.295406i
\(400\) 19.0321 4.74492i 0.951604 0.237246i
\(401\) 0.732222 0.215000i 0.0365654 0.0107366i −0.263399 0.964687i \(-0.584843\pi\)
0.299964 + 0.953950i \(0.403025\pi\)
\(402\) −1.92652 + 5.00683i −0.0960862 + 0.249718i
\(403\) 18.8934 + 16.3712i 0.941145 + 0.815507i
\(404\) −6.51390 4.37873i −0.324079 0.217850i
\(405\) −0.282332 + 0.128937i −0.0140292 + 0.00640692i
\(406\) 7.47041 + 5.71348i 0.370750 + 0.283555i
\(407\) 14.2407 + 4.18144i 0.705884 + 0.207266i
\(408\) −3.30477 + 8.08681i −0.163610 + 0.400357i
\(409\) 1.67560 3.66906i 0.0828532 0.181423i −0.863671 0.504056i \(-0.831841\pi\)
0.946524 + 0.322633i \(0.104568\pi\)
\(410\) −3.06774 + 0.634271i −0.151505 + 0.0313244i
\(411\) −5.12332 + 7.97205i −0.252715 + 0.393232i
\(412\) −5.18285 0.854677i −0.255341 0.0421069i
\(413\) 27.5512i 1.35570i
\(414\) 5.64409 3.76088i 0.277392 0.184837i
\(415\) 1.25523 0.0616168
\(416\) 11.5127 + 9.58313i 0.564458 + 0.469852i
\(417\) −7.01075 4.50554i −0.343318 0.220637i
\(418\) −4.77413 23.0907i −0.233510 1.12941i
\(419\) 31.4574 + 14.3661i 1.53680 + 0.701831i 0.990722 0.135906i \(-0.0433946\pi\)
0.546074 + 0.837737i \(0.316122\pi\)
\(420\) −0.977245 0.882741i −0.0476847 0.0430734i
\(421\) 3.52357 12.0002i 0.171728 0.584853i −0.827981 0.560756i \(-0.810511\pi\)
0.999710 0.0240970i \(-0.00767106\pi\)
\(422\) −25.1298 19.2197i −1.22330 0.935599i
\(423\) 4.06967 + 8.91133i 0.197874 + 0.433284i
\(424\) 7.72475 + 1.93260i 0.375147 + 0.0938554i
\(425\) −9.91832 + 11.4463i −0.481109 + 0.555229i
\(426\) −8.25280 3.17551i −0.399850 0.153854i
\(427\) −4.71101 16.0442i −0.227982 0.776435i
\(428\) 6.13602 12.7339i 0.296596 0.615518i
\(429\) −4.63950 7.21920i −0.223997 0.348546i
\(430\) 5.42136 0.331564i 0.261441 0.0159894i
\(431\) 4.10694 + 28.5644i 0.197824 + 1.37590i 0.810581 + 0.585627i \(0.199152\pi\)
−0.612757 + 0.790272i \(0.709939\pi\)
\(432\) 2.29955 3.27293i 0.110637 0.157469i
\(433\) 2.53923 17.6607i 0.122028 0.848721i −0.833226 0.552933i \(-0.813509\pi\)
0.955254 0.295788i \(-0.0955823\pi\)
\(434\) 27.6135 + 6.30600i 1.32549 + 0.302697i
\(435\) 0.735324 0.637162i 0.0352561 0.0305496i
\(436\) 8.15089 + 9.80844i 0.390357 + 0.469739i
\(437\) 12.4028 + 21.3296i 0.593307 + 1.02033i
\(438\) −4.40821 12.2019i −0.210632 0.583028i
\(439\) 20.6780 + 23.8637i 0.986907 + 1.13895i 0.990298 + 0.138957i \(0.0443750\pi\)
−0.00339139 + 0.999994i \(0.501080\pi\)
\(440\) −2.53801 + 1.28555i −0.120995 + 0.0612860i
\(441\) −0.355717 + 2.47407i −0.0169389 + 0.117813i
\(442\) −11.5278 0.944123i −0.548324 0.0449074i
\(443\) −35.1878 + 5.05925i −1.67182 + 0.240372i −0.912128 0.409906i \(-0.865562\pi\)
−0.759697 + 0.650278i \(0.774653\pi\)
\(444\) −8.40853 + 3.63228i −0.399051 + 0.172381i
