Properties

Label 550.6.a.f.1.1
Level $550$
Weight $6$
Character 550.1
Self dual yes
Analytic conductor $88.211$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [550,6,Mod(1,550)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(550, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("550.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 550 = 2 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 550.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(88.2111008971\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 22)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 550.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{2} -1.00000 q^{3} +16.0000 q^{4} -4.00000 q^{6} +166.000 q^{7} +64.0000 q^{8} -242.000 q^{9} +O(q^{10})\) \(q+4.00000 q^{2} -1.00000 q^{3} +16.0000 q^{4} -4.00000 q^{6} +166.000 q^{7} +64.0000 q^{8} -242.000 q^{9} -121.000 q^{11} -16.0000 q^{12} -692.000 q^{13} +664.000 q^{14} +256.000 q^{16} +738.000 q^{17} -968.000 q^{18} +1424.00 q^{19} -166.000 q^{21} -484.000 q^{22} +1779.00 q^{23} -64.0000 q^{24} -2768.00 q^{26} +485.000 q^{27} +2656.00 q^{28} -2064.00 q^{29} +6245.00 q^{31} +1024.00 q^{32} +121.000 q^{33} +2952.00 q^{34} -3872.00 q^{36} +14785.0 q^{37} +5696.00 q^{38} +692.000 q^{39} +5304.00 q^{41} -664.000 q^{42} -17798.0 q^{43} -1936.00 q^{44} +7116.00 q^{46} +17184.0 q^{47} -256.000 q^{48} +10749.0 q^{49} -738.000 q^{51} -11072.0 q^{52} +30726.0 q^{53} +1940.00 q^{54} +10624.0 q^{56} -1424.00 q^{57} -8256.00 q^{58} -34989.0 q^{59} -45940.0 q^{61} +24980.0 q^{62} -40172.0 q^{63} +4096.00 q^{64} +484.000 q^{66} -25343.0 q^{67} +11808.0 q^{68} -1779.00 q^{69} +13311.0 q^{71} -15488.0 q^{72} +53260.0 q^{73} +59140.0 q^{74} +22784.0 q^{76} -20086.0 q^{77} +2768.00 q^{78} +77234.0 q^{79} +58321.0 q^{81} +21216.0 q^{82} -55014.0 q^{83} -2656.00 q^{84} -71192.0 q^{86} +2064.00 q^{87} -7744.00 q^{88} +125415. q^{89} -114872. q^{91} +28464.0 q^{92} -6245.00 q^{93} +68736.0 q^{94} -1024.00 q^{96} +88807.0 q^{97} +42996.0 q^{98} +29282.0 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.00000 0.707107
\(3\) −1.00000 −0.0641500 −0.0320750 0.999485i \(-0.510212\pi\)
−0.0320750 + 0.999485i \(0.510212\pi\)
\(4\) 16.0000 0.500000
\(5\) 0 0
\(6\) −4.00000 −0.0453609
\(7\) 166.000 1.28045 0.640226 0.768187i \(-0.278841\pi\)
0.640226 + 0.768187i \(0.278841\pi\)
\(8\) 64.0000 0.353553
\(9\) −242.000 −0.995885
\(10\) 0 0
\(11\) −121.000 −0.301511
\(12\) −16.0000 −0.0320750
\(13\) −692.000 −1.13566 −0.567829 0.823146i \(-0.692217\pi\)
−0.567829 + 0.823146i \(0.692217\pi\)
\(14\) 664.000 0.905416
\(15\) 0 0
\(16\) 256.000 0.250000
\(17\) 738.000 0.619347 0.309674 0.950843i \(-0.399780\pi\)
0.309674 + 0.950843i \(0.399780\pi\)
\(18\) −968.000 −0.704197
\(19\) 1424.00 0.904953 0.452476 0.891776i \(-0.350541\pi\)
0.452476 + 0.891776i \(0.350541\pi\)
\(20\) 0 0
\(21\) −166.000 −0.0821410
\(22\) −484.000 −0.213201
\(23\) 1779.00 0.701223 0.350612 0.936521i \(-0.385974\pi\)
0.350612 + 0.936521i \(0.385974\pi\)
\(24\) −64.0000 −0.0226805
\(25\) 0 0
\(26\) −2768.00 −0.803032
\(27\) 485.000 0.128036
\(28\) 2656.00 0.640226
\(29\) −2064.00 −0.455737 −0.227869 0.973692i \(-0.573176\pi\)
−0.227869 + 0.973692i \(0.573176\pi\)
\(30\) 0 0
\(31\) 6245.00 1.16715 0.583577 0.812058i \(-0.301653\pi\)
0.583577 + 0.812058i \(0.301653\pi\)
\(32\) 1024.00 0.176777
\(33\) 121.000 0.0193420
\(34\) 2952.00 0.437944
\(35\) 0 0
\(36\) −3872.00 −0.497942
\(37\) 14785.0 1.77549 0.887743 0.460340i \(-0.152273\pi\)
0.887743 + 0.460340i \(0.152273\pi\)
\(38\) 5696.00 0.639898
\(39\) 692.000 0.0728525
\(40\) 0 0
\(41\) 5304.00 0.492770 0.246385 0.969172i \(-0.420757\pi\)
0.246385 + 0.969172i \(0.420757\pi\)
\(42\) −664.000 −0.0580824
\(43\) −17798.0 −1.46791 −0.733956 0.679197i \(-0.762328\pi\)
−0.733956 + 0.679197i \(0.762328\pi\)
\(44\) −1936.00 −0.150756
\(45\) 0 0
\(46\) 7116.00 0.495840
\(47\) 17184.0 1.13470 0.567348 0.823478i \(-0.307969\pi\)
0.567348 + 0.823478i \(0.307969\pi\)
\(48\) −256.000 −0.0160375
\(49\) 10749.0 0.639555
\(50\) 0 0
\(51\) −738.000 −0.0397311
\(52\) −11072.0 −0.567829
\(53\) 30726.0 1.50251 0.751253 0.660014i \(-0.229450\pi\)
0.751253 + 0.660014i \(0.229450\pi\)
\(54\) 1940.00 0.0905352
\(55\) 0 0
\(56\) 10624.0 0.452708
\(57\) −1424.00 −0.0580528
\(58\) −8256.00 −0.322255
\(59\) −34989.0 −1.30858 −0.654292 0.756242i \(-0.727033\pi\)
−0.654292 + 0.756242i \(0.727033\pi\)
\(60\) 0 0
\(61\) −45940.0 −1.58076 −0.790381 0.612616i \(-0.790117\pi\)
−0.790381 + 0.612616i \(0.790117\pi\)
\(62\) 24980.0 0.825303
\(63\) −40172.0 −1.27518
\(64\) 4096.00 0.125000
\(65\) 0 0
\(66\) 484.000 0.0136768
\(67\) −25343.0 −0.689717 −0.344859 0.938655i \(-0.612073\pi\)
−0.344859 + 0.938655i \(0.612073\pi\)
\(68\) 11808.0 0.309674
\(69\) −1779.00 −0.0449835
\(70\) 0 0
\(71\) 13311.0 0.313375 0.156688 0.987648i \(-0.449918\pi\)
0.156688 + 0.987648i \(0.449918\pi\)
