Properties

Label 550.6.a.c
Level $550$
Weight $6$
Character orbit 550.a
Self dual yes
Analytic conductor $88.211$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [550,6,Mod(1,550)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(550, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("550.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 550 = 2 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 550.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(88.2111008971\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 22)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 4 q^{2} + 29 q^{3} + 16 q^{4} - 116 q^{6} + 230 q^{7} - 64 q^{8} + 598 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 4 q^{2} + 29 q^{3} + 16 q^{4} - 116 q^{6} + 230 q^{7} - 64 q^{8} + 598 q^{9} + 121 q^{11} + 464 q^{12} - 112 q^{13} - 920 q^{14} + 256 q^{16} + 1142 q^{17} - 2392 q^{18} - 612 q^{19} + 6670 q^{21} - 484 q^{22} + 1941 q^{23} - 1856 q^{24} + 448 q^{26} + 10295 q^{27} + 3680 q^{28} + 1192 q^{29} - 1037 q^{31} - 1024 q^{32} + 3509 q^{33} - 4568 q^{34} + 9568 q^{36} - 8083 q^{37} + 2448 q^{38} - 3248 q^{39} - 10444 q^{41} - 26680 q^{42} - 58 q^{43} + 1936 q^{44} - 7764 q^{46} - 8656 q^{47} + 7424 q^{48} + 36093 q^{49} + 33118 q^{51} - 1792 q^{52} + 20318 q^{53} - 41180 q^{54} - 14720 q^{56} - 17748 q^{57} - 4768 q^{58} - 21351 q^{59} + 47044 q^{61} + 4148 q^{62} + 137540 q^{63} + 4096 q^{64} - 14036 q^{66} - 48093 q^{67} + 18272 q^{68} + 56289 q^{69} - 24967 q^{71} - 38272 q^{72} + 42288 q^{73} + 32332 q^{74} - 9792 q^{76} + 27830 q^{77} + 12992 q^{78} - 72410 q^{79} + 153241 q^{81} + 41776 q^{82} + 15806 q^{83} + 106720 q^{84} + 232 q^{86} + 34568 q^{87} - 7744 q^{88} - 114761 q^{89} - 25760 q^{91} + 31056 q^{92} - 30073 q^{93} + 34624 q^{94} - 29696 q^{96} + 5159 q^{97} - 144372 q^{98} + 72358 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−4.00000 29.0000 16.0000 0 −116.000 230.000 −64.0000 598.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(5\) \(1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 550.6.a.c 1
5.b even 2 1 22.6.a.c 1
5.c odd 4 2 550.6.b.a 2
15.d odd 2 1 198.6.a.b 1
20.d odd 2 1 176.6.a.e 1
35.c odd 2 1 1078.6.a.f 1
40.e odd 2 1 704.6.a.a 1
40.f even 2 1 704.6.a.j 1
55.d odd 2 1 242.6.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
22.6.a.c 1 5.b even 2 1
176.6.a.e 1 20.d odd 2 1
198.6.a.b 1 15.d odd 2 1
242.6.a.a 1 55.d odd 2 1
550.6.a.c 1 1.a even 1 1 trivial
550.6.b.a 2 5.c odd 4 2
704.6.a.a 1 40.e odd 2 1
704.6.a.j 1 40.f even 2 1
1078.6.a.f 1 35.c odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 29 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(550))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 4 \) Copy content Toggle raw display
$3$ \( T - 29 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T - 230 \) Copy content Toggle raw display
$11$ \( T - 121 \) Copy content Toggle raw display
$13$ \( T + 112 \) Copy content Toggle raw display
$17$ \( T - 1142 \) Copy content Toggle raw display
$19$ \( T + 612 \) Copy content Toggle raw display
$23$ \( T - 1941 \) Copy content Toggle raw display
$29$ \( T - 1192 \) Copy content Toggle raw display
$31$ \( T + 1037 \) Copy content Toggle raw display
$37$ \( T + 8083 \) Copy content Toggle raw display
$41$ \( T + 10444 \) Copy content Toggle raw display
$43$ \( T + 58 \) Copy content Toggle raw display
$47$ \( T + 8656 \) Copy content Toggle raw display
$53$ \( T - 20318 \) Copy content Toggle raw display
$59$ \( T + 21351 \) Copy content Toggle raw display
$61$ \( T - 47044 \) Copy content Toggle raw display
$67$ \( T + 48093 \) Copy content Toggle raw display
$71$ \( T + 24967 \) Copy content Toggle raw display
$73$ \( T - 42288 \) Copy content Toggle raw display
$79$ \( T + 72410 \) Copy content Toggle raw display
$83$ \( T - 15806 \) Copy content Toggle raw display
$89$ \( T + 114761 \) Copy content Toggle raw display
$97$ \( T - 5159 \) Copy content Toggle raw display
show more
show less