Properties

Label 552.2.bb
Level $552$
Weight $2$
Character orbit 552.bb
Rep. character $\chi_{552}(13,\cdot)$
Character field $\Q(\zeta_{22})$
Dimension $480$
Newform subspaces $1$
Sturm bound $192$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 552 = 2^{3} \cdot 3 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 552.bb (of order \(22\) and degree \(10\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 184 \)
Character field: \(\Q(\zeta_{22})\)
Newform subspaces: \( 1 \)
Sturm bound: \(192\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(552, [\chi])\).

Total New Old
Modular forms 1000 480 520
Cusp forms 920 480 440
Eisenstein series 80 0 80

Trace form

\( 480q + 4q^{2} + 4q^{6} + 8q^{7} + 4q^{8} + 48q^{9} + O(q^{10}) \) \( 480q + 4q^{2} + 4q^{6} + 8q^{7} + 4q^{8} + 48q^{9} - 4q^{10} - 4q^{14} - 8q^{15} - 8q^{16} - 4q^{18} + 20q^{20} + 20q^{22} - 8q^{23} - 4q^{24} + 48q^{25} + 16q^{30} + 16q^{31} + 4q^{32} + 6q^{34} - 22q^{36} + 90q^{38} - 74q^{40} + 90q^{42} - 130q^{44} + 96q^{46} - 88q^{48} - 48q^{49} + 142q^{50} - 142q^{52} + 18q^{54} - 82q^{56} + 22q^{58} + 2q^{60} - 40q^{62} - 8q^{63} + 16q^{66} - 44q^{68} + 16q^{71} - 4q^{72} + 10q^{74} - 138q^{76} - 40q^{79} - 170q^{80} - 48q^{81} - 124q^{82} - 8q^{84} - 216q^{86} - 108q^{88} + 4q^{90} - 198q^{92} - 238q^{94} + 80q^{95} + 4q^{96} - 132q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(552, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
552.2.bb.a \(480\) \(4.408\) None \(4\) \(0\) \(0\) \(8\)

Decomposition of \(S_{2}^{\mathrm{old}}(552, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(552, [\chi]) \cong \) \(S_{2}^{\mathrm{new}}(184, [\chi])\)\(^{\oplus 2}\)