\(72\) −15488.0 −0.352098
\(73\) 53260.0 1.16975 0.584876 0.811123i \(-0.301143\pi\)
0.584876 + 0.811123i \(0.301143\pi\)
\(74\) 59140.0 1.25546
\(75\) 0 0
\(76\) 22784.0 0.452476
\(77\) −20086.0 −0.386071
\(78\) 2768.00 0.0515145
\(79\) 77234.0 1.39233 0.696163 0.717884i \(-0.254889\pi\)
0.696163 + 0.717884i \(0.254889\pi\)
\(80\) 0 0
\(81\) 58321.0 0.987671
\(82\) 21216.0 0.348441
\(83\) −55014.0 −0.876553 −0.438276 0.898840i \(-0.644411\pi\)
−0.438276 + 0.898840i \(0.644411\pi\)
\(84\) −2656.00 −0.0410705
\(85\) 0 0
\(86\) −71192.0 −1.03797
\(87\) 2064.00 0.0292356
\(88\) −7744.00 −0.106600
\(89\) 125415. 1.67832 0.839159 0.543886i \(-0.183047\pi\)
0.839159 + 0.543886i \(0.183047\pi\)
\(90\) 0 0
\(91\) −114872. −1.45416
\(92\) 28464.0 0.350612
\(93\) −6245.00 −0.0748730
\(94\) 68736.0 0.802351
\(95\) 0 0
\(96\) −1024.00 −0.0113402
\(97\) 88807.0 0.958336 0.479168 0.877723i \(-0.340938\pi\)
0.479168 + 0.877723i \(0.340938\pi\)
\(98\) 42996.0 0.452234
\(99\) 29282.0 0.300271
\(100\) 0 0
\(101\) 1482.00 0.0144559 0.00722794 0.999974i \(-0.497699\pi\)
0.00722794 + 0.999974i \(0.497699\pi\)
\(102\) −2952.00 −0.0280942
\(103\) 117496. 1.09126 0.545632 0.838025i \(-0.316290\pi\)
0.545632 + 0.838025i \(0.316290\pi\)
\(104\) −44288.0 −0.401516
\(105\) 0 0
\(106\) 122904. 1.06243
\(107\) 79362.0 0.670121 0.335060 0.942197i \(-0.391243\pi\)
0.335060 + 0.942197i \(0.391243\pi\)
\(108\) 7760.00 0.0640180
\(109\) 87842.0 0.708167 0.354084 0.935214i \(-0.384793\pi\)
0.354084 + 0.935214i \(0.384793\pi\)
\(110\) 0 0
\(111\) −14785.0 −0.113897
\(112\) 42496.0 0.320113
\(113\) 47247.0 0.348079 0.174040 0.984739i \(-0.444318\pi\)
0.174040 + 0.984739i \(0.444318\pi\)
\(114\) −5696.00 −0.0410495
\(115\) 0 0
\(116\) −33024.0 −0.227869
\(117\) 167464. 1.13098
\(118\) −139956. −0.925308
\(119\) 122508. 0.793044
\(120\) 0 0
\(121\) 14641.0 0.0909091
\(122\) −183760. −1.11777
\(123\) −5304.00 −0.0316112
\(124\) 99920.0 0.583577
\(125\) 0 0
\(126\) −160688. −0.901690
\(127\) 239416. 1.31718 0.658588 0.752504i \(-0.271154\pi\)
0.658588 + 0.752504i \(0.271154\pi\)
\(128\) 16384.0 0.0883883
\(129\) 17798.0 0.0941666
\(130\) 0 0
\(131\) −98142.0 −0.499662 −0.249831 0.968289i \(-0.580375\pi\)
−0.249831 + 0.968289i \(0.580375\pi\)
\(132\) 1936.00 0.00967098
\(133\) 236384. 1.15875
\(134\) −101372. −0.487704
\(135\) 0 0
\(136\) 47232.0 0.218972
\(137\) −400137. −1.82141 −0.910704 0.413059i \(-0.864460\pi\)
−0.910704 + 0.413059i \(0.864460\pi\)
\(138\) −7116.00 −0.0318081
\(139\) 205766. 0.903310 0.451655 0.892193i \(-0.350834\pi\)
0.451655 + 0.892193i \(0.350834\pi\)
\(140\) 0 0
\(141\) −17184.0 −0.0727908
\(142\) 53244.0 0.221590
\(143\) 83732.0 0.342414
\(144\) −61952.0 −0.248971
\(145\) 0 0
\(146\) 213040. 0.827140
\(147\) −10749.0 −0.0410275
\(148\) 236560. 0.887743
\(149\) 87726.0 0.323715 0.161857 0.986814i \(-0.448252\pi\)
0.161857 + 0.986814i \(0.448252\pi\)
\(150\) 0 0
\(151\) −432778. −1.54462 −0.772312 0.635243i \(-0.780900\pi\)
−0.772312 + 0.635243i \(0.780900\pi\)
\(152\) 91136.0 0.319949
\(153\) −178596. −0.616798
\(154\) −80344.0 −0.272993
\(155\) 0 0
\(156\) 11072.0 0.0364263
\(157\) 34075.0 0.110328 0.0551641 0.998477i \(-0.482432\pi\)
0.0551641 + 0.998477i \(0.482432\pi\)
\(158\) 308936. 0.984523
\(159\) −30726.0 −0.0963858
\(160\) 0 0
\(161\) 295314. 0.897882
\(162\) 233284. 0.698389
\(163\) −45020.0 −0.132720 −0.0663600 0.997796i \(-0.521139\pi\)
−0.0663600 + 0.997796i \(0.521139\pi\)
\(164\) 84864.0 0.246385
\(165\) 0 0
\(166\) −220056. −0.619816
\(167\) −482556. −1.33893 −0.669463 0.742845i \(-0.733476\pi\)
−0.669463 + 0.742845i \(0.733476\pi\)
\(168\) −10624.0 −0.0290412
\(169\) 107571. 0.289720
\(170\) 0 0
\(171\) −344608. −0.901229
\(172\) −284768. −0.733956
\(173\) 766254. 1.94651 0.973257 0.229719i \(-0.0737808\pi\)
0.973257 + 0.229719i \(0.0737808\pi\)
\(174\) 8256.00 0.0206727
\(175\) 0 0
\(176\) −30976.0 −0.0753778
\(177\) 34989.0 0.0839457
\(178\) 501660. 1.18675
\(179\) 303399. 0.707753 0.353876 0.935292i \(-0.384863\pi\)
0.353876 + 0.935292i \(0.384863\pi\)
\(180\) 0 0
\(181\) −285181. −0.647030 −0.323515 0.946223i \(-0.604865\pi\)
−0.323515 + 0.946223i \(0.604865\pi\)
\(182\) −459488. −1.02824
\(183\) 45940.0 0.101406
\(184\) 113856. 0.247920
\(185\) 0 0
\(186\) −24980.0 −0.0529432
\(187\) −89298.0 −0.186740
\(188\) 274944. 0.567348
\(189\) 80510.0 0.163944
\(190\) 0 0
\(191\) 767067. 1.52142 0.760711 0.649090i \(-0.224850\pi\)
0.760711 + 0.649090i \(0.224850\pi\)
\(192\) −4096.00 −0.00801875
\(193\) −411668. −0.795525 −0.397763 0.917488i \(-0.630213\pi\)
−0.397763 + 0.917488i \(0.630213\pi\)
\(194\) 355228. 0.677646
\(195\) 0 0
\(196\) 171984. 0.319777
\(197\) 759258. 1.39387 0.696937 0.717132i \(-0.254545\pi\)
0.696937 + 0.717132i \(0.254545\pi\)
\(198\) 117128. 0.212323
\(199\) −46600.0 −0.0834167 −0.0417084 0.999130i \(-0.513280\pi\)
−0.0417084 + 0.999130i \(0.513280\pi\)
\(200\) 0 0