\(445\) 0.409312 + 0.636902i 0.0194032 + 0.0301920i
\(446\) 12.6653 + 12.9294i 0.599719 + 0.612223i
\(447\) 21.2251 6.23224i 1.00391 0.294775i
\(448\) 16.6171 + 3.44990i 0.785087 + 0.162992i
\(449\) 2.46783 2.84802i 0.116464 0.134407i −0.694524 0.719470i \(-0.744385\pi\)
0.810988 + 0.585063i \(0.198930\pi\)
\(450\) 5.59420 4.09839i 0.263713 0.193200i
\(451\) −21.0383 + 9.60786i −0.990654 + 0.452417i
\(452\) −8.09603 + 25.6058i −0.380805 + 1.20440i
\(453\) 6.64263 22.6227i 0.312098 1.06291i
\(454\) −20.7832 + 11.0717i −0.975405 + 0.519620i
\(455\) 0.724308 1.58601i 0.0339561 0.0743534i
\(456\) 11.3737 + 9.07679i 0.532624 + 0.425060i
\(457\) 0.806402 + 0.518243i 0.0377219 + 0.0242424i 0.559366 0.828921i \(-0.311045\pi\)
−0.521644 + 0.853163i \(0.674681\pi\)
\(458\) −6.60050 + 11.7969i −0.308421 + 0.551233i
\(459\) 3.08865i 0.144166i
\(460\) 2.09188 2.11824i 0.0975346 0.0987635i
\(461\) 23.2407i 1.08243i −0.840886 0.541213i \(-0.817965\pi\)
0.840886 0.541213i \(-0.182035\pi\)
\(462\) −8.48496 4.74743i −0.394756 0.220870i
\(463\) 3.28629 + 2.11197i 0.152727 + 0.0981516i 0.614772 0.788705i \(-0.289248\pi\)
−0.462045 + 0.886856i \(0.652884\pi\)
\(464\) −4.02603 + 11.8752i −0.186904 + 0.551291i
\(465\) 1.21728 2.66548i 0.0564502 0.123609i
\(466\) 0.607475 + 1.14032i 0.0281407 + 0.0528244i
\(467\) 0.758983 2.58486i 0.0351215 0.119613i −0.940066 0.340991i \(-0.889237\pi\)
0.975188 + 0.221378i \(0.0710555\pi\)
\(468\) 5.04959 + 1.59658i 0.233417 + 0.0738018i
\(469\) −7.32023 + 3.34304i −0.338017 + 0.154367i
\(470\) 2.54135 + 3.46887i 0.117224 + 0.160007i
\(471\) 1.60496 1.85222i 0.0739525 0.0853458i
\(472\) −34.7976 + 11.7656i −1.60169 + 0.541555i
\(473\) 38.4766 11.2978i 1.76916 0.519472i
\(474\) −1.67048 + 1.63636i −0.0767275 + 0.0751604i
\(475\) 13.6394 + 21.2234i 0.625820 + 0.973795i
\(476\) −12.0303 + 5.19679i −0.551407 + 0.238195i
\(477\) 2.78663 0.400657i 0.127591 0.0183448i
\(478\) 2.56279 31.2919i 0.117219 1.43126i
\(479\) −0.231990 + 1.61352i −0.0105999 + 0.0737238i −0.994435 0.105354i \(-0.966402\pi\)
0.983835 + 0.179078i \(0.0573114\pi\)
\(480\) 0.697590 1.61125i 0.0318405 0.0735431i
\(481\) −7.94160 9.16509i −0.362106 0.417892i
\(482\) 25.2222 9.11210i 1.14884 0.415045i
\(483\) 9.99610 + 1.89453i 0.454838 + 0.0862040i
\(484\) 0.765300 0.635970i 0.0347864 0.0289077i
\(485\) 2.93692 2.54485i 0.133359 0.115556i
\(486\) 0.314854 1.37872i 0.0142821 0.0625400i
\(487\) 2.21012 15.3717i 0.100150 0.696558i −0.876450 0.481493i \(-0.840095\pi\)
0.976600 0.215065i \(-0.0689963\pi\)
\(488\) 18.2523 12.8017i 0.826245 0.579506i
\(489\) −2.58765 17.9975i −0.117017 0.813874i
\(490\) 0.0669749 + 1.09510i 0.00302562 + 0.0494716i
\(491\) −22.2407 34.6072i −1.00371 1.56180i −0.814749 0.579814i \(-0.803125\pi\)
