Properties

Label 550.2.h.g.201.1
Level $550$
Weight $2$
Character 550.201
Analytic conductor $4.392$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [550,2,Mod(201,550)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(550, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("550.201"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 550 = 2 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 550.h (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,1,2,-1,0,3,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.39177211117\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 201.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 550.201
Dual form 550.2.h.g.301.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.809017 - 0.587785i) q^{2} +(0.500000 + 1.53884i) q^{3} +(0.309017 - 0.951057i) q^{4} +(1.30902 + 0.951057i) q^{6} +(0.690983 - 2.12663i) q^{7} +(-0.309017 - 0.951057i) q^{8} +(0.309017 - 0.224514i) q^{9} +(3.23607 + 0.726543i) q^{11} +1.61803 q^{12} +(0.190983 - 0.138757i) q^{13} +(-0.690983 - 2.12663i) q^{14} +(-0.809017 - 0.587785i) q^{16} +(-0.309017 - 0.224514i) q^{17} +(0.118034 - 0.363271i) q^{18} +(0.809017 + 2.48990i) q^{19} +3.61803 q^{21} +(3.04508 - 1.31433i) q^{22} -3.85410 q^{23} +(1.30902 - 0.951057i) q^{24} +(0.0729490 - 0.224514i) q^{26} +(4.42705 + 3.21644i) q^{27} +(-1.80902 - 1.31433i) q^{28} +(-0.163119 + 0.502029i) q^{29} +(8.28115 - 6.01661i) q^{31} -1.00000 q^{32} +(0.500000 + 5.34307i) q^{33} -0.381966 q^{34} +(-0.118034 - 0.363271i) q^{36} +(-2.73607 + 8.42075i) q^{37} +(2.11803 + 1.53884i) q^{38} +(0.309017 + 0.224514i) q^{39} +(-1.14590 - 3.52671i) q^{41} +(2.92705 - 2.12663i) q^{42} -9.47214 q^{43} +(1.69098 - 2.85317i) q^{44} +(-3.11803 + 2.26538i) q^{46} +(0.0729490 + 0.224514i) q^{47} +(0.500000 - 1.53884i) q^{48} +(1.61803 + 1.17557i) q^{49} +(0.190983 - 0.587785i) q^{51} +(-0.0729490 - 0.224514i) q^{52} +(-1.11803 + 0.812299i) q^{53} +5.47214 q^{54} -2.23607 q^{56} +(-3.42705 + 2.48990i) q^{57} +(0.163119 + 0.502029i) q^{58} +(-3.54508 + 10.9106i) q^{59} +(-1.80902 - 1.31433i) q^{61} +(3.16312 - 9.73508i) q^{62} +(-0.263932 - 0.812299i) q^{63} +(-0.809017 + 0.587785i) q^{64} +(3.54508 + 4.02874i) q^{66} -9.32624 q^{67} +(-0.309017 + 0.224514i) q^{68} +(-1.92705 - 5.93085i) q^{69} +(-7.92705 - 5.75934i) q^{71} +(-0.309017 - 0.224514i) q^{72} +(2.51722 - 7.74721i) q^{73} +(2.73607 + 8.42075i) q^{74} +2.61803 q^{76} +(3.78115 - 6.37988i) q^{77} +0.381966 q^{78} +(9.66312 - 7.02067i) q^{79} +(-2.38197 + 7.33094i) q^{81} +(-3.00000 - 2.17963i) q^{82} +(-7.28115 - 5.29007i) q^{83} +(1.11803 - 3.44095i) q^{84} +(-7.66312 + 5.56758i) q^{86} -0.854102 q^{87} +(-0.309017 - 3.30220i) q^{88} -13.1803 q^{89} +(-0.163119 - 0.502029i) q^{91} +(-1.19098 + 3.66547i) q^{92} +(13.3992 + 9.73508i) q^{93} +(0.190983 + 0.138757i) q^{94} +(-0.500000 - 1.53884i) q^{96} +(-9.70820 + 7.05342i) q^{97} +2.00000 q^{98} +(1.16312 - 0.502029i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} + 2 q^{3} - q^{4} + 3 q^{6} + 5 q^{7} + q^{8} - q^{9} + 4 q^{11} + 2 q^{12} + 3 q^{13} - 5 q^{14} - q^{16} + q^{17} - 4 q^{18} + q^{19} + 10 q^{21} + q^{22} - 2 q^{23} + 3 q^{24} + 7 q^{26}+ \cdots - 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/550\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.809017 0.587785i 0.572061 0.415627i
\(3\) 0.500000 + 1.53884i 0.288675 + 0.888451i 0.985273 + 0.170989i \(0.0546962\pi\)
−0.696598 + 0.717462i \(0.745304\pi\)
\(4\) 0.309017 0.951057i 0.154508 0.475528i
\(5\) 0 0
\(6\) 1.30902 + 0.951057i 0.534404 + 0.388267i
\(7\) 0.690983 2.12663i 0.261167 0.803789i −0.731385 0.681965i \(-0.761126\pi\)
0.992552 0.121824i \(-0.0388744\pi\)
\(8\) −0.309017 0.951057i −0.109254 0.336249i
\(9\) 0.309017 0.224514i 0.103006 0.0748380i
\(10\) 0 0
\(11\) 3.23607 + 0.726543i 0.975711 + 0.219061i
\(12\) 1.61803 0.467086
\(13\) 0.190983 0.138757i 0.0529692 0.0384843i −0.560986 0.827826i \(-0.689578\pi\)
0.613955 + 0.789341i \(0.289578\pi\)
\(14\) −0.690983 2.12663i −0.184673 0.568365i
\(15\) 0 0
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) −0.309017 0.224514i −0.0749476 0.0544526i 0.549681 0.835375i \(-0.314749\pi\)
−0.624628 + 0.780922i \(0.714749\pi\)
\(18\) 0.118034 0.363271i 0.0278209 0.0856239i
\(19\) 0.809017 + 2.48990i 0.185601 + 0.571222i 0.999958 0.00914245i \(-0.00291017\pi\)
−0.814357 + 0.580364i \(0.802910\pi\)
\(20\) 0 0
\(21\) 3.61803 0.789520
\(22\) 3.04508 1.31433i 0.649214 0.280216i
\(23\) −3.85410 −0.803636 −0.401818 0.915720i \(-0.631622\pi\)
−0.401818 + 0.915720i \(0.631622\pi\)
\(24\) 1.30902 0.951057i 0.267202 0.194134i
\(25\) 0 0
\(26\) 0.0729490 0.224514i 0.0143065 0.0440308i
\(27\) 4.42705 + 3.21644i 0.851986 + 0.619004i
\(28\) −1.80902 1.31433i −0.341872 0.248385i
\(29\) −0.163119 + 0.502029i −0.0302904 + 0.0932244i −0.965059 0.262033i \(-0.915607\pi\)
0.934768 + 0.355258i \(0.115607\pi\)
\(30\) 0 0
\(31\) 8.28115 6.01661i 1.48734 1.08062i 0.512241 0.858842i \(-0.328816\pi\)
0.975098 0.221773i \(-0.0711844\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0.500000 + 5.34307i 0.0870388 + 0.930109i
\(34\) −0.381966 −0.0655066
\(35\) 0 0
\(36\) −0.118034 0.363271i −0.0196723 0.0605452i
\(37\) −2.73607 + 8.42075i −0.449807 + 1.38436i 0.427318 + 0.904101i \(0.359458\pi\)
−0.877125 + 0.480262i \(0.840542\pi\)
\(38\) 2.11803 + 1.53884i 0.343590 + 0.249633i
\(39\) 0.309017 + 0.224514i 0.0494823 + 0.0359510i
\(40\) 0 0
\(41\) −1.14590 3.52671i −0.178959 0.550780i 0.820833 0.571168i \(-0.193510\pi\)
−0.999792 + 0.0203886i \(0.993510\pi\)