\(201\) 25343.0 0.0442454
\(202\) 5928.00 0.0102219
\(203\) −342624. −0.583549
\(204\) −11808.0 −0.0198656
\(205\) 0 0
\(206\) 469984. 0.771641
\(207\) −430518. −0.698338
\(208\) −177152. −0.283915
\(209\) −172304. −0.272854
\(210\) 0 0
\(211\) −932428. −1.44181 −0.720907 0.693032i \(-0.756274\pi\)
−0.720907 + 0.693032i \(0.756274\pi\)
\(212\) 491616. 0.751253
\(213\) −13311.0 −0.0201030
\(214\) 317448. 0.473847
\(215\) 0 0
\(216\) 31040.0 0.0452676
\(217\) 1.03667e6 1.49448
\(218\) 351368. 0.500750
\(219\) −53260.0 −0.0750397
\(220\) 0 0
\(221\) −510696. −0.703367
\(222\) −59140.0 −0.0805376
\(223\) −169745. −0.228578 −0.114289 0.993448i \(-0.536459\pi\)
−0.114289 + 0.993448i \(0.536459\pi\)
\(224\) 169984. 0.226354
\(225\) 0 0
\(226\) 188988. 0.246129
\(227\) −198078. −0.255136 −0.127568 0.991830i \(-0.540717\pi\)
−0.127568 + 0.991830i \(0.540717\pi\)
\(228\) −22784.0 −0.0290264
\(229\) −849997. −1.07110 −0.535548 0.844505i \(-0.679895\pi\)
−0.535548 + 0.844505i \(0.679895\pi\)
\(230\) 0 0
\(231\) 20086.0 0.0247664
\(232\) −132096. −0.161128
\(233\) 401832. 0.484903 0.242451 0.970164i \(-0.422048\pi\)
0.242451 + 0.970164i \(0.422048\pi\)
\(234\) 669856. 0.799727
\(235\) 0 0
\(236\) −559824. −0.654292
\(237\) −77234.0 −0.0893177
\(238\) 490032. 0.560766
\(239\) 855174. 0.968411 0.484206 0.874954i \(-0.339109\pi\)
0.484206 + 0.874954i \(0.339109\pi\)
\(240\) 0 0
\(241\) 1.12546e6 1.24821 0.624107 0.781339i \(-0.285463\pi\)
0.624107 + 0.781339i \(0.285463\pi\)
\(242\) 58564.0 0.0642824
\(243\) −176176. −0.191395
\(244\) −735040. −0.790381
\(245\) 0 0
\(246\) −21216.0 −0.0223525
\(247\) −985408. −1.02772
\(248\) 399680. 0.412651
\(249\) 55014.0 0.0562309
\(250\) 0 0
\(251\) −1.19751e6 −1.19976 −0.599882 0.800088i \(-0.704786\pi\)
−0.599882 + 0.800088i \(0.704786\pi\)
\(252\) −642752. −0.637591
\(253\) −215259. −0.211427
\(254\) 957664. 0.931384
\(255\) 0 0
\(256\) 65536.0 0.0625000
\(257\) −37758.0 −0.0356596 −0.0178298 0.999841i \(-0.505676\pi\)
−0.0178298 + 0.999841i \(0.505676\pi\)
\(258\) 71192.0 0.0665858
\(259\) 2.45431e6 2.27342
\(260\) 0 0
\(261\) 499488. 0.453862
\(262\) −392568. −0.353315
\(263\) 631254. 0.562749 0.281375 0.959598i \(-0.409210\pi\)
0.281375 + 0.959598i \(0.409210\pi\)
\(264\) 7744.00 0.00683842
\(265\) 0 0
\(266\) 945536. 0.819359
\(267\) −125415. −0.107664
\(268\) −405488. −0.344859
\(269\) −1.08034e6 −0.910292 −0.455146 0.890417i \(-0.650413\pi\)
−0.455146 + 0.890417i \(0.650413\pi\)
\(270\) 0 0
\(271\) −816100. −0.675025 −0.337513 0.941321i \(-0.609586\pi\)
−0.337513 + 0.941321i \(0.609586\pi\)
\(272\) 188928. 0.154837
\(273\) 114872. 0.0932841
\(274\) −1.60055e6 −1.28793
\(275\) 0 0
\(276\) −28464.0 −0.0224917
\(277\) −1.68820e6 −1.32198 −0.660989 0.750396i \(-0.729863\pi\)
−0.660989 + 0.750396i \(0.729863\pi\)
\(278\) 823064. 0.638736
\(279\) −1.51129e6 −1.16235
\(280\) 0 0
\(281\) −879042. −0.664116 −0.332058 0.943259i \(-0.607743\pi\)
−0.332058 + 0.943259i \(0.607743\pi\)
\(282\) −68736.0 −0.0514709
\(283\) −1.54027e6 −1.14322 −0.571611 0.820525i \(-0.693681\pi\)
−0.571611 + 0.820525i \(0.693681\pi\)
\(284\) 212976. 0.156688
\(285\) 0 0
\(286\) 334928. 0.242123
\(287\) 880464. 0.630967
\(288\) −247808. −0.176049
\(289\) −875213. −0.616409
\(290\) 0 0
\(291\) −88807.0 −0.0614773
\(292\) 852160. 0.584876
\(293\) −720840. −0.490535 −0.245267 0.969455i \(-0.578876\pi\)
−0.245267 + 0.969455i \(0.578876\pi\)
\(294\) −42996.0 −0.0290108
\(295\) 0 0
\(296\) 946240. 0.627729
\(297\) −58685.0 −0.0386043
\(298\) 350904. 0.228901
\(299\) −1.23107e6 −0.796350
\(300\) 0 0
\(301\) −2.95447e6 −1.87959
\(302\) −1.73111e6 −1.09221
\(303\) −1482.00 −0.000927346 0
\(304\) 364544. 0.226238
\(305\) 0 0
\(306\) −714384. −0.436142
\(307\) 1.03905e6 0.629201 0.314601 0.949224i \(-0.398129\pi\)
0.314601 + 0.949224i \(0.398129\pi\)
\(308\) −321376. −0.193035
\(309\) −117496. −0.0700046
\(310\) 0 0
\(311\) −1.25135e6 −0.733630 −0.366815 0.930294i \(-0.619552\pi\)
−0.366815 + 0.930294i \(0.619552\pi\)
\(312\) 44288.0 0.0257573
\(313\) 1.44336e6 0.832749 0.416375 0.909193i \(-0.363301\pi\)
0.416375 + 0.909193i \(0.363301\pi\)
\(314\) 136300. 0.0780139
\(315\) 0 0
\(316\) 1.23574e6 0.696163
\(317\) 2.01208e6 1.12460 0.562298 0.826934i \(-0.309917\pi\)
0.562298 + 0.826934i \(0.309917\pi\)
\(318\) −122904. −0.0681551
\(319\) 249744. 0.137410
\(320\) 0 0
\(321\) −79362.0 −0.0429883
\(322\) 1.18126e6 0.634899
\(323\) 1.05091e6 0.560480
\(324\) 933136. 0.493836
\(325\) 0 0
\(326\) −180080. −0.0938472
\(327\) −87842.0 −0.0454290
\(328\) 339456. 0.174220
\(329\) 2.85254e6 1.45292
\(330\) 0 0
\(331\) 2.01734e6 1.01207 0.506033 0.862514i \(-0.331112\pi\)
0.506033 + 0.862514i \(0.331112\pi\)
\(332\) −880224. −0.438276
\(333\) −3.57797e6 −1.76818
\(334\) −1.93022e6 −0.946764
\(335\) 0 0
\(336\) −42496.0 −0.0205352
\(337\) −264122. −0.126686 −0.0633432 0.997992i \(-0.520176\pi\)