−0.188958 0.981985i \(-0.560511\pi\)
\(492\) 6.19603 12.8585i 0.279339 0.579705i
\(493\) −2.72779 9.29001i −0.122854 0.418401i
\(494\) −6.91876 + 17.9811i −0.311290 + 0.809009i
\(495\) −0.658703 + 0.760183i −0.0296065 + 0.0341677i
\(496\) 3.82761 + 37.5693i 0.171865 + 1.68691i
\(497\) −5.51036 12.0660i −0.247173 0.541234i
\(498\) −3.47451 + 4.54294i −0.155696 + 0.203574i
\(499\) −2.78804 + 9.49519i −0.124810 + 0.425063i −0.998064 0.0622027i \(-0.980187\pi\)
0.873254 + 0.487266i \(0.162006\pi\)
\(500\) 4.12097 4.56215i 0.184295 0.204026i
\(501\) −4.88177 2.22943i −0.218101 0.0996036i
\(502\) 5.81961 1.20323i 0.259742 0.0537029i
\(503\) −33.4972 21.5274i −1.49357 0.959857i −0.995703 0.0926025i \(-0.970481\pi\)
−0.497864 0.867255i \(-0.665882\pi\)
\(504\) 5.89986 1.09340i 0.262801 0.0487041i
\(505\) −1.21806 −0.0542031
\(506\) 11.5751 18.6851i 0.514574 0.830652i
\(507\) 5.98815i 0.265943i
\(508\) 39.0436 + 6.43848i 1.73228 + 0.285661i
\(509\) 19.1176 29.7475i 0.847371 1.31853i −0.0988794 0.995099i \(-0.531526\pi\)
0.946250 0.323435i \(-0.104838\pi\)
\(510\) 0.274501 + 1.32766i 0.0121551 + 0.0587900i
\(511\) 8.08468 17.7030i 0.357645 0.783133i
\(512\) 2.73899 + 22.4610i 0.121047 + 0.992647i
\(513\) 4.93638 + 1.44945i 0.217946 + 0.0639949i
\(514\) −0.114787 + 0.150085i −0.00506304 + 0.00661996i
\(515\) −0.741523 + 0.338642i −0.0326754 + 0.0149224i
\(516\) −13.8065 + 20.5388i −0.607796 + 0.904171i
\(517\) 23.9939 + 20.7908i 1.05525 + 0.914379i
\(518\) −12.8235 4.93421i −0.563432 0.216797i
\(519\) 0.624508 0.183372i 0.0274129 0.00804914i
\(520\) 2.31248 + 0.237515i 0.101409 + 0.0104157i
\(521\) 27.2574 17.5173i 1.19417 0.767445i 0.216231 0.976342i \(-0.430624\pi\)
0.977938 + 0.208897i \(0.0669873\pi\)
\(522\) 0.270626 + 4.42497i 0.0118450 + 0.193676i
\(523\) 37.6411 5.41197i 1.64593 0.236649i 0.743890 0.668302i \(-0.232979\pi\)
0.902040 + 0.431653i \(0.142070\pi\)
\(524\) −12.5144 + 3.39571i −0.546693 + 0.148342i
\(525\) 10.2969 + 1.48047i 0.449395 + 0.0646132i
\(526\) 30.5571 + 6.97823i 1.33235 + 0.304265i
\(527\) −19.0956 22.0374i −0.831815 0.959966i
\(528\) 2.37263 12.7440i 0.103255 0.554612i
\(529\) −5.28402 + 22.3848i −0.229740 + 0.973252i
\(530\) 1.16223 0.419884i 0.0504842 0.0182386i
\(531\) −9.81494 + 8.50470i −0.425932 + 0.369072i
\(532\) 2.66007 + 21.6660i 0.115329 + 0.939338i
\(533\) 18.7056 + 2.68946i 0.810230 + 0.116493i
\(534\) −3.43807 0.281576i −0.148780 0.0121850i
\(535\) −0.312188 2.17132i −0.0134971 0.0938743i
\(536\) −7.34838 7.81795i −0.317402 0.337684i
\(537\) −7.97442 + 5.12485i −0.344122 + 0.221154i
\(538\) 9.88456 9.68267i 0.426154 0.417450i
\(539\) 2.28211 + 7.77217i 0.0982976 + 0.334771i
\(540\) 0.0128081 0.620629i 0.000551172 0.0267076i