\(42\) 2.92705 2.12663i 0.451654 0.328146i
\(43\) −9.47214 −1.44449 −0.722244 0.691639i \(-0.756889\pi\)
−0.722244 + 0.691639i \(0.756889\pi\)
\(44\) 1.69098 2.85317i 0.254925 0.430131i
\(45\) 0 0
\(46\) −3.11803 + 2.26538i −0.459729 + 0.334013i
\(47\) 0.0729490 + 0.224514i 0.0106407 + 0.0327487i 0.956236 0.292597i \(-0.0945194\pi\)
−0.945595 + 0.325346i \(0.894519\pi\)
\(48\) 0.500000 1.53884i 0.0721688 0.222113i
\(49\) 1.61803 + 1.17557i 0.231148 + 0.167939i
\(50\) 0 0
\(51\) 0.190983 0.587785i 0.0267430 0.0823064i
\(52\) −0.0729490 0.224514i −0.0101162 0.0311345i
\(53\) −1.11803 + 0.812299i −0.153574 + 0.111578i −0.661919 0.749576i \(-0.730258\pi\)
0.508345 + 0.861154i \(0.330258\pi\)
\(54\) 5.47214 0.744663
\(55\) 0 0
\(56\) −2.23607 −0.298807
\(57\) −3.42705 + 2.48990i −0.453924 + 0.329795i
\(58\) 0.163119 + 0.502029i 0.0214186 + 0.0659196i
\(59\) −3.54508 + 10.9106i −0.461531 + 1.42045i 0.401763 + 0.915744i \(0.368398\pi\)
−0.863294 + 0.504702i \(0.831602\pi\)
\(60\) 0 0
\(61\) −1.80902 1.31433i −0.231621 0.168282i 0.465921 0.884826i \(-0.345723\pi\)
−0.697542 + 0.716544i \(0.745723\pi\)
\(62\) 3.16312 9.73508i 0.401717 1.23636i
\(63\) −0.263932 0.812299i −0.0332523 0.102340i
\(64\) −0.809017 + 0.587785i −0.101127 + 0.0734732i
\(65\) 0 0
\(66\) 3.54508 + 4.02874i 0.436370 + 0.495904i
\(67\) −9.32624 −1.13938 −0.569691 0.821859i \(-0.692937\pi\)
−0.569691 + 0.821859i \(0.692937\pi\)
\(68\) −0.309017 + 0.224514i −0.0374738 + 0.0272263i
\(69\) −1.92705 5.93085i −0.231990 0.713991i
\(70\) 0 0
\(71\) −7.92705 5.75934i −0.940768 0.683508i 0.00783751 0.999969i \(-0.497505\pi\)
−0.948605 + 0.316461i \(0.897505\pi\)
\(72\) −0.309017 0.224514i −0.0364180 0.0264592i
\(73\) 2.51722 7.74721i 0.294618 0.906742i −0.688731 0.725017i \(-0.741832\pi\)
0.983349 0.181725i \(-0.0581681\pi\)
\(74\) 2.73607 + 8.42075i 0.318061 + 0.978892i
\(75\) 0 0
\(76\) 2.61803 0.300309
\(77\) 3.78115 6.37988i 0.430902 0.727055i
\(78\) 0.381966 0.0432491
\(79\) 9.66312 7.02067i 1.08719 0.789887i 0.108264 0.994122i \(-0.465471\pi\)
0.978922 + 0.204235i \(0.0654708\pi\)
\(80\) 0 0
\(81\) −2.38197 + 7.33094i −0.264663 + 0.814549i
\(82\) −3.00000 2.17963i −0.331295 0.240700i
\(83\) −7.28115 5.29007i −0.799210 0.580660i 0.111472 0.993768i \(-0.464443\pi\)
−0.910682 + 0.413107i \(0.864443\pi\)
\(84\) 1.11803 3.44095i 0.121988 0.375439i
\(85\) 0 0
\(86\) −7.66312 + 5.56758i −0.826335 + 0.600368i
\(87\) −0.854102 −0.0915693
\(88\) −0.309017 3.30220i −0.0329413 0.352015i
\(89\) −13.1803 −1.39711 −0.698557 0.715555i \(-0.746174\pi\)
−0.698557 + 0.715555i \(0.746174\pi\)
\(90\) 0 0
\(91\) −0.163119 0.502029i −0.0170995 0.0526269i
\(92\) −1.19098 + 3.66547i −0.124169 + 0.382152i
\(93\) 13.3992 + 9.73508i 1.38943 + 1.00948i
\(94\) 0.190983 + 0.138757i 0.0196984 + 0.0143117i
\(95\) 0 0
\(96\) −0.500000 1.53884i −0.0510310 0.157057i
\(97\) −9.70820 + 7.05342i −0.985719 + 0.716167i −0.958979 0.283476i \(-0.908512\pi\)
−0.0267394 + 0.999642i \(0.508512\pi\)
\(98\) 2.00000 0.202031
\(99\) 1.16312 0.502029i 0.116898 0.0504558i
\(100\) 0 0
\(101\) −15.1353 + 10.9964i −1.50601 + 1.09418i −0.538107 + 0.842877i \(0.680860\pi\)
−0.967908 + 0.251307i \(0.919140\pi\)
\(102\) −0.190983 0.587785i −0.0189101 0.0581994i
\(103\) 5.21885 16.0620i 0.514228 1.58263i −0.270453 0.962733i \(-0.587174\pi\)
0.784682 0.619899i \(-0.212826\pi\)
\(104\) −0.190983 0.138757i −0.0187274 0.0136063i
\(105\) 0 0
\(106\) −0.427051 + 1.31433i −0.0414789 + 0.127659i
\(107\) −2.52786 7.77997i −0.244378 0.752118i −0.995738 0.0922255i \(-0.970602\pi\)
0.751360 0.659892i \(-0.229398\pi\)
\(108\) 4.42705 3.21644i 0.425993 0.309502i
\(109\) −11.6180 −1.11281 −0.556403 0.830913i \(-0.687819\pi\)
−0.556403 + 0.830913i \(0.687819\pi\)
\(110\) 0 0
\(111\) −14.3262 −1.35979
\(112\) −1.80902 + 1.31433i −0.170936 + 0.124192i
\(113\) 4.54508 + 13.9883i 0.427566 + 1.31591i 0.900516 + 0.434823i \(0.143189\pi\)
−0.472950 + 0.881089i \(0.656811\pi\)
\(114\) −1.30902 + 4.02874i −0.122601 + 0.377326i
\(115\) 0 0
\(116\) 0.427051 + 0.310271i 0.0396507 + 0.0288079i
\(117\) 0.0278640 0.0857567i 0.00257603 0.00792821i
\(118\) 3.54508 + 10.9106i 0.326352 + 1.00441i
\(119\) −0.690983 + 0.502029i −0.0633423 + 0.0460209i
\(120\) 0 0
\(121\) 9.94427 + 4.70228i 0.904025 + 0.427480i
\(122\) −2.23607 −0.202444
\(123\) 4.85410 3.52671i 0.437680 0.317993i
\(124\) −3.16312 9.73508i −0.284056 0.874236i
\(125\) 0 0
\(126\) −0.690983 0.502029i −0.0615577 0.0447243i
\(127\) 2.35410 + 1.71036i 0.208893 + 0.151769i 0.687313 0.726362i \(-0.258790\pi\)
−0.478420 + 0.878131i \(0.658790\pi\)
\(128\) −0.309017 + 0.951057i −0.0273135 + 0.0840623i
\(129\) −4.73607 14.5761i −0.416988 1.28336i
\(130\) 0 0
\(131\) 11.1459 0.973822 0.486911 0.873452i \(-0.338124\pi\)
0.486911 + 0.873452i \(0.338124\pi\)
\(132\) 5.23607 + 1.17557i 0.455741 + 0.102320i
\(133\) 5.85410 0.507615
\(134\) −7.54508 + 5.48183i −0.651796 + 0.473558i
\(135\) 0 0
\(136\) −0.118034 + 0.363271i −0.0101213 + 0.0311503i
\(137\) 12.7533 + 9.26581i 1.08959 + 0.791631i 0.979329 0.202272i \(-0.0648324\pi\)
0.110258 + 0.993903i \(0.464832\pi\)
\(138\) −5.04508 3.66547i −0.429466 0.312025i
\(139\) −0.881966 + 2.71441i −0.0748074 + 0.230233i −0.981468 0.191628i \(-0.938623\pi\)
0.906660 + 0.421862i \(0.138623\pi\)
\(140\) 0 0
\(141\) −0.309017 + 0.224514i −0.0260239 + 0.0189075i
\(142\) −9.79837 −0.822261
\(143\) 0.718847 0.310271i 0.0601130 0.0259461i
\(144\) −0.381966 −0.0318305
\(145\) 0 0
\(146\) −2.51722 7.74721i −0.208327 0.641164i
\(147\) −1.00000 + 3.07768i −0.0824786 + 0.253843i