−0.0633432 + 0.997992i \(0.520176\pi\)
\(338\) 430284. 0.204863
\(339\) −47247.0 −0.0223293
\(340\) 0 0
\(341\) −755645. −0.351910
\(342\) −1.37843e6 −0.637265
\(343\) −1.00563e6 −0.461532
\(344\) −1.13907e6 −0.518985
\(345\) 0 0
\(346\) 3.06502e6 1.37639
\(347\) 1.71049e6 0.762601 0.381300 0.924451i \(-0.375476\pi\)
0.381300 + 0.924451i \(0.375476\pi\)
\(348\) 33024.0 0.0146178
\(349\) 218822. 0.0961673 0.0480836 0.998843i \(-0.484689\pi\)
0.0480836 + 0.998843i \(0.484689\pi\)
\(350\) 0 0
\(351\) −335620. −0.145405
\(352\) −123904. −0.0533002
\(353\) −3.68192e6 −1.57267 −0.786334 0.617802i \(-0.788023\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(354\) 139956. 0.0593586
\(355\) 0 0
\(356\) 2.00664e6 0.839159
\(357\) −122508. −0.0508738
\(358\) 1.21360e6 0.500457
\(359\) 1.88528e6 0.772042 0.386021 0.922490i \(-0.373849\pi\)
0.386021 + 0.922490i \(0.373849\pi\)
\(360\) 0 0
\(361\) −448323. −0.181060
\(362\) −1.14072e6 −0.457519
\(363\) −14641.0 −0.00583182
\(364\) −1.83795e6 −0.727078
\(365\) 0 0
\(366\) 183760. 0.0717048
\(367\) 3.11666e6 1.20788 0.603940 0.797029i \(-0.293596\pi\)
0.603940 + 0.797029i \(0.293596\pi\)
\(368\) 455424. 0.175306
\(369\) −1.28357e6 −0.490742
\(370\) 0 0
\(371\) 5.10052e6 1.92389
\(372\) −99920.0 −0.0374365
\(373\) −1.39441e6 −0.518943 −0.259471 0.965751i \(-0.583548\pi\)
−0.259471 + 0.965751i \(0.583548\pi\)
\(374\) −357192. −0.132045
\(375\) 0 0
\(376\) 1.09978e6 0.401176
\(377\) 1.42829e6 0.517562
\(378\) 322040. 0.115926
\(379\) −4.26036e6 −1.52352 −0.761759 0.647860i \(-0.775664\pi\)
−0.761759 + 0.647860i \(0.775664\pi\)
\(380\) 0 0
\(381\) −239416. −0.0844969
\(382\) 3.06827e6 1.07581
\(383\) −201765. −0.0702828 −0.0351414 0.999382i \(-0.511188\pi\)
−0.0351414 + 0.999382i \(0.511188\pi\)
\(384\) −16384.0 −0.00567012
\(385\) 0 0
\(386\) −1.64667e6 −0.562521
\(387\) 4.30712e6 1.46187
\(388\) 1.42091e6 0.479168
\(389\) 1.94882e6 0.652977 0.326489 0.945201i \(-0.394135\pi\)
0.326489 + 0.945201i \(0.394135\pi\)
\(390\) 0 0
\(391\) 1.31290e6 0.434301
\(392\) 687936. 0.226117
\(393\) 98142.0 0.0320534
\(394\) 3.03703e6 0.985618
\(395\) 0 0
\(396\) 468512. 0.150135
\(397\) 1.46826e6 0.467548 0.233774 0.972291i \(-0.424892\pi\)
0.233774 + 0.972291i \(0.424892\pi\)
\(398\) −186400. −0.0589845
\(399\) −236384. −0.0743337
\(400\) 0 0
\(401\) 2.24618e6 0.697563 0.348781 0.937204i \(-0.386596\pi\)
0.348781 + 0.937204i \(0.386596\pi\)
\(402\) 101372. 0.0312862
\(403\) −4.32154e6 −1.32549
\(404\) 23712.0 0.00722794
\(405\) 0 0
\(406\) −1.37050e6 −0.412632
\(407\) −1.78898e6 −0.535329
\(408\) −47232.0 −0.0140471
\(409\) −3.61488e6 −1.06853 −0.534263 0.845318i \(-0.679411\pi\)
−0.534263 + 0.845318i \(0.679411\pi\)
\(410\) 0 0
\(411\) 400137. 0.116843
\(412\) 1.87994e6 0.545632
\(413\) −5.80817e6 −1.67558
\(414\) −1.72207e6 −0.493799
\(415\) 0 0
\(416\) −708608. −0.200758
\(417\) −205766. −0.0579473
\(418\) −689216. −0.192937
\(419\) −3.81239e6 −1.06087 −0.530435 0.847726i \(-0.677971\pi\)
−0.530435 + 0.847726i \(0.677971\pi\)
\(420\) 0 0
\(421\) 1.97346e6 0.542655 0.271327 0.962487i \(-0.412537\pi\)
0.271327 + 0.962487i \(0.412537\pi\)
\(422\) −3.72971e6 −1.01952
\(423\) −4.15853e6 −1.13003
\(424\) 1.96646e6 0.531216
\(425\) 0 0
\(426\) −53244.0 −0.0142150
\(427\) −7.62604e6 −2.02409
\(428\) 1.26979e6 0.335060
\(429\) −83732.0 −0.0219659
\(430\) 0 0
\(431\) −2.08359e6 −0.540280 −0.270140 0.962821i \(-0.587070\pi\)
−0.270140 + 0.962821i \(0.587070\pi\)
\(432\) 124160. 0.0320090
\(433\) 72691.0 0.0186321 0.00931603 0.999957i \(-0.497035\pi\)
0.00931603 + 0.999957i \(0.497035\pi\)
\(434\) 4.14668e6 1.05676
\(435\) 0 0
\(436\) 1.40547e6 0.354084
\(437\) 2.53330e6 0.634574
\(438\) −213040. −0.0530611
\(439\) 594392. 0.147201 0.0736007 0.997288i \(-0.476551\pi\)
0.0736007 + 0.997288i \(0.476551\pi\)
\(440\) 0 0
\(441\) −2.60126e6 −0.636923
\(442\) −2.04278e6 −0.497355
\(443\) −4.56651e6 −1.10554 −0.552770 0.833334i \(-0.686429\pi\)
−0.552770 + 0.833334i \(0.686429\pi\)
\(444\) −236560. −0.0569487
\(445\) 0 0
\(446\) −678980. −0.161629
\(447\) −87726.0 −0.0207663
\(448\) 679936. 0.160056
\(449\) −5.44382e6 −1.27435 −0.637174 0.770720i \(-0.719897\pi\)
−0.637174 + 0.770720i \(0.719897\pi\)
\(450\) 0 0
\(451\) −641784. −0.148576
\(452\) 755952. 0.174040
\(453\) 432778. 0.0990877
\(454\) −792312. −0.180408
\(455\) 0 0
\(456\) −91136.0 −0.0205247
\(457\) −6.70312e6 −1.50137 −0.750683 0.660662i \(-0.770276\pi\)
−0.750683 + 0.660662i \(0.770276\pi\)
\(458\) −3.39999e6 −0.757380
\(459\) 357930. 0.0792988
\(460\) 0 0
\(461\) −1.25994e6 −0.276120 −0.138060 0.990424i \(-0.544087\pi\)
−0.138060 + 0.990424i \(0.544087\pi\)
\(462\) 80344.0 0.0175125
\(463\) 5.02308e6 1.08897 0.544487 0.838769i \(-0.316724\pi\)
0.544487 + 0.838769i \(0.316724\pi\)
\(464\) −528384. −0.113934
\(465\) 0 0
\(466\) 1.60733e6 0.342878
\(467\) 2.35660e6 0.500028 0.250014 0.968242i \(-0.419565\pi\)