\(541\) −33.9718 29.4368i −1.46056 1.26559i −0.898852 0.438252i \(-0.855598\pi\)
−0.561711 0.827334i \(-0.689857\pi\)
\(542\) 5.62559 4.12139i 0.241640 0.177029i
\(543\) −1.56196 3.42021i −0.0670300 0.146775i
\(544\) −11.7011 12.9752i −0.501681 0.556307i
\(545\) 1.89899 + 0.557595i 0.0813439 + 0.0238847i
\(546\) 3.73521 + 7.01154i 0.159852 + 0.300066i
\(547\) −0.869522 0.397098i −0.0371781 0.0169787i 0.396739 0.917931i \(-0.370142\pi\)
−0.433917 + 0.900953i \(0.642869\pi\)
\(548\) −9.91549 16.1521i −0.423569 0.689984i
\(549\) 4.26144 6.63092i 0.181874 0.283001i
\(550\) 10.9736 19.6128i 0.467916 0.836294i
\(551\) −16.1277 −0.687064
\(552\) 1.87596 + 13.4343i 0.0798463 + 0.571802i
\(553\) −3.50780 −0.149167
\(554\) 8.17117 14.6041i 0.347160 0.620470i
\(555\) −0.768504 + 1.19582i −0.0326212 + 0.0507596i
\(556\) 14.2044 8.71985i 0.602402 0.369804i
\(557\) −38.6047 17.6302i −1.63573 0.747015i −0.636038 0.771658i \(-0.719428\pi\)
−0.999696 + 0.0246433i \(0.992155\pi\)
\(558\) 6.27745 + 11.7837i 0.265746 + 0.498845i
\(559\) −31.4389 9.23130i −1.32972 0.390442i
\(560\) 2.43890 0.994350i 0.103062 0.0420189i
\(561\) 4.15811 + 9.10500i 0.175556 + 0.384413i
\(562\) −36.6432 + 26.8454i −1.54570 + 1.13240i
\(563\) 32.6901 + 28.3261i 1.37772 + 1.19380i 0.958214 + 0.286053i \(0.0923433\pi\)
0.419509 + 0.907751i \(0.362202\pi\)
\(564\) −19.5891 0.404265i −0.824850 0.0170226i
\(565\) 1.17417 + 3.99885i 0.0493976 + 0.168233i
\(566\) 22.8588 22.3919i 0.960826 0.941202i
\(567\) 1.78467 1.14693i 0.0749489 0.0481667i
\(568\) 12.8864 12.1124i 0.540702 0.508226i
\(569\) 1.64264 + 11.4248i 0.0688633 + 0.478954i 0.994847 + 0.101390i \(0.0323291\pi\)
−0.925983 + 0.377564i \(0.876762\pi\)
\(570\) 2.25074 + 0.184334i 0.0942730 + 0.00772090i
\(571\) −38.4841 5.53318i −1.61051 0.231557i −0.722497 0.691374i \(-0.757006\pi\)
−0.888014 + 0.459817i \(0.847915\pi\)
\(572\) 17.0350 2.09151i 0.712271 0.0874503i
\(573\) −14.1464 + 12.2579i −0.590973 + 0.512081i
\(574\) 20.1375 7.27512i 0.840522 0.303658i
\(575\) −4.37917 + 23.1058i −0.182624 + 0.963579i
\(576\) 3.90050 + 6.98471i 0.162521 + 0.291029i
\(577\) 2.83881 + 3.27616i 0.118181 + 0.136388i 0.811757 0.583995i \(-0.198511\pi\)
−0.693576 + 0.720384i \(0.743966\pi\)
\(578\) −10.2856 2.34889i −0.427824 0.0977009i
\(579\) 2.61106 + 0.375413i 0.108512 + 0.0156016i
\(580\) 0.509595 + 1.87804i 0.0211598 + 0.0779812i
\(581\) −8.49210 + 1.22098i −0.352312 + 0.0506548i
\(582\) 1.08089 + 17.6735i 0.0448044 + 0.732592i
\(583\) 7.67530 4.93261i 0.317878 0.204288i
\(584\) 25.8117 + 2.65113i 1.06810 + 0.109704i
\(585\) 0.788593 0.231552i 0.0326043 0.00957348i
\(586\) 9.68748 + 3.72754i 0.400186 + 0.153983i
\(587\) −10.2663 8.89577i −0.423734 0.367168i 0.416734 0.909028i \(-0.363175\pi\)