\(148\) 7.16312 + 5.20431i 0.588805 + 0.427792i
\(149\) 8.66312 + 6.29412i 0.709710 + 0.515635i 0.883080 0.469222i \(-0.155466\pi\)
−0.173370 + 0.984857i \(0.555466\pi\)
\(150\) 0 0
\(151\) −5.88197 18.1028i −0.478668 1.47319i −0.840947 0.541118i \(-0.818001\pi\)
0.362279 0.932070i \(-0.381999\pi\)
\(152\) 2.11803 1.53884i 0.171795 0.124817i
\(153\) −0.145898 −0.0117952
\(154\) −0.690983 7.38394i −0.0556810 0.595015i
\(155\) 0 0
\(156\) 0.309017 0.224514i 0.0247412 0.0179755i
\(157\) −2.09017 6.43288i −0.166814 0.513400i 0.832352 0.554248i \(-0.186994\pi\)
−0.999165 + 0.0408481i \(0.986994\pi\)
\(158\) 3.69098 11.3597i 0.293639 0.903727i
\(159\) −1.80902 1.31433i −0.143464 0.104233i
\(160\) 0 0
\(161\) −2.66312 + 8.19624i −0.209883 + 0.645954i
\(162\) 2.38197 + 7.33094i 0.187145 + 0.575973i
\(163\) 0.145898 0.106001i 0.0114276 0.00830265i −0.582057 0.813148i \(-0.697752\pi\)
0.593484 + 0.804845i \(0.297752\pi\)
\(164\) −3.70820 −0.289562
\(165\) 0 0
\(166\) −9.00000 −0.698535
\(167\) −1.80902 + 1.31433i −0.139986 + 0.101706i −0.655574 0.755131i \(-0.727573\pi\)
0.515588 + 0.856836i \(0.327573\pi\)
\(168\) −1.11803 3.44095i −0.0862582 0.265475i
\(169\) −4.00000 + 12.3107i −0.307692 + 0.946980i
\(170\) 0 0
\(171\) 0.809017 + 0.587785i 0.0618671 + 0.0449491i
\(172\) −2.92705 + 9.00854i −0.223186 + 0.686894i
\(173\) 4.11803 + 12.6740i 0.313088 + 0.963587i 0.976534 + 0.215362i \(0.0690933\pi\)
−0.663446 + 0.748224i \(0.730907\pi\)
\(174\) −0.690983 + 0.502029i −0.0523833 + 0.0380587i
\(175\) 0 0
\(176\) −2.19098 2.48990i −0.165152 0.187683i
\(177\) −18.5623 −1.39523
\(178\) −10.6631 + 7.74721i −0.799235 + 0.580678i
\(179\) 4.52786 + 13.9353i 0.338428 + 1.04158i 0.965009 + 0.262219i \(0.0844541\pi\)
−0.626580 + 0.779357i \(0.715546\pi\)
\(180\) 0 0
\(181\) 5.70820 + 4.14725i 0.424287 + 0.308263i 0.779361 0.626576i \(-0.215544\pi\)
−0.355073 + 0.934839i \(0.615544\pi\)
\(182\) −0.427051 0.310271i −0.0316551 0.0229988i
\(183\) 1.11803 3.44095i 0.0826475 0.254363i
\(184\) 1.19098 + 3.66547i 0.0878004 + 0.270222i
\(185\) 0 0
\(186\) 16.5623 1.21441
\(187\) −0.836881 0.951057i −0.0611988 0.0695481i
\(188\) 0.236068 0.0172170
\(189\) 9.89919 7.19218i 0.720060 0.523154i
\(190\) 0 0
\(191\) −6.13525 + 18.8824i −0.443931 + 1.36628i 0.439720 + 0.898135i \(0.355078\pi\)
−0.883651 + 0.468146i \(0.844922\pi\)
\(192\) −1.30902 0.951057i −0.0944702 0.0686366i
\(193\) 1.97214 + 1.43284i 0.141957 + 0.103138i 0.656497 0.754328i \(-0.272037\pi\)
−0.514540 + 0.857466i \(0.672037\pi\)
\(194\) −3.70820 + 11.4127i −0.266234 + 0.819383i
\(195\) 0 0
\(196\) 1.61803 1.17557i 0.115574 0.0839693i
\(197\) 27.5967 1.96619 0.983093 0.183105i \(-0.0586147\pi\)
0.983093 + 0.183105i \(0.0586147\pi\)
\(198\) 0.645898 1.08981i 0.0459020 0.0774497i
\(199\) −1.29180 −0.0915730 −0.0457865 0.998951i \(-0.514579\pi\)
−0.0457865 + 0.998951i \(0.514579\pi\)
\(200\) 0 0
\(201\) −4.66312 14.3516i −0.328911 1.01228i
\(202\) −5.78115 + 17.7926i −0.406761 + 1.25188i
\(203\) 0.954915 + 0.693786i 0.0670219 + 0.0486943i
\(204\) −0.500000 0.363271i −0.0350070 0.0254341i
\(205\) 0 0
\(206\) −5.21885 16.0620i −0.363614 1.11909i
\(207\) −1.19098 + 0.865300i −0.0827790 + 0.0601425i
\(208\) −0.236068 −0.0163684
\(209\) 0.809017 + 8.64527i 0.0559609 + 0.598006i
\(210\) 0 0
\(211\) −11.7361 + 8.52675i −0.807944 + 0.587006i −0.913234 0.407436i \(-0.866423\pi\)
0.105290 + 0.994442i \(0.466423\pi\)
\(212\) 0.427051 + 1.31433i 0.0293300 + 0.0902684i
\(213\) 4.89919 15.0781i 0.335687 1.03314i
\(214\) −6.61803 4.80828i −0.452399 0.328687i
\(215\) 0 0
\(216\) 1.69098 5.20431i 0.115057 0.354108i
\(217\) −7.07295 21.7683i −0.480143 1.47773i
\(218\) −9.39919 + 6.82891i −0.636593 + 0.462512i
\(219\) 13.1803 0.890645
\(220\) 0 0
\(221\) −0.0901699 −0.00606549
\(222\) −11.5902 + 8.42075i −0.777881 + 0.565164i
\(223\) 0.635255 + 1.95511i 0.0425398 + 0.130924i 0.970071 0.242822i \(-0.0780731\pi\)
−0.927531 + 0.373746i \(0.878073\pi\)
\(224\) −0.690983 + 2.12663i −0.0461682 + 0.142091i
\(225\) 0 0
\(226\) 11.8992 + 8.64527i 0.791522 + 0.575074i
\(227\) 6.10081 18.7764i 0.404925 1.24623i −0.516033 0.856569i \(-0.672592\pi\)
0.920958 0.389663i \(-0.127408\pi\)
\(228\) 1.30902 + 4.02874i 0.0866918 + 0.266810i
\(229\) 12.5172 9.09429i 0.827161 0.600968i −0.0915935 0.995796i \(-0.529196\pi\)
0.918755 + 0.394829i \(0.129196\pi\)
\(230\) 0 0
\(231\) 11.7082 + 2.62866i 0.770343 + 0.172953i
\(232\) 0.527864 0.0346560
\(233\) −16.4443 + 11.9475i −1.07730 + 0.782704i −0.977210 0.212274i \(-0.931913\pi\)
−0.100090 + 0.994978i \(0.531913\pi\)
\(234\) −0.0278640 0.0857567i −0.00182153 0.00560609i
\(235\) 0 0
\(236\) 9.28115 + 6.74315i 0.604152 + 0.438942i
\(237\) 15.6353 + 11.3597i 1.01562 + 0.737890i
\(238\) −0.263932 + 0.812299i −0.0171082 + 0.0526535i
\(239\) −5.39919 16.6170i −0.349244 1.07486i −0.959272 0.282484i \(-0.908842\pi\)
0.610028 0.792380i \(-0.291158\pi\)
\(240\) 0 0
\(241\) 18.0000 1.15948 0.579741 0.814801i \(-0.303154\pi\)
0.579741 + 0.814801i \(0.303154\pi\)
\(242\) 10.8090 2.04087i 0.694830 0.131192i
\(243\) 3.94427 0.253025
\(244\) −1.80902 + 1.31433i −0.115810 + 0.0841412i
\(245\) 0 0
\(246\) 1.85410 5.70634i 0.118213 0.363823i
\(247\) 0.500000 + 0.363271i 0.0318142 + 0.0231144i
\(248\) −8.28115 6.01661i −0.525854 0.382055i
\(249\) 4.50000 13.8496i 0.285176 0.877681i
\(250\) 0 0
\(251\) −3.88197 + 2.82041i −0.245028 + 0.178023i −0.703520 0.710675i \(-0.748390\pi\)
0.458493 + 0.888698i \(0.348390\pi\)
\(252\) −0.854102 −0.0538034
\(253\) −12.4721 2.80017i −0.784116 0.176045i