0.250014 + 0.968242i \(0.419565\pi\)
\(468\) 2.67942e6 0.565492
\(469\) −4.20694e6 −0.883149
\(470\) 0 0
\(471\) −34075.0 −0.00707756
\(472\) −2.23930e6 −0.462654
\(473\) 2.15356e6 0.442592
\(474\) −308936. −0.0631572
\(475\) 0 0
\(476\) 1.96013e6 0.396522
\(477\) −7.43569e6 −1.49632
\(478\) 3.42070e6 0.684770
\(479\) −6.72258e6 −1.33874 −0.669371 0.742928i \(-0.733437\pi\)
−0.669371 + 0.742928i \(0.733437\pi\)
\(480\) 0 0
\(481\) −1.02312e7 −2.01634
\(482\) 4.50186e6 0.882620
\(483\) −295314. −0.0575992
\(484\) 234256. 0.0454545
\(485\) 0 0
\(486\) −704704. −0.135337
\(487\) −1.96001e6 −0.374487 −0.187243 0.982314i \(-0.559955\pi\)
−0.187243 + 0.982314i \(0.559955\pi\)
\(488\) −2.94016e6 −0.558884
\(489\) 45020.0 0.00851399
\(490\) 0 0
\(491\) −579624. −0.108503 −0.0542516 0.998527i \(-0.517277\pi\)
−0.0542516 + 0.998527i \(0.517277\pi\)
\(492\) −84864.0 −0.0158056
\(493\) −1.52323e6 −0.282260
\(494\) −3.94163e6 −0.726706
\(495\) 0 0
\(496\) 1.59872e6 0.291789
\(497\) 2.20963e6 0.401262
\(498\) 220056. 0.0397612
\(499\) 1.36905e6 0.246132 0.123066 0.992398i \(-0.460727\pi\)
0.123066 + 0.992398i \(0.460727\pi\)
\(500\) 0 0
\(501\) 482556. 0.0858921
\(502\) −4.79005e6 −0.848361
\(503\) −1.83343e6 −0.323105 −0.161552 0.986864i \(-0.551650\pi\)
−0.161552 + 0.986864i \(0.551650\pi\)
\(504\) −2.57101e6 −0.450845
\(505\) 0 0
\(506\) −861036. −0.149501
\(507\) −107571. −0.0185855
\(508\) 3.83066e6 0.658588
\(509\) −1.71266e6 −0.293006 −0.146503 0.989210i \(-0.546802\pi\)
−0.146503 + 0.989210i \(0.546802\pi\)
\(510\) 0 0
\(511\) 8.84116e6 1.49781
\(512\) 262144. 0.0441942
\(513\) 690640. 0.115867
\(514\) −151032. −0.0252151
\(515\) 0 0
\(516\) 284768. 0.0470833
\(517\) −2.07926e6 −0.342124
\(518\) 9.81724e6 1.60755
\(519\) −766254. −0.124869
\(520\) 0 0
\(521\) −789435. −0.127415 −0.0637077 0.997969i \(-0.520293\pi\)
−0.0637077 + 0.997969i \(0.520293\pi\)
\(522\) 1.99795e6 0.320929
\(523\) −627392. −0.100296 −0.0501481 0.998742i \(-0.515969\pi\)
−0.0501481 + 0.998742i \(0.515969\pi\)
\(524\) −1.57027e6 −0.249831
\(525\) 0 0
\(526\) 2.52502e6 0.397924
\(527\) 4.60881e6 0.722873
\(528\) 30976.0 0.00483549
\(529\) −3.27150e6 −0.508286
\(530\) 0 0
\(531\) 8.46734e6 1.30320
\(532\) 3.78214e6 0.579374
\(533\) −3.67037e6 −0.559618
\(534\) −501660. −0.0761301
\(535\) 0 0
\(536\) −1.62195e6 −0.243852
\(537\) −303399. −0.0454024
\(538\) −4.32137e6 −0.643673
\(539\) −1.30063e6 −0.192833
\(540\) 0 0
\(541\) 3.20895e6 0.471379 0.235689 0.971828i \(-0.424265\pi\)
0.235689 + 0.971828i \(0.424265\pi\)
\(542\) −3.26440e6 −0.477315
\(543\) 285181. 0.0415070
\(544\) 755712. 0.109486
\(545\) 0 0
\(546\) 459488. 0.0659618
\(547\) −3.42658e6 −0.489658 −0.244829 0.969566i \(-0.578732\pi\)
−0.244829 + 0.969566i \(0.578732\pi\)
\(548\) −6.40219e6 −0.910704
\(549\) 1.11175e7 1.57426
\(550\) 0 0
\(551\) −2.93914e6 −0.412421
\(552\) −113856. −0.0159041
\(553\) 1.28208e7 1.78280
\(554\) −6.75279e6 −0.934779
\(555\) 0 0
\(556\) 3.29226e6 0.451655
\(557\) −1.05198e7 −1.43672 −0.718358 0.695674i \(-0.755106\pi\)
−0.718358 + 0.695674i \(0.755106\pi\)
\(558\) −6.04516e6 −0.821906
\(559\) 1.23162e7 1.66705
\(560\) 0 0
\(561\) 89298.0 0.0119794
\(562\) −3.51617e6 −0.469601
\(563\) −5.47288e6 −0.727687 −0.363844 0.931460i \(-0.618536\pi\)
−0.363844 + 0.931460i \(0.618536\pi\)
\(564\) −274944. −0.0363954
\(565\) 0 0
\(566\) −6.16107e6 −0.808379
\(567\) 9.68129e6 1.26466
\(568\) 851904. 0.110795
\(569\) −1.17787e7 −1.52516 −0.762580 0.646893i \(-0.776068\pi\)
−0.762580 + 0.646893i \(0.776068\pi\)
\(570\) 0 0
\(571\) −8.35628e6 −1.07256 −0.536281 0.844039i \(-0.680171\pi\)
−0.536281 + 0.844039i \(0.680171\pi\)
\(572\) 1.33971e6 0.171207
\(573\) −767067. −0.0975993
\(574\) 3.52186e6 0.446161
\(575\) 0 0
\(576\) −991232. −0.124486
\(577\) 1.37758e7 1.72258 0.861288 0.508117i \(-0.169658\pi\)
0.861288 + 0.508117i \(0.169658\pi\)
\(578\) −3.50085e6 −0.435867
\(579\) 411668. 0.0510330
\(580\) 0 0
\(581\) −9.13232e6 −1.12238
\(582\) −355228. −0.0434710
\(583\) −3.71785e6 −0.453023
\(584\) 3.40864e6 0.413570
\(585\) 0 0
\(586\) −2.88336e6 −0.346860
\(587\) 1.27093e7 1.52239 0.761196 0.648522i \(-0.224612\pi\)
0.761196 + 0.648522i \(0.224612\pi\)
\(588\) −171984. −0.0205137
\(589\) 8.89288e6 1.05622
\(590\) 0 0
\(591\) −759258. −0.0894171
\(592\) 3.78496e6 0.443871
\(593\) −1.00825e6 −0.117742 −0.0588711 0.998266i \(-0.518750\pi\)
−0.0588711 + 0.998266i \(0.518750\pi\)
\(594\) −234740. −0.0272974
\(595\) 0 0
\(596\) 1.40362e6 0.161857
\(597\) 46600.0 0.00535119
\(598\) −4.92427e6 −0.563105
\(599\) 1.05100e7 1.19684 0.598421 0.801182i \(-0.295795\pi\)
0.598421 + 0.801182i \(0.295795\pi\)
\(600\) 0 0
\(601\) −199390. −0.0225173 −0.0112587 0.999937i \(-0.503584\pi\)
−0.0112587 + 0.999937i \(0.503584\pi\)
\(602\) −1.18179e7 −1.32907
\(603\) 6.13301e6 0.686879
\(604\) −6.92445e6 −0.772312
\(605\) 0 0
\(606\) −5928.00 −0.000655732 0