−0.840468 + 0.541861i \(0.817720\pi\)
\(588\) −4.14878 2.78887i −0.171093 0.115011i
\(589\) −44.1822 + 20.1773i −1.82050 + 0.831393i
\(590\) −3.46313 + 4.52807i −0.142575 + 0.186418i
\(591\) −9.03127 2.65182i −0.371497 0.109081i
\(592\) 0.755788 18.3034i 0.0310627 0.752267i
\(593\) 10.3159 22.5886i 0.423622 0.927602i −0.570697 0.821160i \(-0.693327\pi\)
0.994319 0.106441i \(-0.0339457\pi\)
\(594\) −0.927956 4.48819i −0.0380745 0.184153i
\(595\) −1.09952 + 1.71088i −0.0450758 + 0.0701393i
\(596\) −7.19854 + 43.6527i −0.294864 + 1.78808i
\(597\) 12.7911i 0.523505i
\(598\) −16.2107 + 7.73044i −0.662903 + 0.316121i
\(599\) 41.7860 1.70733 0.853665 0.520822i \(-0.174375\pi\)
0.853665 + 0.520822i \(0.174375\pi\)
\(600\) 2.52739 + 13.6374i 0.103180 + 0.556746i
\(601\) −11.2430 7.22546i −0.458613 0.294733i 0.290862 0.956765i \(-0.406058\pi\)
−0.749475 + 0.662032i \(0.769694\pi\)
\(602\) −36.3551 + 7.51660i −1.48172 + 0.306354i
\(603\) −3.45060 1.57584i −0.140519 0.0641730i
\(604\) 34.9931 + 31.6091i 1.42385 + 1.28616i
\(605\) 0.0435061 0.148168i 0.00176878 0.00602390i
\(606\) 3.37163 4.40842i 0.136963 0.179080i
\(607\) 5.05949 + 11.0787i 0.205358 + 0.449672i 0.984087 0.177689i \(-0.0568622\pi\)
−0.778728 + 0.627361i \(0.784135\pi\)
\(608\) −26.2285 + 12.6121i −1.06371 + 0.511487i
\(609\) −4.35497 + 5.02590i −0.176472 + 0.203660i
\(610\) 1.24247 3.22906i 0.0503062 0.130741i
\(611\) −7.30853 24.8906i −0.295672 1.00696i
\(612\) −5.56492 2.68153i −0.224949 0.108395i
\(613\) −22.1321 34.4383i −0.893908 1.39095i −0.920265 0.391295i \(-0.872027\pi\)
0.0263573 0.999653i \(-0.491609\pi\)
\(614\) −1.48917 24.3492i −0.0600979 0.982655i
\(615\) −0.315242 2.19255i −0.0127118 0.0884123i
\(616\) 15.9202 11.1660i 0.641441 0.449890i
\(617\) 2.58789 17.9992i 0.104185 0.724620i −0.869036 0.494748i \(-0.835260\pi\)
0.973221 0.229872i \(-0.0738307\pi\)
\(618\) 0.826939 3.62110i 0.0332644 0.145662i
\(619\) 21.4873 18.6189i 0.863649 0.748356i −0.105608 0.994408i \(-0.533679\pi\)
0.969257 + 0.246052i \(0.0791333\pi\)
\(620\) 3.74565 + 4.50736i 0.150429 + 0.181020i
\(621\) 2.41076 + 4.14587i 0.0967403 + 0.166368i
\(622\) 10.3734 3.74762i 0.415934 0.150266i
\(623\) −3.38867 3.91074i −0.135764 0.156680i
\(624\) −7.26061 + 7.71188i −0.290657 + 0.308722i
\(625\) −3.35354 + 23.3244i −0.134142 + 0.932976i
\(626\) −2.68142 + 32.7405i −0.107171 + 1.30857i
\(627\) 16.5032 2.37281i 0.659076 0.0947608i
\(628\) 1.94380 + 4.49979i 0.0775661 + 0.179561i
\(629\) 7.64751 + 11.8998i 0.304926 + 0.474474i
\(630\) 0.665211 0.651624i 0.0265026 0.0259613i
\(631\) −35.5369 + 10.4346i −1.41470 + 0.415394i −0.897707 0.440594i \(-0.854768\pi\)
−0.516996 + 0.855988i \(0.672950\pi\)
\(632\) −1.49799 4.43042i −0.0595869 0.176233i