\(254\) 2.90983 0.182579
\(255\) 0 0
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) 4.28115 13.1760i 0.267051 0.821898i −0.724163 0.689629i \(-0.757774\pi\)
0.991214 0.132269i \(-0.0422264\pi\)
\(258\) −12.3992 9.00854i −0.771940 0.560847i
\(259\) 16.0172 + 11.6372i 0.995262 + 0.723100i
\(260\) 0 0
\(261\) 0.0623059 + 0.191758i 0.00385664 + 0.0118695i
\(262\) 9.01722 6.55139i 0.557086 0.404747i
\(263\) −16.0902 −0.992162 −0.496081 0.868276i \(-0.665228\pi\)
−0.496081 + 0.868276i \(0.665228\pi\)
\(264\) 4.92705 2.12663i 0.303239 0.130885i
\(265\) 0 0
\(266\) 4.73607 3.44095i 0.290387 0.210978i
\(267\) −6.59017 20.2825i −0.403312 1.24127i
\(268\) −2.88197 + 8.86978i −0.176044 + 0.541808i
\(269\) −8.01722 5.82485i −0.488819 0.355147i 0.315911 0.948789i \(-0.397690\pi\)
−0.804730 + 0.593641i \(0.797690\pi\)
\(270\) 0 0
\(271\) 8.64590 26.6093i 0.525201 1.61640i −0.238717 0.971089i \(-0.576727\pi\)
0.763918 0.645313i \(-0.223273\pi\)
\(272\) 0.118034 + 0.363271i 0.00715686 + 0.0220266i
\(273\) 0.690983 0.502029i 0.0418202 0.0303841i
\(274\) 15.7639 0.952334
\(275\) 0 0
\(276\) −6.23607 −0.375367
\(277\) 15.5623 11.3067i 0.935048 0.679352i −0.0121753 0.999926i \(-0.503876\pi\)
0.947224 + 0.320573i \(0.103876\pi\)
\(278\) 0.881966 + 2.71441i 0.0528968 + 0.162800i
\(279\) 1.20820 3.71847i 0.0723333 0.222619i
\(280\) 0 0
\(281\) 18.7082 + 13.5923i 1.11604 + 0.810849i 0.983604 0.180343i \(-0.0577207\pi\)
0.132434 + 0.991192i \(0.457721\pi\)
\(282\) −0.118034 + 0.363271i −0.00702882 + 0.0216325i
\(283\) −6.79837 20.9232i −0.404121 1.24376i −0.921627 0.388078i \(-0.873139\pi\)
0.517505 0.855680i \(-0.326861\pi\)
\(284\) −7.92705 + 5.75934i −0.470384 + 0.341754i
\(285\) 0 0
\(286\) 0.399187 0.673542i 0.0236044 0.0398274i
\(287\) −8.29180 −0.489449
\(288\) −0.309017 + 0.224514i −0.0182090 + 0.0132296i
\(289\) −5.20820 16.0292i −0.306365 0.942894i
\(290\) 0 0
\(291\) −15.7082 11.4127i −0.920831 0.669023i
\(292\) −6.59017 4.78804i −0.385661 0.280199i
\(293\) −3.24671 + 9.99235i −0.189675 + 0.583759i −0.999998 0.00222470i \(-0.999292\pi\)
0.810323 + 0.585984i \(0.199292\pi\)
\(294\) 1.00000 + 3.07768i 0.0583212 + 0.179494i
\(295\) 0 0
\(296\) 8.85410 0.514634
\(297\) 11.9894 + 13.6251i 0.695693 + 0.790606i
\(298\) 10.7082 0.620310
\(299\) −0.736068 + 0.534785i −0.0425679 + 0.0309274i
\(300\) 0 0
\(301\) −6.54508 + 20.1437i −0.377252 + 1.16106i
\(302\) −15.3992 11.1882i −0.886124 0.643807i
\(303\) −24.4894 17.7926i −1.40688 1.02216i
\(304\) 0.809017 2.48990i 0.0464003 0.142805i
\(305\) 0 0
\(306\) −0.118034 + 0.0857567i −0.00674755 + 0.00490238i
\(307\) 28.7984 1.64361 0.821805 0.569769i \(-0.192967\pi\)
0.821805 + 0.569769i \(0.192967\pi\)
\(308\) −4.89919 5.56758i −0.279157 0.317242i
\(309\) 27.3262 1.55454
\(310\) 0 0
\(311\) 1.30902 + 4.02874i 0.0742275 + 0.228449i 0.981286 0.192556i \(-0.0616776\pi\)
−0.907058 + 0.421005i \(0.861678\pi\)
\(312\) 0.118034 0.363271i 0.00668236 0.0205662i
\(313\) −0.809017 0.587785i −0.0457283 0.0332236i 0.564686 0.825306i \(-0.308997\pi\)
−0.610415 + 0.792082i \(0.708997\pi\)
\(314\) −5.47214 3.97574i −0.308810 0.224364i
\(315\) 0 0
\(316\) −3.69098 11.3597i −0.207634 0.639032i
\(317\) −2.26393 + 1.64484i −0.127155 + 0.0923836i −0.649545 0.760323i \(-0.725041\pi\)
0.522390 + 0.852707i \(0.325041\pi\)
\(318\) −2.23607 −0.125392
\(319\) −0.892609 + 1.50609i −0.0499765 + 0.0843246i
\(320\) 0 0
\(321\) 10.7082 7.77997i 0.597674 0.434235i
\(322\) 2.66312 + 8.19624i 0.148410 + 0.456758i
\(323\) 0.309017 0.951057i 0.0171942 0.0529182i
\(324\) 6.23607 + 4.53077i 0.346448 + 0.251709i
\(325\) 0 0
\(326\) 0.0557281 0.171513i 0.00308649 0.00949925i
\(327\) −5.80902 17.8783i −0.321239 0.988673i
\(328\) −3.00000 + 2.17963i −0.165647 + 0.120350i
\(329\) 0.527864 0.0291021
\(330\) 0 0
\(331\) −16.9443 −0.931341 −0.465671 0.884958i \(-0.654187\pi\)
−0.465671 + 0.884958i \(0.654187\pi\)
\(332\) −7.28115 + 5.29007i −0.399605 + 0.290330i
\(333\) 1.04508 + 3.21644i 0.0572703 + 0.176260i
\(334\) −0.690983 + 2.12663i −0.0378089 + 0.116364i
\(335\) 0 0
\(336\) −2.92705 2.12663i −0.159684 0.116017i
\(337\) −9.30902 + 28.6502i −0.507094 + 1.56068i 0.290126 + 0.956988i \(0.406303\pi\)
−0.797221 + 0.603688i \(0.793697\pi\)
\(338\) 4.00000 + 12.3107i 0.217571 + 0.669616i
\(339\) −19.2533 + 13.9883i −1.04570 + 0.759742i
\(340\) 0 0
\(341\) 31.1697 13.4535i 1.68793 0.728550i
\(342\) 1.00000 0.0540738
\(343\) 16.2812 11.8290i 0.879100 0.638703i
\(344\) 2.92705 + 9.00854i 0.157816 + 0.485708i
\(345\) 0 0
\(346\) 10.7812 + 7.83297i 0.579598 + 0.421103i
\(347\) 15.2533 + 11.0822i 0.818839 + 0.594922i 0.916380 0.400310i \(-0.131098\pi\)
−0.0975404 + 0.995232i \(0.531098\pi\)
\(348\) −0.263932 + 0.812299i −0.0141482 + 0.0435438i
\(349\) −7.29180 22.4418i −0.390321 1.20128i −0.932546 0.361051i \(-0.882418\pi\)
0.542225 0.840233i \(-0.317582\pi\)
\(350\) 0 0
\(351\) 1.29180 0.0689510
\(352\) −3.23607 0.726543i −0.172483 0.0387248i
\(353\) 4.43769 0.236195 0.118097 0.993002i \(-0.462321\pi\)
0.118097 + 0.993002i \(0.462321\pi\)
\(354\) −15.0172 + 10.9106i −0.798156 + 0.579894i
\(355\) 0 0
\(356\) −4.07295 + 12.5352i −0.215866 + 0.664367i
\(357\) −1.11803 0.812299i −0.0591726 0.0429914i
\(358\) 11.8541 + 8.61251i 0.626509 + 0.455185i
\(359\) 0.291796 0.898056i 0.0154004 0.0473976i −0.943061 0.332620i \(-0.892067\pi\)
0.958461 + 0.285222i \(0.0920674\pi\)
\(360\) 0 0
\(361\) 9.82624 7.13918i 0.517170 0.375746i
\(362\) 7.05573 0.370841
\(363\) −2.26393 + 17.6538i −0.118826 + 0.926584i
\(364\) −0.527864 −0.0276676
\(365\) 0 0