\(607\) −16190.0 −0.00178351 −0.000891754 1.00000i \(-0.500284\pi\)
−0.000891754 1.00000i \(0.500284\pi\)
\(608\) 1.45818e6 0.159975
\(609\) 342624. 0.0374347
\(610\) 0 0
\(611\) −1.18913e7 −1.28863
\(612\) −2.85754e6 −0.308399
\(613\) 1.15253e7 1.23880 0.619402 0.785074i \(-0.287375\pi\)
0.619402 + 0.785074i \(0.287375\pi\)
\(614\) 4.15619e6 0.444913
\(615\) 0 0
\(616\) −1.28550e6 −0.136497
\(617\) −1.69974e7 −1.79750 −0.898751 0.438459i \(-0.855524\pi\)
−0.898751 + 0.438459i \(0.855524\pi\)
\(618\) −469984. −0.0495008
\(619\) −1.84875e7 −1.93933 −0.969663 0.244445i \(-0.921394\pi\)
−0.969663 + 0.244445i \(0.921394\pi\)
\(620\) 0 0
\(621\) 862815. 0.0897819
\(622\) −5.00539e6 −0.518755
\(623\) 2.08189e7 2.14901
\(624\) 177152. 0.0182131
\(625\) 0 0
\(626\) 5.77344e6 0.588842
\(627\) 172304. 0.0175036
\(628\) 545200. 0.0551641
\(629\) 1.09113e7 1.09964
\(630\) 0 0
\(631\) −4.54281e6 −0.454204 −0.227102 0.973871i \(-0.572925\pi\)
−0.227102 + 0.973871i \(0.572925\pi\)
\(632\) 4.94298e6 0.492261
\(633\) 932428. 0.0924924
\(634\) 8.04832e6 0.795210
\(635\) 0 0
\(636\) −491616. −0.0481929
\(637\) −7.43831e6 −0.726316
\(638\) 998976. 0.0971635
\(639\) −3.22126e6 −0.312086
\(640\) 0 0
\(641\) 1.84286e7 1.77153 0.885764 0.464136i \(-0.153635\pi\)
0.885764 + 0.464136i \(0.153635\pi\)
\(642\) −317448. −0.0303973
\(643\) −9.66604e6 −0.921979 −0.460989 0.887406i \(-0.652505\pi\)
−0.460989 + 0.887406i \(0.652505\pi\)
\(644\) 4.72502e6 0.448941
\(645\) 0 0
\(646\) 4.20365e6 0.396319
\(647\) 4.51430e6 0.423965 0.211982 0.977273i \(-0.432008\pi\)
0.211982 + 0.977273i \(0.432008\pi\)
\(648\) 3.73254e6 0.349195
\(649\) 4.23367e6 0.394553
\(650\) 0 0
\(651\) −1.03667e6 −0.0958712
\(652\) −720320. −0.0663600
\(653\) 5.37235e6 0.493039 0.246519 0.969138i \(-0.420713\pi\)
0.246519 + 0.969138i \(0.420713\pi\)
\(654\) −351368. −0.0321231
\(655\) 0 0
\(656\) 1.35782e6 0.123192
\(657\) −1.28889e7 −1.16494
\(658\) 1.14102e7 1.02737
\(659\) 9.87956e6 0.886184 0.443092 0.896476i \(-0.353881\pi\)
0.443092 + 0.896476i \(0.353881\pi\)
\(660\) 0 0
\(661\) 1.08052e7 0.961898 0.480949 0.876748i \(-0.340292\pi\)
0.480949 + 0.876748i \(0.340292\pi\)
\(662\) 8.06935e6 0.715638
\(663\) 510696. 0.0451210
\(664\) −3.52090e6 −0.309908
\(665\) 0 0
\(666\) −1.43119e7 −1.25029
\(667\) −3.67186e6 −0.319574
\(668\) −7.72090e6 −0.669463
\(669\) 169745. 0.0146633
\(670\) 0 0
\(671\) 5.55874e6 0.476618
\(672\) −169984. −0.0145206
\(673\) −1.13275e7 −0.964042 −0.482021 0.876160i \(-0.660097\pi\)
−0.482021 + 0.876160i \(0.660097\pi\)
\(674\) −1.05649e6 −0.0895808
\(675\) 0 0
\(676\) 1.72114e6 0.144860
\(677\) 1.20595e7 1.01125 0.505624 0.862754i \(-0.331262\pi\)
0.505624 + 0.862754i \(0.331262\pi\)
\(678\) −188988. −0.0157892
\(679\) 1.47420e7 1.22710
\(680\) 0 0
\(681\) 198078. 0.0163670
\(682\) −3.02258e6 −0.248838
\(683\) 5.14166e6 0.421747 0.210873 0.977513i \(-0.432369\pi\)
0.210873 + 0.977513i \(0.432369\pi\)
\(684\) −5.51373e6 −0.450614
\(685\) 0 0
\(686\) −4.02251e6 −0.326353
\(687\) 849997. 0.0687109
\(688\) −4.55629e6 −0.366978
\(689\) −2.12624e7 −1.70633
\(690\) 0 0
\(691\) 1.31243e7 1.04563 0.522817 0.852445i \(-0.324881\pi\)
0.522817 + 0.852445i \(0.324881\pi\)
\(692\) 1.22601e7 0.973257
\(693\) 4.86081e6 0.384482
\(694\) 6.84197e6 0.539240
\(695\) 0 0
\(696\) 132096. 0.0103363
\(697\) 3.91435e6 0.305195
\(698\) 875288. 0.0680005
\(699\) −401832. −0.0311065
\(700\) 0 0
\(701\) 3.65956e6 0.281277 0.140638 0.990061i \(-0.455084\pi\)
0.140638 + 0.990061i \(0.455084\pi\)
\(702\) −1.34248e6 −0.102817
\(703\) 2.10538e7 1.60673
\(704\) −495616. −0.0376889
\(705\) 0 0
\(706\) −1.47277e7 −1.11204
\(707\) 246012. 0.0185101
\(708\) 559824. 0.0419728
\(709\) 1.02252e7 0.763935 0.381968 0.924176i \(-0.375247\pi\)
0.381968 + 0.924176i \(0.375247\pi\)
\(710\) 0 0
\(711\) −1.86906e7 −1.38660
\(712\) 8.02656e6 0.593375
\(713\) 1.11099e7 0.818436
\(714\) −490032. −0.0359732
\(715\) 0 0
\(716\) 4.85438e6 0.353876
\(717\) −855174. −0.0621236
\(718\) 7.54114e6 0.545916
\(719\) 2.41683e7 1.74351 0.871753 0.489945i \(-0.162983\pi\)
0.871753 + 0.489945i \(0.162983\pi\)
\(720\) 0 0
\(721\) 1.95043e7 1.39731
\(722\) −1.79329e6 −0.128029
\(723\) −1.12546e6 −0.0800730
\(724\) −4.56290e6 −0.323515
\(725\) 0 0
\(726\) −58564.0 −0.00412372
\(727\) −1.68246e7 −1.18062 −0.590310 0.807177i \(-0.700994\pi\)
−0.590310 + 0.807177i \(0.700994\pi\)
\(728\) −7.35181e6 −0.514121
\(729\) −1.39958e7 −0.975393
\(730\) 0 0
\(731\) −1.31349e7 −0.909147
\(732\) 735040. 0.0507030
\(733\) 5.04168e6 0.346590 0.173295 0.984870i \(-0.444559\pi\)
0.173295 + 0.984870i \(0.444559\pi\)
\(734\) 1.24666e7 0.854101
\(735\) 0 0
\(736\) 1.82170e6 0.123960
\(737\) 3.06650e6 0.207958
\(738\) −5.13427e6 −0.347007
\(739\) −6.26375e6 −0.421913 −0.210957 0.977495i \(-0.567658\pi\)
−0.210957 + 0.977495i \(0.567658\pi\)
\(740\) 0 0
\(741\) 985408. 0.0659281
\(742\) 2.04021e7 1.36039