\(633\) 14.6497 16.9067i 0.582275 0.671981i
\(634\) 15.3498 + 20.9521i 0.609620 + 0.832115i
\(635\) 5.58607 2.55107i 0.221676 0.101236i
\(636\) −1.69745 + 5.36861i −0.0673081 + 0.212879i
\(637\) 1.86470 6.35057i 0.0738819 0.251619i
\(638\) 6.75492 + 12.6800i 0.267430 + 0.502006i
\(639\) 2.59747 5.68766i 0.102754 0.225000i
\(640\) 2.29740 + 2.65574i 0.0908128 + 0.104977i
\(641\) −6.61573 4.25167i −0.261305 0.167931i 0.403428 0.915011i \(-0.367819\pi\)
−0.664734 + 0.747081i \(0.731455\pi\)
\(642\) 8.72260 + 4.88039i 0.344253 + 0.192614i
\(643\) 8.68477i 0.342494i −0.985228 0.171247i \(-0.945220\pi\)
0.985228 0.171247i \(-0.0547796\pi\)
\(644\) −12.0920 + 16.3655i −0.476490 + 0.644891i
\(645\) 3.84065i 0.151225i
\(646\) 10.9728 19.6114i 0.431719 0.771601i
\(647\) −5.45157 3.50351i −0.214323 0.137737i 0.429075 0.903269i \(-0.358840\pi\)
−0.643398 + 0.765532i \(0.722476\pi\)
\(648\) 2.21073 + 1.76427i 0.0868458 + 0.0693072i
\(649\) −17.4839 + 38.2844i −0.686302 + 1.50279i
\(650\) −16.2071 + 8.63387i −0.635693 + 0.338648i
\(651\) −5.64263 + 19.2170i −0.221152 + 0.753175i
\(652\) 34.6732 + 10.9630i 1.35791 + 0.429343i
\(653\) −28.6347 + 13.0770i −1.12056 + 0.511744i −0.887542 0.460727i \(-0.847589\pi\)
−0.233022 + 0.972471i \(0.574861\pi\)
\(654\) −7.27451 + 5.32942i −0.284456 + 0.208397i
\(655\) −1.31780 + 1.52082i −0.0514907 + 0.0594235i
\(656\) 17.7882 + 22.3272i 0.694514 + 0.871731i
\(657\) 8.80222 2.58457i 0.343407 0.100833i
\(658\) −20.5674 20.9962i −0.801801 0.818519i
\(659\) 4.53648 + 7.05890i 0.176716 + 0.274976i 0.918301 0.395884i \(-0.129562\pi\)
−0.741584 + 0.670860i \(0.765925\pi\)
\(660\) −0.797769 1.84679i −0.0310531 0.0718862i
\(661\) 3.27143 0.470361i 0.127244 0.0182949i −0.0783985 0.996922i \(-0.524981\pi\)
0.205643 + 0.978627i \(0.434072\pi\)
\(662\) 8.08264 + 0.661963i 0.314141 + 0.0257279i
\(663\) 1.16395 8.09546i 0.0452041 0.314402i
\(664\) −5.16863 10.2043i −0.200582 0.396003i
\(665\) 2.21840 + 2.56017i 0.0860260 + 0.0992792i
\(666\) −2.20067 6.09143i −0.0852741 0.236038i
\(667\) −10.9126 10.3408i −0.422536 0.400398i
\(668\) 8.25515 6.86009i 0.319401 0.265425i
\(669\) −9.67209 + 8.38092i −0.373945 + 0.324025i
\(670\) −1.62330 0.370708i −0.0627136 0.0143217i
\(671\) 3.63532 25.2842i 0.140340 0.976087i
\(672\) −3.15218 + 11.5793i −0.121598 + 0.446680i
\(673\) 1.27214 + 8.84790i 0.0490373 + 0.341062i 0.999540 + 0.0303440i \(0.00966027\pi\)
−0.950502 + 0.310718i \(0.899431\pi\)
\(674\) −10.3157 + 0.630893i −0.397344 + 0.0243011i
\(675\) 2.65112 + 4.12522i 0.102042 + 0.158780i
\(676\) 10.7891 + 5.19885i 0.414964 + 0.199956i
\(677\) −11.0367 37.5876i −0.424175 1.44461i −0.843676 0.536853i \(-0.819613\pi\)
0.419501 0.907755i \(-0.362205\pi\)
\(678\) −17.7228 6.81936i −0.680640 0.261896i