\(366\) −1.11803 3.44095i −0.0584406 0.179862i
\(367\) −1.65248 + 5.08580i −0.0862585 + 0.265476i −0.984877 0.173254i \(-0.944572\pi\)
0.898619 + 0.438731i \(0.144572\pi\)
\(368\) 3.11803 + 2.26538i 0.162539 + 0.118091i
\(369\) −1.14590 0.832544i −0.0596531 0.0433405i
\(370\) 0 0
\(371\) 0.954915 + 2.93893i 0.0495767 + 0.152581i
\(372\) 13.3992 9.73508i 0.694715 0.504740i
\(373\) −2.38197 −0.123334 −0.0616668 0.998097i \(-0.519642\pi\)
−0.0616668 + 0.998097i \(0.519642\pi\)
\(374\) −1.23607 0.277515i −0.0639156 0.0143499i
\(375\) 0 0
\(376\) 0.190983 0.138757i 0.00984920 0.00715586i
\(377\) 0.0385072 + 0.118513i 0.00198322 + 0.00610372i
\(378\) 3.78115 11.6372i 0.194482 0.598553i
\(379\) 4.78115 + 3.47371i 0.245591 + 0.178433i 0.703771 0.710427i \(-0.251498\pi\)
−0.458179 + 0.888860i \(0.651498\pi\)
\(380\) 0 0
\(381\) −1.45492 + 4.47777i −0.0745376 + 0.229403i
\(382\) 6.13525 + 18.8824i 0.313907 + 0.966106i
\(383\) −1.61803 + 1.17557i −0.0826777 + 0.0600688i −0.628356 0.777926i \(-0.716272\pi\)
0.545679 + 0.837995i \(0.316272\pi\)
\(384\) −1.61803 −0.0825700
\(385\) 0 0
\(386\) 2.43769 0.124075
\(387\) −2.92705 + 2.12663i −0.148790 + 0.108103i
\(388\) 3.70820 + 11.4127i 0.188256 + 0.579391i
\(389\) 0.545085 1.67760i 0.0276369 0.0850576i −0.936287 0.351237i \(-0.885761\pi\)
0.963924 + 0.266179i \(0.0857612\pi\)
\(390\) 0 0
\(391\) 1.19098 + 0.865300i 0.0602306 + 0.0437601i
\(392\) 0.618034 1.90211i 0.0312154 0.0960712i
\(393\) 5.57295 + 17.1518i 0.281118 + 0.865193i
\(394\) 22.3262 16.2210i 1.12478 0.817200i
\(395\) 0 0
\(396\) −0.118034 1.26133i −0.00593143 0.0633841i
\(397\) 17.4721 0.876901 0.438451 0.898755i \(-0.355527\pi\)
0.438451 + 0.898755i \(0.355527\pi\)
\(398\) −1.04508 + 0.759299i −0.0523854 + 0.0380602i
\(399\) 2.92705 + 9.00854i 0.146536 + 0.450991i
\(400\) 0 0
\(401\) 1.54508 + 1.12257i 0.0771579 + 0.0560585i 0.625695 0.780067i \(-0.284815\pi\)
−0.548538 + 0.836126i \(0.684815\pi\)
\(402\) −12.2082 8.86978i −0.608890 0.442384i
\(403\) 0.746711 2.29814i 0.0371963 0.114479i
\(404\) 5.78115 + 17.7926i 0.287623 + 0.885213i
\(405\) 0 0
\(406\) 1.18034 0.0585793
\(407\) −14.9721 + 25.2623i −0.742141 + 1.25220i
\(408\) −0.618034 −0.0305972
\(409\) −14.9721 + 10.8779i −0.740324 + 0.537877i −0.892813 0.450428i \(-0.851271\pi\)
0.152488 + 0.988305i \(0.451271\pi\)
\(410\) 0 0
\(411\) −7.88197 + 24.2582i −0.388789 + 1.19657i
\(412\) −13.6631 9.92684i −0.673134 0.489060i
\(413\) 20.7533 + 15.0781i 1.02120 + 0.741947i
\(414\) −0.454915 + 1.40008i −0.0223579 + 0.0688104i
\(415\) 0 0
\(416\) −0.190983 + 0.138757i −0.00936371 + 0.00680314i
\(417\) −4.61803 −0.226146
\(418\) 5.73607 + 6.51864i 0.280560 + 0.318837i
\(419\) −31.1803 −1.52326 −0.761630 0.648013i \(-0.775600\pi\)
−0.761630 + 0.648013i \(0.775600\pi\)
\(420\) 0 0
\(421\) −5.46149 16.8087i −0.266177 0.819208i −0.991420 0.130715i \(-0.958273\pi\)
0.725243 0.688493i \(-0.241727\pi\)
\(422\) −4.48278 + 13.7966i −0.218218 + 0.671607i
\(423\) 0.0729490 + 0.0530006i 0.00354690 + 0.00257698i
\(424\) 1.11803 + 0.812299i 0.0542965 + 0.0394487i
\(425\) 0 0
\(426\) −4.89919 15.0781i −0.237366 0.730539i
\(427\) −4.04508 + 2.93893i −0.195755 + 0.142225i
\(428\) −8.18034 −0.395412
\(429\) 0.836881 + 0.951057i 0.0404050 + 0.0459174i
\(430\) 0 0
\(431\) −4.80902 + 3.49396i −0.231642 + 0.168298i −0.697552 0.716534i \(-0.745727\pi\)
0.465909 + 0.884832i \(0.345727\pi\)
\(432\) −1.69098 5.20431i −0.0813575 0.250393i
\(433\) 2.61803 8.05748i 0.125815 0.387218i −0.868234 0.496155i \(-0.834745\pi\)
0.994049 + 0.108937i \(0.0347448\pi\)
\(434\) −18.5172 13.4535i −0.888855 0.645791i
\(435\) 0 0
\(436\) −3.59017 + 11.0494i −0.171938 + 0.529171i
\(437\) −3.11803 9.59632i −0.149156 0.459054i
\(438\) 10.6631 7.74721i 0.509504 0.370176i
\(439\) 22.7082 1.08380 0.541902 0.840442i \(-0.317704\pi\)
0.541902 + 0.840442i \(0.317704\pi\)
\(440\) 0 0
\(441\) 0.763932 0.0363777
\(442\) −0.0729490 + 0.0530006i −0.00346983 + 0.00252098i
\(443\) 9.42705 + 29.0135i 0.447893 + 1.37847i 0.879280 + 0.476305i \(0.158024\pi\)
−0.431387 + 0.902167i \(0.641976\pi\)
\(444\) −4.42705 + 13.6251i −0.210099 + 0.646617i
\(445\) 0 0
\(446\) 1.66312 + 1.20833i 0.0787510 + 0.0572159i
\(447\) −5.35410 + 16.4782i −0.253240 + 0.779394i
\(448\) 0.690983 + 2.12663i 0.0326459 + 0.100474i
\(449\) −13.1803 + 9.57608i −0.622019 + 0.451923i −0.853626 0.520886i \(-0.825602\pi\)
0.231607 + 0.972809i \(0.425602\pi\)
\(450\) 0 0
\(451\) −1.14590 12.2452i −0.0539582 0.576605i
\(452\) 14.7082 0.691816
\(453\) 24.9164 18.1028i 1.17067 0.850545i
\(454\) −6.10081 18.7764i −0.286325 0.881219i
\(455\) 0 0
\(456\) 3.42705 + 2.48990i 0.160486 + 0.116600i
\(457\) −9.80902 7.12667i −0.458846 0.333371i 0.334232 0.942491i \(-0.391523\pi\)
−0.793079 + 0.609119i \(0.791523\pi\)
\(458\) 4.78115 14.7149i 0.223409 0.687581i
\(459\) −0.645898 1.98787i −0.0301479 0.0927858i
\(460\) 0 0
\(461\) −36.4164 −1.69608 −0.848041 0.529931i \(-0.822218\pi\)
−0.848041 + 0.529931i \(0.822218\pi\)
\(462\) 11.0172 4.75528i 0.512568 0.221236i
\(463\) 38.5967 1.79374 0.896871 0.442291i \(-0.145834\pi\)
0.896871 + 0.442291i \(0.145834\pi\)
\(464\) 0.427051 0.310271i 0.0198253 0.0144040i
\(465\) 0 0
\(466\) −6.28115 + 19.3314i −0.290969 + 0.895510i
\(467\) −26.0344 18.9151i −1.20473 0.875288i −0.209989 0.977704i \(-0.567343\pi\)
−0.994742 + 0.102416i \(0.967343\pi\)
\(468\) −0.0729490 0.0530006i −0.00337207 0.00244995i
\(469\) −6.44427 + 19.8334i −0.297569 + 0.915823i
\(470\) 0 0
\(471\) 8.85410 6.43288i 0.407975 0.296412i
\(472\) 11.4721 0.528048