\(743\) −3.63976e6 −0.241880 −0.120940 0.992660i \(-0.538591\pi\)
−0.120940 + 0.992660i \(0.538591\pi\)
\(744\) −399680. −0.0264716
\(745\) 0 0
\(746\) −5.57766e6 −0.366948
\(747\) 1.33134e7 0.872945
\(748\) −1.42877e6 −0.0933701
\(749\) 1.31741e7 0.858057
\(750\) 0 0
\(751\) −1.87370e7 −1.21227 −0.606135 0.795362i \(-0.707281\pi\)
−0.606135 + 0.795362i \(0.707281\pi\)
\(752\) 4.39910e6 0.283674
\(753\) 1.19751e6 0.0769649
\(754\) 5.71315e6 0.365972
\(755\) 0 0
\(756\) 1.28816e6 0.0819720
\(757\) −489242. −0.0310302 −0.0155151 0.999880i \(-0.504939\pi\)
−0.0155151 + 0.999880i \(0.504939\pi\)
\(758\) −1.70414e7 −1.07729
\(759\) 215259. 0.0135630
\(760\) 0 0
\(761\) 1.46969e7 0.919952 0.459976 0.887931i \(-0.347858\pi\)
0.459976 + 0.887931i \(0.347858\pi\)
\(762\) −957664. −0.0597483
\(763\) 1.45818e7 0.906774
\(764\) 1.22731e7 0.760711
\(765\) 0 0
\(766\) −807060. −0.0496974
\(767\) 2.42124e7 1.48610
\(768\) −65536.0 −0.00400938
\(769\) 2.42072e7 1.47615 0.738073 0.674721i \(-0.235736\pi\)
0.738073 + 0.674721i \(0.235736\pi\)
\(770\) 0 0
\(771\) 37758.0 0.00228756
\(772\) −6.58669e6 −0.397763
\(773\) −1.35260e7 −0.814181 −0.407091 0.913388i \(-0.633457\pi\)
−0.407091 + 0.913388i \(0.633457\pi\)
\(774\) 1.72285e7 1.03370
\(775\) 0 0
\(776\) 5.68365e6 0.338823
\(777\) −2.45431e6 −0.145840
\(778\) 7.79528e6 0.461725
\(779\) 7.55290e6 0.445933
\(780\) 0 0
\(781\) −1.61063e6 −0.0944862
\(782\) 5.25161e6 0.307097
\(783\) −1.00104e6 −0.0583508
\(784\) 2.75174e6 0.159889
\(785\) 0 0
\(786\) 392568. 0.0226651
\(787\) −1.42094e7 −0.817786 −0.408893 0.912582i \(-0.634085\pi\)
−0.408893 + 0.912582i \(0.634085\pi\)
\(788\) 1.21481e7 0.696937
\(789\) −631254. −0.0361004
\(790\) 0 0
\(791\) 7.84300e6 0.445698
\(792\) 1.87405e6 0.106162
\(793\) 3.17905e7 1.79521
\(794\) 5.87303e6 0.330606
\(795\) 0 0
\(796\) −745600. −0.0417084
\(797\) 7.93333e6 0.442395 0.221197 0.975229i \(-0.429003\pi\)
0.221197 + 0.975229i \(0.429003\pi\)
\(798\) −945536. −0.0525619
\(799\) 1.26818e7 0.702771
\(800\) 0 0
\(801\) −3.03504e7 −1.67141
\(802\) 8.98471e6 0.493251
\(803\) −6.44446e6 −0.352694
\(804\) 405488. 0.0221227
\(805\) 0 0
\(806\) −1.72862e7 −0.937262
\(807\) 1.08034e6 0.0583952
\(808\) 94848.0 0.00511093
\(809\) −1.04685e7 −0.562359 −0.281180 0.959655i \(-0.590726\pi\)
−0.281180 + 0.959655i \(0.590726\pi\)
\(810\) 0 0
\(811\) 1.19147e7 0.636110 0.318055 0.948072i \(-0.396970\pi\)
0.318055 + 0.948072i \(0.396970\pi\)
\(812\) −5.48198e6 −0.291775
\(813\) 816100. 0.0433029
\(814\) −7.15594e6 −0.378535
\(815\) 0 0
\(816\) −188928. −0.00993278
\(817\) −2.53444e7 −1.32839
\(818\) −1.44595e7 −0.755562
\(819\) 2.77990e7 1.44817
\(820\) 0 0
\(821\) −1.86112e6 −0.0963645 −0.0481822 0.998839i \(-0.515343\pi\)
−0.0481822 + 0.998839i \(0.515343\pi\)
\(822\) 1.60055e6 0.0826208
\(823\) −2.30153e7 −1.18445 −0.592225 0.805773i \(-0.701750\pi\)
−0.592225 + 0.805773i \(0.701750\pi\)
\(824\) 7.51974e6 0.385820
\(825\) 0 0
\(826\) −2.32327e7 −1.18481
\(827\) 1.68351e7 0.855959 0.427980 0.903788i \(-0.359225\pi\)
0.427980 + 0.903788i \(0.359225\pi\)
\(828\) −6.88829e6 −0.349169
\(829\) −2.35299e7 −1.18914 −0.594570 0.804044i \(-0.702678\pi\)
−0.594570 + 0.804044i \(0.702678\pi\)
\(830\) 0 0
\(831\) 1.68820e6 0.0848049
\(832\) −2.83443e6 −0.141957
\(833\) 7.93276e6 0.396106
\(834\) −823064. −0.0409750
\(835\) 0 0
\(836\) −2.75686e6 −0.136427
\(837\) 3.02882e6 0.149438
\(838\) −1.52496e7 −0.750148
\(839\) 2.91549e7 1.42990 0.714952 0.699173i \(-0.246448\pi\)
0.714952 + 0.699173i \(0.246448\pi\)
\(840\) 0 0
\(841\) −1.62511e7 −0.792303
\(842\) 7.89385e6 0.383715
\(843\) 879042. 0.0426030
\(844\) −1.49188e7 −0.720907
\(845\) 0 0
\(846\) −1.66341e7 −0.799050
\(847\) 2.43041e6 0.116405
\(848\) 7.86586e6 0.375627
\(849\) 1.54027e6 0.0733377
\(850\) 0 0
\(851\) 2.63025e7 1.24501
\(852\) −212976. −0.0100515
\(853\) 9.49052e6 0.446599 0.223299 0.974750i \(-0.428317\pi\)
0.223299 + 0.974750i \(0.428317\pi\)
\(854\) −3.05042e7 −1.43125
\(855\) 0 0
\(856\) 5.07917e6 0.236924
\(857\) 1.81553e6 0.0844405 0.0422203 0.999108i \(-0.486557\pi\)
0.0422203 + 0.999108i \(0.486557\pi\)
\(858\) −334928. −0.0155322
\(859\) −1.07812e7 −0.498522 −0.249261 0.968436i \(-0.580188\pi\)
−0.249261 + 0.968436i \(0.580188\pi\)
\(860\) 0 0
\(861\) −880464. −0.0404766
\(862\) −8.33436e6 −0.382036
\(863\) 2.83355e7 1.29510 0.647550 0.762023i \(-0.275794\pi\)
0.647550 + 0.762023i \(0.275794\pi\)
\(864\) 496640. 0.0226338
\(865\) 0 0
\(866\) 290764. 0.0131749
\(867\) 875213. 0.0395427
\(868\) 1.65867e7 0.747242
\(869\) −9.34531e6 −0.419802
\(870\) 0 0
\(871\) 1.75374e7 0.783283
\(872\) 5.62189e6 0.250375
\(873\) −2.14913e7 −0.954392
\(874\) 1.01332e7 0.448712
\(875\) 0 0
\(876\) −852160. −0.0375198
\(877\) 2.68919e7 1.18065 0.590326 0.807165i \(-0.298999\pi\)
0.590326 + 0.807165i \(0.298999\pi\)
\(878\) 2.37757e6 0.104087
\(879\) 720840. 0.0314678
\(880\) 0 0
