Properties

Label 550.6.b.a
Level $550$
Weight $6$
Character orbit 550.b
Analytic conductor $88.211$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [550,6,Mod(199,550)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(550, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("550.199");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 550 = 2 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 550.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(88.2111008971\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 22)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 4 i q^{2} + 29 i q^{3} - 16 q^{4} - 116 q^{6} - 230 i q^{7} - 64 i q^{8} - 598 q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + 4 i q^{2} + 29 i q^{3} - 16 q^{4} - 116 q^{6} - 230 i q^{7} - 64 i q^{8} - 598 q^{9} + 121 q^{11} - 464 i q^{12} - 112 i q^{13} + 920 q^{14} + 256 q^{16} - 1142 i q^{17} - 2392 i q^{18} + 612 q^{19} + 6670 q^{21} + 484 i q^{22} + 1941 i q^{23} + 1856 q^{24} + 448 q^{26} - 10295 i q^{27} + 3680 i q^{28} - 1192 q^{29} - 1037 q^{31} + 1024 i q^{32} + 3509 i q^{33} + 4568 q^{34} + 9568 q^{36} + 8083 i q^{37} + 2448 i q^{38} + 3248 q^{39} - 10444 q^{41} + 26680 i q^{42} - 58 i q^{43} - 1936 q^{44} - 7764 q^{46} + 8656 i q^{47} + 7424 i q^{48} - 36093 q^{49} + 33118 q^{51} + 1792 i q^{52} + 20318 i q^{53} + 41180 q^{54} - 14720 q^{56} + 17748 i q^{57} - 4768 i q^{58} + 21351 q^{59} + 47044 q^{61} - 4148 i q^{62} + 137540 i q^{63} - 4096 q^{64} - 14036 q^{66} + 48093 i q^{67} + 18272 i q^{68} - 56289 q^{69} - 24967 q^{71} + 38272 i q^{72} + 42288 i q^{73} - 32332 q^{74} - 9792 q^{76} - 27830 i q^{77} + 12992 i q^{78} + 72410 q^{79} + 153241 q^{81} - 41776 i q^{82} + 15806 i q^{83} - 106720 q^{84} + 232 q^{86} - 34568 i q^{87} - 7744 i q^{88} + 114761 q^{89} - 25760 q^{91} - 31056 i q^{92} - 30073 i q^{93} - 34624 q^{94} - 29696 q^{96} - 5159 i q^{97} - 144372 i q^{98} - 72358 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 32 q^{4} - 232 q^{6} - 1196 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 32 q^{4} - 232 q^{6} - 1196 q^{9} + 242 q^{11} + 1840 q^{14} + 512 q^{16} + 1224 q^{19} + 13340 q^{21} + 3712 q^{24} + 896 q^{26} - 2384 q^{29} - 2074 q^{31} + 9136 q^{34} + 19136 q^{36} + 6496 q^{39} - 20888 q^{41} - 3872 q^{44} - 15528 q^{46} - 72186 q^{49} + 66236 q^{51} + 82360 q^{54} - 29440 q^{56} + 42702 q^{59} + 94088 q^{61} - 8192 q^{64} - 28072 q^{66} - 112578 q^{69} - 49934 q^{71} - 64664 q^{74} - 19584 q^{76} + 144820 q^{79} + 306482 q^{81} - 213440 q^{84} + 464 q^{86} + 229522 q^{89} - 51520 q^{91} - 69248 q^{94} - 59392 q^{96} - 144716 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/550\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
199.1
1.00000i
1.00000i
4.00000i 29.0000i −16.0000 0 −116.000 230.000i 64.0000i −598.000 0
199.2 4.00000i 29.0000i −16.0000 0 −116.000 230.000i 64.0000i −598.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 550.6.b.a 2
5.b even 2 1 inner 550.6.b.a 2
5.c odd 4 1 22.6.a.c 1
5.c odd 4 1 550.6.a.c 1
15.e even 4 1 198.6.a.b 1
20.e even 4 1 176.6.a.e 1
35.f even 4 1 1078.6.a.f 1
40.i odd 4 1 704.6.a.j 1
40.k even 4 1 704.6.a.a 1
55.e even 4 1 242.6.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
22.6.a.c 1 5.c odd 4 1
176.6.a.e 1 20.e even 4 1
198.6.a.b 1 15.e even 4 1
242.6.a.a 1 55.e even 4 1
550.6.a.c 1 5.c odd 4 1
550.6.b.a 2 1.a even 1 1 trivial
550.6.b.a 2 5.b even 2 1 inner
704.6.a.a 1 40.k even 4 1
704.6.a.j 1 40.i odd 4 1
1078.6.a.f 1 35.f even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{6}^{\mathrm{new}}(550, [\chi])\):

\( T_{3}^{2} + 841 \) Copy content Toggle raw display
\( T_{7}^{2} + 52900 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 16 \) Copy content Toggle raw display
$3$ \( T^{2} + 841 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 52900 \) Copy content Toggle raw display
$11$ \( (T - 121)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 12544 \) Copy content Toggle raw display
$17$ \( T^{2} + 1304164 \) Copy content Toggle raw display
$19$ \( (T - 612)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 3767481 \) Copy content Toggle raw display
$29$ \( (T + 1192)^{2} \) Copy content Toggle raw display
$31$ \( (T + 1037)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 65334889 \) Copy content Toggle raw display
$41$ \( (T + 10444)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 3364 \) Copy content Toggle raw display
$47$ \( T^{2} + 74926336 \) Copy content Toggle raw display
$53$ \( T^{2} + 412821124 \) Copy content Toggle raw display
$59$ \( (T - 21351)^{2} \) Copy content Toggle raw display
$61$ \( (T - 47044)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 2312936649 \) Copy content Toggle raw display
$71$ \( (T + 24967)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 1788274944 \) Copy content Toggle raw display
$79$ \( (T - 72410)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 249829636 \) Copy content Toggle raw display
$89$ \( (T - 114761)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 26615281 \) Copy content Toggle raw display
show more
show less