\(473\) −30.6525 6.88191i −1.40940 0.316431i
\(474\) 19.3262 0.887684
\(475\) 0 0
\(476\) 0.263932 + 0.812299i 0.0120973 + 0.0372317i
\(477\) −0.163119 + 0.502029i −0.00746870 + 0.0229863i
\(478\) −14.1353 10.2699i −0.646532 0.469733i
\(479\) −8.04508 5.84510i −0.367589 0.267069i 0.388621 0.921398i \(-0.372951\pi\)
−0.756211 + 0.654328i \(0.772951\pi\)
\(480\) 0 0
\(481\) 0.645898 + 1.98787i 0.0294504 + 0.0906391i
\(482\) 14.5623 10.5801i 0.663295 0.481912i
\(483\) −13.9443 −0.634486
\(484\) 7.54508 8.00448i 0.342958 0.363840i
\(485\) 0 0
\(486\) 3.19098 2.31838i 0.144746 0.105164i
\(487\) 3.36475 + 10.3556i 0.152471 + 0.469258i 0.997896 0.0648366i \(-0.0206526\pi\)
−0.845425 + 0.534095i \(0.820653\pi\)
\(488\) −0.690983 + 2.12663i −0.0312793 + 0.0962679i
\(489\) 0.236068 + 0.171513i 0.0106754 + 0.00775611i
\(490\) 0 0
\(491\) 3.76393 11.5842i 0.169864 0.522787i −0.829498 0.558510i \(-0.811373\pi\)
0.999362 + 0.0357226i \(0.0113733\pi\)
\(492\) −1.85410 5.70634i −0.0835894 0.257262i
\(493\) 0.163119 0.118513i 0.00734651 0.00533755i
\(494\) 0.618034 0.0278067
\(495\) 0 0
\(496\) −10.2361 −0.459613
\(497\) −17.7254 + 12.8783i −0.795094 + 0.577670i
\(498\) −4.50000 13.8496i −0.201650 0.620614i
\(499\) 4.77458 14.6946i 0.213739 0.657822i −0.785501 0.618860i \(-0.787595\pi\)
0.999241 0.0389621i \(-0.0124052\pi\)
\(500\) 0 0
\(501\) −2.92705 2.12663i −0.130771 0.0950107i
\(502\) −1.48278 + 4.56352i −0.0661797 + 0.203680i
\(503\) −9.73607 29.9645i −0.434110 1.33605i −0.893996 0.448075i \(-0.852110\pi\)
0.459886 0.887978i \(-0.347890\pi\)
\(504\) −0.690983 + 0.502029i −0.0307788 + 0.0223621i
\(505\) 0 0
\(506\) −11.7361 + 5.06555i −0.521732 + 0.225191i
\(507\) −20.9443 −0.930168
\(508\) 2.35410 1.71036i 0.104446 0.0758847i
\(509\) 3.17376 + 9.76784i 0.140675 + 0.432952i 0.996429 0.0844297i \(-0.0269069\pi\)
−0.855755 + 0.517381i \(0.826907\pi\)
\(510\) 0 0
\(511\) −14.7361 10.7064i −0.651885 0.473622i
\(512\) 0.809017 + 0.587785i 0.0357538 + 0.0259767i
\(513\) −4.42705 + 13.6251i −0.195459 + 0.601561i
\(514\) −4.28115 13.1760i −0.188834 0.581170i
\(515\) 0 0
\(516\) −15.3262 −0.674700
\(517\) 0.0729490 + 0.779543i 0.00320829 + 0.0342843i
\(518\) 19.7984 0.869891
\(519\) −17.4443 + 12.6740i −0.765719 + 0.556327i
\(520\) 0 0
\(521\) −3.10081 + 9.54332i −0.135849 + 0.418100i −0.995721 0.0924091i \(-0.970543\pi\)
0.859872 + 0.510510i \(0.170543\pi\)
\(522\) 0.163119 + 0.118513i 0.00713952 + 0.00518717i
\(523\) 22.2533 + 16.1680i 0.973068 + 0.706976i 0.956149 0.292881i \(-0.0946141\pi\)
0.0169196 + 0.999857i \(0.494614\pi\)
\(524\) 3.44427 10.6004i 0.150464 0.463080i
\(525\) 0 0
\(526\) −13.0172 + 9.45756i −0.567578 + 0.412369i
\(527\) −3.90983 −0.170315
\(528\) 2.73607 4.61653i 0.119072 0.200908i
\(529\) −8.14590 −0.354169
\(530\) 0 0
\(531\) 1.35410 + 4.16750i 0.0587630 + 0.180854i
\(532\) 1.80902 5.56758i 0.0784308 0.241385i
\(533\) −0.708204 0.514540i −0.0306757 0.0222872i
\(534\) −17.2533 12.5352i −0.746623 0.542453i
\(535\) 0 0
\(536\) 2.88197 + 8.86978i 0.124482 + 0.383116i
\(537\) −19.1803 + 13.9353i −0.827693 + 0.601354i
\(538\) −9.90983 −0.427243
\(539\) 4.38197 + 4.97980i 0.188745 + 0.214495i
\(540\) 0 0
\(541\) −26.0066 + 18.8949i −1.11811 + 0.812355i −0.983922 0.178601i \(-0.942843\pi\)
−0.134189 + 0.990956i \(0.542843\pi\)
\(542\) −8.64590 26.6093i −0.371373 1.14297i
\(543\) −3.52786 + 10.8576i −0.151395 + 0.465946i
\(544\) 0.309017 + 0.224514i 0.0132490 + 0.00962596i
\(545\) 0 0
\(546\) 0.263932 0.812299i 0.0112952 0.0347632i
\(547\) −5.54508 17.0660i −0.237091 0.729690i −0.996837 0.0794708i \(-0.974677\pi\)
0.759746 0.650219i \(-0.225323\pi\)
\(548\) 12.7533 9.26581i 0.544794 0.395816i
\(549\) −0.854102 −0.0364522
\(550\) 0 0
\(551\) −1.38197 −0.0588737
\(552\) −5.04508 + 3.66547i −0.214733 + 0.156013i
\(553\) −8.25329 25.4010i −0.350966 1.08016i
\(554\) 5.94427 18.2946i 0.252548 0.777263i
\(555\) 0 0
\(556\) 2.30902 + 1.67760i 0.0979241 + 0.0711460i
\(557\) 1.81966 5.60034i 0.0771015 0.237294i −0.905076 0.425250i \(-0.860186\pi\)
0.982177 + 0.187956i \(0.0601862\pi\)
\(558\) −1.20820 3.71847i −0.0511474 0.157415i
\(559\) −1.80902 + 1.31433i −0.0765133 + 0.0555901i
\(560\) 0 0
\(561\) 1.04508 1.76336i 0.0441235 0.0744489i
\(562\) 23.1246 0.975453
\(563\) 14.2533 10.3556i 0.600705 0.436437i −0.245424 0.969416i \(-0.578927\pi\)
0.846129 + 0.532978i \(0.178927\pi\)
\(564\) 0.118034 + 0.363271i 0.00497013 + 0.0152965i
\(565\) 0 0
\(566\) −17.7984 12.9313i −0.748121 0.543542i
\(567\) 13.9443 + 10.1311i 0.585604 + 0.425466i
\(568\) −3.02786 + 9.31881i −0.127046 + 0.391008i
\(569\) −0.645898 1.98787i −0.0270775 0.0833358i 0.936605 0.350388i \(-0.113950\pi\)
−0.963682 + 0.267052i \(0.913950\pi\)
\(570\) 0 0
\(571\) −8.52786 −0.356880 −0.178440 0.983951i \(-0.557105\pi\)
−0.178440 + 0.983951i \(0.557105\pi\)
\(572\) −0.0729490 0.779543i −0.00305015 0.0325943i
\(573\) −32.1246 −1.34202
\(574\) −6.70820 + 4.87380i −0.279995 + 0.203428i
\(575\) 0 0
\(576\) −0.118034 + 0.363271i −0.00491808 + 0.0151363i
\(577\) −17.6074 12.7925i −0.733005 0.532560i 0.157507 0.987518i \(-0.449654\pi\)
−0.890513 + 0.454958i \(0.849654\pi\)
\(578\) −13.6353 9.90659i −0.567152 0.412060i
\(579\) −1.21885 + 3.75123i −0.0506536 + 0.155896i
\(580\) 0 0
\(581\) −16.2812 + 11.8290i −0.675456 + 0.490748i
\(582\) −19.4164 −0.804836
\(583\) −4.20820 + 1.81636i −0.174286 + 0.0752258i
\(584\) −8.14590 −0.337080
\(585\) 0 0
\(586\) 3.24671 + 9.99235i 0.134120 + 0.412780i
\(587\) −5.01064 + 15.4212i −0.206811 + 0.636500i 0.792823 + 0.609452i \(0.208611\pi\)