\(679\) −17.3940 + 20.0737i −0.667519 + 0.770357i
\(680\) −2.63042 0.658086i −0.100872 0.0252365i
\(681\) −6.91716 15.1465i −0.265066 0.580414i
\(682\) 34.3692 + 26.2861i 1.31606 + 1.00655i
\(683\) −10.7177 + 36.5012i −0.410102 + 1.39668i 0.452937 + 0.891543i \(0.350376\pi\)
−0.863039 + 0.505138i \(0.831442\pi\)
\(684\) −6.89724 + 7.63564i −0.263723 + 0.291956i
\(685\) −2.67549 1.22186i −0.102225 0.0466847i
\(686\) −5.77049 27.9098i −0.220318 1.06560i
\(687\) −8.04120 5.16777i −0.306791 0.197163i
\(688\) −25.0189 42.7072i −0.953835 1.62820i
\(689\) −7.45485 −0.284007
\(690\) 1.40473 + 1.56786i 0.0534773 + 0.0596875i
\(691\) 21.6997i 0.825496i 0.910845 + 0.412748i \(0.135431\pi\)
−0.910845 + 0.412748i \(0.864569\pi\)
\(692\) −0.211804 + 1.28440i −0.00805157 + 0.0488255i
\(693\) 3.71693 5.78366i 0.141195 0.219703i
\(694\) 4.41476 0.912773i 0.167582 0.0346484i
\(695\) 1.07452 2.35287i 0.0407589 0.0892495i
\(696\) −8.20757 3.35412i −0.311107 0.127138i
\(697\) −21.1499 6.21018i −0.801111 0.235227i
\(698\) −1.74048 1.33115i −0.0658782 0.0503847i
\(699\) −0.831047 + 0.379527i −0.0314331 + 0.0143550i
\(700\) −11.6071 + 17.2670i −0.438707 + 0.652631i
\(701\) 6.30080 + 5.45967i 0.237978 + 0.206209i 0.765682 0.643219i \(-0.222402\pi\)
−0.527704 + 0.849428i \(0.676947\pi\)
\(702\) −1.34481 + 3.49502i −0.0507566 + 0.131911i
\(703\) 22.6074 6.63814i 0.852655 0.250362i
\(704\) 20.9015 + 15.3391i 0.787753 + 0.578113i
\(705\) −2.55799 + 1.64392i −0.0963394 + 0.0619136i
\(706\) −3.87286 + 0.236859i −0.145757 + 0.00891432i
\(707\) 8.24066 1.18483i 0.309922 0.0445600i
\(708\) −6.80197 25.0676i −0.255634 0.942098i
\(709\) 6.65030 + 0.956168i 0.249757 + 0.0359097i 0.266056 0.963958i \(-0.414279\pi\)
−0.0162991 + 0.999867i \(0.505188\pi\)
\(710\) 0.611042 2.67571i 0.0229320 0.100417i
\(711\) −1.08282 1.24964i −0.0406087 0.0468650i
\(712\) 3.49222 5.95002i 0.130876 0.222986i
\(713\) −42.8325 14.6762i −1.60409 0.549629i
\(714\) −3.14855 8.71514i −0.117831 0.326156i
\(715\) 2.01296 1.74424i 0.0752803 0.0652308i
\(716\) −2.31031 18.8171i −0.0863402 0.703229i
\(717\) 21.9748 + 3.15950i 0.820664 + 0.117994i
\(718\) −1.65012 + 20.1481i −0.0615818 + 0.751921i
\(719\) −1.42587 9.91714i −0.0531760 0.369847i −0.998982 0.0451144i \(-0.985635\pi\)
0.945806 0.324733i \(-0.105274\pi\)
\(720\) 1.10709 + 0.561901i 0.0412588 + 0.0209408i
\(721\) 4.68729 3.01234i 0.174564 0.112185i
\(722\) −7.39130 7.54541i −0.275076 0.280811i
\(723\) 5.34249 + 18.1949i 0.198689 + 0.676674i
\(724\) 7.51838 + 0.155159i 0.279419 + 0.00576643i
\(725\) −11.6173 10.0664i −0.431455 0.373858i
\(726\) 0.415826 + 0.567591i 0.0154327 + 0.0210653i
\(727\) 6.96948 + 15.2610i 0.258484 + 0.566000i 0.993731 0.111799i \(-0.0356612\pi\)