\(881\) −1.92132e7 −0.833989 −0.416995 0.908909i \(-0.636917\pi\)
−0.416995 + 0.908909i \(0.636917\pi\)
\(882\) −1.04050e7 −0.450373
\(883\) −1.15931e7 −0.500378 −0.250189 0.968197i \(-0.580493\pi\)
−0.250189 + 0.968197i \(0.580493\pi\)
\(884\) −8.17114e6 −0.351683
\(885\) 0 0
\(886\) −1.82660e7 −0.781735
\(887\) −1.31857e7 −0.562721 −0.281361 0.959602i \(-0.590786\pi\)
−0.281361 + 0.959602i \(0.590786\pi\)
\(888\) −946240. −0.0402688
\(889\) 3.97431e7 1.68658
\(890\) 0 0
\(891\) −7.05684e6 −0.297794
\(892\) −2.71592e6 −0.114289
\(893\) 2.44700e7 1.02685
\(894\) −350904. −0.0146840
\(895\) 0 0
\(896\) 2.71974e6 0.113177
\(897\) 1.23107e6 0.0510859
\(898\) −2.17753e7 −0.901100
\(899\) −1.28897e7 −0.531916
\(900\) 0 0
\(901\) 2.26758e7 0.930573
\(902\) −2.56714e6 −0.105059
\(903\) 2.95447e6 0.120576
\(904\) 3.02381e6 0.123065
\(905\) 0 0
\(906\) 1.73111e6 0.0700656
\(907\) −2.98195e6 −0.120360 −0.0601800 0.998188i \(-0.519167\pi\)
−0.0601800 + 0.998188i \(0.519167\pi\)
\(908\) −3.16925e6 −0.127568
\(909\) −358644. −0.0143964
\(910\) 0 0
\(911\) 2.96579e7 1.18398 0.591989 0.805946i \(-0.298343\pi\)
0.591989 + 0.805946i \(0.298343\pi\)
\(912\) −364544. −0.0145132
\(913\) 6.65669e6 0.264291
\(914\) −2.68125e7 −1.06163
\(915\) 0 0
\(916\) −1.36000e7 −0.535548
\(917\) −1.62916e7 −0.639793
\(918\) 1.43172e6 0.0560727
\(919\) 3.18057e7 1.24227 0.621135 0.783704i \(-0.286672\pi\)
0.621135 + 0.783704i \(0.286672\pi\)
\(920\) 0 0
\(921\) −1.03905e6 −0.0403633
\(922\) −5.03976e6 −0.195246
\(923\) −9.21121e6 −0.355887
\(924\) 321376. 0.0123832
\(925\) 0 0
\(926\) 2.00923e7 0.770021
\(927\) −2.84340e7 −1.08677
\(928\) −2.11354e6 −0.0805638
\(929\) −2.33444e7 −0.887451 −0.443725 0.896163i \(-0.646343\pi\)
−0.443725 + 0.896163i \(0.646343\pi\)
\(930\) 0 0
\(931\) 1.53066e7 0.578767
\(932\) 6.42931e6 0.242451
\(933\) 1.25135e6 0.0470624
\(934\) 9.42642e6 0.353573
\(935\) 0 0
\(936\) 1.07177e7 0.399864
\(937\) −2.07372e7 −0.771616 −0.385808 0.922579i \(-0.626077\pi\)
−0.385808 + 0.922579i \(0.626077\pi\)
\(938\) −1.68278e7 −0.624481
\(939\) −1.44336e6 −0.0534209
\(940\) 0 0
\(941\) 2.69193e7 0.991036 0.495518 0.868598i \(-0.334978\pi\)
0.495518 + 0.868598i \(0.334978\pi\)
\(942\) −136300. −0.00500459
\(943\) 9.43582e6 0.345542
\(944\) −8.95718e6 −0.327146
\(945\) 0 0
\(946\) 8.61423e6 0.312960
\(947\) −1.01896e7 −0.369216 −0.184608 0.982812i \(-0.559102\pi\)
−0.184608 + 0.982812i \(0.559102\pi\)
\(948\) −1.23574e6 −0.0446589
\(949\) −3.68559e7 −1.32844
\(950\) 0 0
\(951\) −2.01208e6 −0.0721429
\(952\) 7.84051e6 0.280383
\(953\) −1.03924e7 −0.370665 −0.185333 0.982676i \(-0.559336\pi\)
−0.185333 + 0.982676i \(0.559336\pi\)
\(954\) −2.97428e7 −1.05806
\(955\) 0 0
\(956\) 1.36828e7 0.484206
\(957\) −249744. −0.00881486
\(958\) −2.68903e7 −0.946634
\(959\) −6.64227e7 −2.33222
\(960\) 0 0
\(961\) 1.03709e7 0.362249
\(962\) −4.09249e7 −1.42577
\(963\) −1.92056e7 −0.667363
\(964\) 1.80074e7 0.624107
\(965\) 0 0
\(966\) −1.18126e6 −0.0407288
\(967\) 8.18877e6 0.281613 0.140806 0.990037i \(-0.455030\pi\)
0.140806 + 0.990037i \(0.455030\pi\)
\(968\) 937024. 0.0321412
\(969\) −1.05091e6 −0.0359548
\(970\) 0 0
\(971\) −1.73274e7 −0.589775 −0.294887 0.955532i \(-0.595282\pi\)
−0.294887 + 0.955532i \(0.595282\pi\)
\(972\) −2.81882e6 −0.0956976
\(973\) 3.41572e7 1.15664
\(974\) −7.84005e6 −0.264802
\(975\) 0 0
\(976\) −1.17606e7 −0.395190
\(977\) 438963. 0.0147127 0.00735634 0.999973i \(-0.497658\pi\)
0.00735634 + 0.999973i \(0.497658\pi\)
\(978\) 180080. 0.00602030
\(979\) −1.51752e7 −0.506032
\(980\) 0 0
\(981\) −2.12578e7 −0.705253
\(982\) −2.31850e6 −0.0767234
\(983\) 2.79124e7 0.921326 0.460663 0.887575i \(-0.347612\pi\)
0.460663 + 0.887575i \(0.347612\pi\)
\(984\) −339456. −0.0111762
\(985\) 0 0
\(986\) −6.09293e6 −0.199588
\(987\) −2.85254e6 −0.0932051
\(988\) −1.57665e7 −0.513859
\(989\) −3.16626e7 −1.02933
\(990\) 0 0
\(991\) −4.26846e7 −1.38066 −0.690331 0.723494i \(-0.742535\pi\)
−0.690331 + 0.723494i \(0.742535\pi\)
\(992\) 6.39488e6 0.206326
\(993\) −2.01734e6 −0.0649240
\(994\) 8.83850e6 0.283735
\(995\) 0 0
\(996\) 880224. 0.0281154
\(997\) 2.21044e7 0.704273 0.352137 0.935949i \(-0.385455\pi\)
0.352137 + 0.935949i \(0.385455\pi\)
\(998\) 5.47621e6 0.174042
\(999\) 7.17072e6 0.227326
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 550.6.a.f.1.1 1
5.2 odd 4 550.6.b.f.199.2 2
5.3 odd 4 550.6.b.f.199.1 2
5.4 even 2 22.6.a.b.1.1 1
15.14 odd 2 198.6.a.i.1.1 1
20.19 odd 2 176.6.a.b.1.1 1
35.34 odd 2 1078.6.a.a.1.1 1
40.19 odd 2 704.6.a.f.1.1 1
40.29 even 2 704.6.a.e.1.1 1
55.54 odd 2 242.6.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
22.6.a.b.1.1 1 5.4 even 2
176.6.a.b.1.1 1 20.19 odd 2
198.6.a.i.1.1 1 15.14 odd 2
242.6.a.d.1.1 1 55.54 odd 2
550.6.a.f.1.1 1 1.1 even 1 trivial
550.6.b.f.199.1 2 5.3 odd 4
550.6.b.f.199.2 2 5.2 odd 4
704.6.a.e.1.1 1 40.29 even 2
704.6.a.f.1.1 1 40.19 odd 2
1078.6.a.a.1.1 1 35.34 odd 2