−0.999634 + 0.0270477i \(0.991389\pi\)
\(588\) 2.61803 + 1.90211i 0.107966 + 0.0784418i
\(589\) 21.6803 + 15.7517i 0.893323 + 0.649037i
\(590\) 0 0
\(591\) 13.7984 + 42.4670i 0.567589 + 1.74686i
\(592\) 7.16312 5.20431i 0.294402 0.213896i
\(593\) 42.3951 1.74096 0.870479 0.492205i \(-0.163809\pi\)
0.870479 + 0.492205i \(0.163809\pi\)
\(594\) 17.7082 + 3.97574i 0.726576 + 0.163127i
\(595\) 0 0
\(596\) 8.66312 6.29412i 0.354855 0.257817i
\(597\) −0.645898 1.98787i −0.0264348 0.0813581i
\(598\) −0.281153 + 0.865300i −0.0114972 + 0.0353847i
\(599\) −2.47214 1.79611i −0.101009 0.0733871i 0.536134 0.844133i \(-0.319884\pi\)
−0.637143 + 0.770745i \(0.719884\pi\)
\(600\) 0 0
\(601\) −2.02786 + 6.24112i −0.0827183 + 0.254581i −0.983859 0.178946i \(-0.942731\pi\)
0.901141 + 0.433527i \(0.142731\pi\)
\(602\) 6.54508 + 20.1437i 0.266758 + 0.820996i
\(603\) −2.88197 + 2.09387i −0.117363 + 0.0852690i
\(604\) −19.0344 −0.774500
\(605\) 0 0
\(606\) −30.2705 −1.22966
\(607\) 10.8262 7.86572i 0.439423 0.319260i −0.345982 0.938241i \(-0.612454\pi\)
0.785406 + 0.618981i \(0.212454\pi\)
\(608\) −0.809017 2.48990i −0.0328100 0.100979i
\(609\) −0.590170 + 1.81636i −0.0239149 + 0.0736025i
\(610\) 0 0
\(611\) 0.0450850 + 0.0327561i 0.00182394 + 0.00132517i
\(612\) −0.0450850 + 0.138757i −0.00182245 + 0.00560893i
\(613\) 2.21885 + 6.82891i 0.0896184 + 0.275817i 0.985814 0.167842i \(-0.0536800\pi\)
−0.896195 + 0.443659i \(0.853680\pi\)
\(614\) 23.2984 16.9273i 0.940246 0.683129i
\(615\) 0 0
\(616\) −7.23607 1.62460i −0.291549 0.0654569i
\(617\) −25.7984 −1.03860 −0.519302 0.854591i \(-0.673808\pi\)
−0.519302 + 0.854591i \(0.673808\pi\)
\(618\) 22.1074 16.0620i 0.889290 0.646107i
\(619\) −8.10739 24.9520i −0.325864 1.00290i −0.971049 0.238879i \(-0.923220\pi\)
0.645186 0.764026i \(-0.276780\pi\)
\(620\) 0 0
\(621\) −17.0623 12.3965i −0.684687 0.497454i
\(622\) 3.42705 + 2.48990i 0.137412 + 0.0998358i
\(623\) −9.10739 + 28.0297i −0.364880 + 1.12298i
\(624\) −0.118034 0.363271i −0.00472514 0.0145425i
\(625\) 0 0
\(626\) −1.00000 −0.0399680
\(627\) −12.8992 + 5.56758i −0.515144 + 0.222348i
\(628\) −6.76393 −0.269910
\(629\) 2.73607 1.98787i 0.109094 0.0792616i
\(630\) 0 0
\(631\) −2.07295 + 6.37988i −0.0825228 + 0.253979i −0.983802 0.179260i \(-0.942630\pi\)
0.901279 + 0.433239i \(0.142630\pi\)
\(632\) −9.66312 7.02067i −0.384378 0.279267i
\(633\) −18.9894 13.7966i −0.754759 0.548365i
\(634\) −0.864745 + 2.66141i −0.0343434 + 0.105698i
\(635\) 0 0
\(636\) −1.80902 + 1.31433i −0.0717322 + 0.0521165i
\(637\) 0.472136 0.0187067
\(638\) 0.163119 + 1.74311i 0.00645794 + 0.0690104i
\(639\) −3.74265 −0.148057
\(640\) 0 0
\(641\) −13.0000 40.0099i −0.513469 1.58030i −0.786050 0.618163i \(-0.787877\pi\)
0.272581 0.962133i \(-0.412123\pi\)
\(642\) 4.09017 12.5882i 0.161426 0.496819i
\(643\) −11.4271 8.30224i −0.450639 0.327408i 0.339209 0.940711i \(-0.389841\pi\)
−0.789848 + 0.613303i \(0.789841\pi\)
\(644\) 6.97214 + 5.06555i 0.274741 + 0.199611i
\(645\) 0 0
\(646\) −0.309017 0.951057i −0.0121581 0.0374188i
\(647\) −0.854102 + 0.620541i −0.0335782 + 0.0243960i −0.604448 0.796645i \(-0.706606\pi\)
0.570870 + 0.821041i \(0.306606\pi\)
\(648\) 7.70820 0.302807
\(649\) −19.3992 + 32.7319i −0.761485 + 1.28484i
\(650\) 0 0
\(651\) 29.9615 21.7683i 1.17428 0.853167i
\(652\) −0.0557281 0.171513i −0.00218248 0.00671698i
\(653\) 3.23607 9.95959i 0.126637 0.389749i −0.867559 0.497335i \(-0.834312\pi\)
0.994196 + 0.107586i \(0.0343121\pi\)
\(654\) −15.2082 11.0494i −0.594688 0.432066i
\(655\) 0 0
\(656\) −1.14590 + 3.52671i −0.0447398 + 0.137695i
\(657\) −0.961493 2.95917i −0.0375114 0.115448i
\(658\) 0.427051 0.310271i 0.0166482 0.0120956i
\(659\) 43.4508 1.69260 0.846302 0.532703i \(-0.178824\pi\)
0.846302 + 0.532703i \(0.178824\pi\)
\(660\) 0 0
\(661\) 27.5967 1.07339 0.536695 0.843777i \(-0.319673\pi\)
0.536695 + 0.843777i \(0.319673\pi\)
\(662\) −13.7082 + 9.95959i −0.532784 + 0.387091i
\(663\) −0.0450850 0.138757i −0.00175096 0.00538889i
\(664\) −2.78115 + 8.55951i −0.107930 + 0.332173i
\(665\) 0 0
\(666\) 2.73607 + 1.98787i 0.106020 + 0.0770284i
\(667\) 0.628677 1.93487i 0.0243425 0.0749184i
\(668\) 0.690983 + 2.12663i 0.0267349 + 0.0822817i
\(669\) −2.69098 + 1.95511i −0.104039 + 0.0755891i
\(670\) 0 0
\(671\) −4.89919 5.56758i −0.189131 0.214934i
\(672\) −3.61803 −0.139569
\(673\) −9.37132 + 6.80866i −0.361238 + 0.262455i −0.753568 0.657370i \(-0.771669\pi\)
0.392330 + 0.919824i \(0.371669\pi\)
\(674\) 9.30902 + 28.6502i 0.358570 + 1.10356i
\(675\) 0 0
\(676\) 10.4721 + 7.60845i 0.402774 + 0.292633i
\(677\) 8.76393 + 6.36737i 0.336825 + 0.244718i 0.743321 0.668935i \(-0.233249\pi\)
−0.406496 + 0.913653i \(0.633249\pi\)
\(678\) −7.35410 + 22.6336i −0.282433 + 0.869238i
\(679\) 8.29180 + 25.5195i 0.318210 + 0.979349i
\(680\) 0 0
\(681\) 31.9443 1.22411
\(682\) 17.3090 29.2052i 0.662797 1.11833i
\(683\) −6.11146 −0.233848 −0.116924 0.993141i \(-0.537303\pi\)
−0.116924 + 0.993141i \(0.537303\pi\)
\(684\) 0.809017 0.587785i 0.0309335 0.0224745i
\(685\) 0 0
\(686\) 6.21885 19.1396i 0.237437 0.730755i
\(687\) 20.2533 + 14.7149i 0.772711 + 0.561408i
\(688\) 7.66312 + 5.56758i 0.292154 + 0.212262i
\(689\) −0.100813 + 0.310271i −0.00384067 + 0.0118204i
\(690\) 0 0
\(691\) 32.2984 23.4661i 1.22869 0.892694i 0.231897 0.972740i \(-0.425507\pi\)
0.996791 + 0.0800463i \(0.0255068\pi\)
\(692\) 13.3262 0.506588
\(693\) −0.263932 2.82041i −0.0100259 0.107139i
\(694\) 18.8541 0.715692
\(695\) 0 0
\(696\) 0.263932 + 0.812299i 0.0100043 + 0.0307901i
\(697\) −0.437694 + 1.34708i −0.0165788 + 0.0510244i