−0.735247 + 0.677799i \(0.762934\pi\)
\(728\) −15.8758 + 0.642500i −0.588397 + 0.0238126i
\(729\) 0.959493 + 0.281733i 0.0355368 + 0.0104345i
\(730\) 3.55396 1.89327i 0.131538 0.0700732i
\(731\) 34.7651 + 15.8767i 1.28583 + 0.587221i
\(732\) 8.24743 + 13.4349i 0.304834 + 0.496567i
\(733\) −8.18962 + 12.7433i −0.302491 + 0.470684i −0.958910 0.283712i \(-0.908434\pi\)
0.656419 + 0.754397i \(0.272070\pi\)
\(734\) −15.2431 8.52870i −0.562634 0.314800i
\(735\) −0.775799 −0.0286158
\(736\) −25.8338 8.28354i −0.952245 0.305336i
\(737\) −12.2935 −0.452836
\(738\) 8.80791 + 4.92812i 0.324224 + 0.181407i
\(739\) −1.48235 + 2.30658i −0.0545292 + 0.0848490i −0.867448 0.497528i \(-0.834241\pi\)
0.812919 + 0.582377i \(0.197877\pi\)
\(740\) −1.48733 2.42284i −0.0546755 0.0890652i
\(741\) −12.3922 5.65933i −0.455239 0.207901i
\(742\) −7.45453 + 3.97119i −0.273664 + 0.145787i
\(743\) 21.3307 + 6.26325i 0.782546 + 0.229776i 0.648516 0.761201i \(-0.275390\pi\)
0.134030 + 0.990977i \(0.457208\pi\)
\(744\) −26.6811 + 1.07980i −0.978178 + 0.0395873i
\(745\) 2.85223 + 6.24550i 0.104497 + 0.228818i
\(746\) 27.6295 + 37.7135i 1.01159 + 1.38079i
\(747\) −3.05637 2.64836i −0.111827 0.0968985i
\(748\) −20.0148 0.413051i −0.731814 0.0151026i
\(749\) 4.22415 + 14.3861i 0.154347 + 0.525657i
\(750\) 3.04203 + 3.10546i 0.111079 + 0.113395i
\(751\) 25.7966 16.5785i 0.941331 0.604957i 0.0225589 0.999746i \(-0.492819\pi\)
0.918772 + 0.394789i \(0.129182\pi\)
\(752\) 17.7354 34.9434i 0.646745 1.27425i
\(753\) 0.598024 + 4.15935i 0.0217932 + 0.151575i
\(754\) 0.958222 11.7000i 0.0348964 0.426089i
\(755\) 7.24361 + 1.04147i 0.263622 + 0.0379031i
\(756\) 0.517044 + 4.21125i 0.0188047 + 0.153162i
\(757\) −10.6196 + 9.20197i −0.385977 + 0.334451i −0.826138 0.563468i \(-0.809467\pi\)
0.440161 + 0.897919i \(0.354921\pi\)
\(758\) 9.68893 + 26.8189i 0.351918 + 0.974105i
\(759\) 12.6881 + 8.97608i 0.460547 + 0.325811i
\(760\) −2.28619 + 3.89519i −0.0829287 + 0.141294i
\(761\) 18.3628 + 21.1918i 0.665652 + 0.768203i 0.983689 0.179875i \(-0.0575693\pi\)
−0.318038 + 0.948078i \(0.603024\pi\)
\(762\) −6.22952 + 27.2786i −0.225672 + 0.988198i
\(763\) −13.3898 1.92516i −0.484743 0.0696955i
\(764\) −9.80374 36.1302i −0.354687 1.30714i
\(765\) −0.948899 + 0.136431i −0.0343075 + 0.00493267i
\(766\) 17.1679 1.04997i 0.620301 0.0379369i
\(767\) 28.9303 18.5924i 1.04461 0.671332i
\(768\) −15.9710 + 0.963614i −0.576302 + 0.0347714i
\(769\) 36.6921 10.7738i 1.32315 0.388512i 0.457522 0.889198i \(-0.348737\pi\)
0.865629 + 0.500686i \(0.166919\pi\)
\(770\) 1.08372 2.81646i 0.0390544 0.101498i
\(771\) −0.100973 0.0874938i −0.00363646 0.00315101i
\(772\) −2.94329 + 4.37850i −0.105931 + 0.157586i
\(773\) 29.5349 13.4881i 1.06230 0.485134i 0.193907 0.981020i