\(698\) −19.0902 13.8698i −0.722574 0.524980i
\(699\) −26.6074 19.3314i −1.00638 0.731181i
\(700\) 0 0
\(701\) −3.89919 12.0005i −0.147270 0.453251i 0.850026 0.526741i \(-0.176586\pi\)
−0.997296 + 0.0734900i \(0.976586\pi\)
\(702\) 1.04508 0.759299i 0.0394442 0.0286579i
\(703\) −23.1803 −0.874263
\(704\) −3.04508 + 1.31433i −0.114766 + 0.0495356i
\(705\) 0 0
\(706\) 3.59017 2.60841i 0.135118 0.0981688i
\(707\) 12.9271 + 39.7854i 0.486172 + 1.49628i
\(708\) −5.73607 + 17.6538i −0.215575 + 0.663471i
\(709\) 37.3156 + 27.1114i 1.40142 + 1.01819i 0.994501 + 0.104723i \(0.0333955\pi\)
0.406915 + 0.913466i \(0.366604\pi\)
\(710\) 0 0
\(711\) 1.40983 4.33901i 0.0528728 0.162726i
\(712\) 4.07295 + 12.5352i 0.152640 + 0.469778i
\(713\) −31.9164 + 23.1886i −1.19528 + 0.868421i
\(714\) −1.38197 −0.0517188
\(715\) 0 0
\(716\) 14.6525 0.547589
\(717\) 22.8713 16.6170i 0.854145 0.620573i
\(718\) −0.291796 0.898056i −0.0108897 0.0335152i
\(719\) 6.16312 18.9681i 0.229846 0.707392i −0.767918 0.640548i \(-0.778707\pi\)
0.997763 0.0668436i \(-0.0212929\pi\)
\(720\) 0 0
\(721\) −30.5517 22.1971i −1.13780 0.826663i
\(722\) 3.75329 11.5514i 0.139683 0.429900i
\(723\) 9.00000 + 27.6992i 0.334714 + 1.03014i
\(724\) 5.70820 4.14725i 0.212144 0.154131i
\(725\) 0 0
\(726\) 8.54508 + 15.6129i 0.317138 + 0.579450i
\(727\) 13.8197 0.512543 0.256271 0.966605i \(-0.417506\pi\)
0.256271 + 0.966605i \(0.417506\pi\)
\(728\) −0.427051 + 0.310271i −0.0158276 + 0.0114994i
\(729\) 9.11803 + 28.0624i 0.337705 + 1.03935i
\(730\) 0 0
\(731\) 2.92705 + 2.12663i 0.108261 + 0.0786561i
\(732\) −2.92705 2.12663i −0.108187 0.0786024i
\(733\) 6.74671 20.7642i 0.249195 0.766945i −0.745723 0.666257i \(-0.767896\pi\)
0.994918 0.100688i \(-0.0321044\pi\)
\(734\) 1.65248 + 5.08580i 0.0609940 + 0.187720i
\(735\) 0 0
\(736\) 3.85410 0.142064
\(737\) −30.1803 6.77591i −1.11171 0.249594i
\(738\) −1.41641 −0.0521387
\(739\) −7.85410 + 5.70634i −0.288918 + 0.209911i −0.722798 0.691060i \(-0.757144\pi\)
0.433880 + 0.900971i \(0.357144\pi\)
\(740\) 0 0
\(741\) −0.309017 + 0.951057i −0.0113520 + 0.0349379i
\(742\) 2.50000 + 1.81636i 0.0917779 + 0.0666805i
\(743\) 34.4058 + 24.9973i 1.26223 + 0.917060i 0.998865 0.0476373i \(-0.0151692\pi\)
0.263360 + 0.964698i \(0.415169\pi\)
\(744\) 5.11803 15.7517i 0.187636 0.577485i
\(745\) 0 0
\(746\) −1.92705 + 1.40008i −0.0705543 + 0.0512607i
\(747\) −3.43769 −0.125779
\(748\) −1.16312 + 0.502029i −0.0425278 + 0.0183560i
\(749\) −18.2918 −0.668368
\(750\) 0 0
\(751\) 8.31559 + 25.5928i 0.303440 + 0.933893i 0.980255 + 0.197740i \(0.0633600\pi\)
−0.676814 + 0.736154i \(0.736640\pi\)
\(752\) 0.0729490 0.224514i 0.00266018 0.00818718i
\(753\) −6.28115 4.56352i −0.228898 0.166304i
\(754\) 0.100813 + 0.0732450i 0.00367140 + 0.00266742i
\(755\) 0 0
\(756\) −3.78115 11.6372i −0.137519 0.423241i
\(757\) −12.3090 + 8.94302i −0.447379 + 0.325040i −0.788560 0.614958i \(-0.789173\pi\)
0.341181 + 0.939998i \(0.389173\pi\)
\(758\) 5.90983 0.214655
\(759\) −1.92705 20.5927i −0.0699475 0.747469i
\(760\) 0 0
\(761\) 17.2254 12.5150i 0.624421 0.453669i −0.230042 0.973181i \(-0.573886\pi\)
0.854463 + 0.519512i \(0.173886\pi\)
\(762\) 1.45492 + 4.47777i 0.0527060 + 0.162212i
\(763\) −8.02786 + 24.7072i −0.290628 + 0.894462i
\(764\) 16.0623 + 11.6699i 0.581114 + 0.422204i
\(765\) 0 0
\(766\) −0.618034 + 1.90211i −0.0223305 + 0.0687261i
\(767\) 0.836881 + 2.57565i 0.0302180 + 0.0930015i
\(768\) −1.30902 + 0.951057i −0.0472351 + 0.0343183i
\(769\) −42.2361 −1.52307 −0.761536 0.648123i \(-0.775554\pi\)
−0.761536 + 0.648123i \(0.775554\pi\)
\(770\) 0 0
\(771\) 22.4164 0.807307
\(772\) 1.97214 1.43284i 0.0709787 0.0515691i
\(773\) −12.7984 39.3893i −0.460326 1.41674i −0.864767 0.502173i \(-0.832534\pi\)
0.404442 0.914564i \(-0.367466\pi\)
\(774\) −1.11803 + 3.44095i −0.0401869 + 0.123683i
\(775\) 0 0
\(776\) 9.70820 + 7.05342i 0.348504 + 0.253203i
\(777\) −9.89919 + 30.4666i −0.355131 + 1.09298i
\(778\) −0.545085 1.67760i −0.0195422 0.0601448i
\(779\) 7.85410 5.70634i 0.281402 0.204451i
\(780\) 0 0
\(781\) −21.4681 24.3970i −0.768188 0.872992i
\(782\) 1.47214 0.0526435
\(783\) −2.33688 + 1.69784i −0.0835133 + 0.0606760i
\(784\) −0.618034 1.90211i −0.0220726 0.0679326i
\(785\) 0 0
\(786\) 14.5902 + 10.6004i 0.520414 + 0.378103i
\(787\) 14.5623 + 10.5801i 0.519090 + 0.377141i 0.816261 0.577683i \(-0.196043\pi\)
−0.297171 + 0.954824i \(0.596043\pi\)
\(788\) 8.52786 26.2461i 0.303793 0.934977i
\(789\) −8.04508 24.7602i −0.286413 0.881487i
\(790\) 0 0
\(791\) 32.8885 1.16938
\(792\) −0.836881 0.951057i −0.0297373 0.0337943i
\(793\) −0.527864 −0.0187450
\(794\) 14.1353 10.2699i 0.501641 0.364464i
\(795\) 0 0
\(796\) −0.399187 + 1.22857i −0.0141488 + 0.0435455i
\(797\) 40.4615 + 29.3970i 1.43322 + 1.04129i 0.989406 + 0.145176i \(0.0463748\pi\)
0.443814 + 0.896119i \(0.353625\pi\)
\(798\) 7.66312 + 5.56758i 0.271271 + 0.197090i
\(799\) 0.0278640 0.0857567i 0.000985759 0.00303385i
\(800\) 0 0
\(801\) −4.07295 + 2.95917i −0.143911 + 0.104557i
\(802\) 1.90983 0.0674384
\(803\) 13.7746 23.2416i 0.486094 0.820179i
\(804\) −15.0902 −0.532189
\(805\) 0 0
\(806\) −0.746711 2.29814i −0.0263018 0.0809485i
\(807\) 4.95492 15.2497i 0.174421 0.536813i
\(808\) 15.1353 + 10.9964i 0.532456 + 0.386852i
\(809\) −26.7533 19.4374i −0.940596 0.683383i 0.00796840 0.999968i \(-0.497464\pi\)
−0.948564 + 0.316586i \(0.897464\pi\)
\(810\) 0 0
\(811\) 4.21885 + 12.9843i 0.148144 + 0.455940i 0.997402 0.0720383i \(-0.0229504\pi\)
−0.849258 + 0.527978i \(0.822950\pi\)
\(812\) 0.954915 0.693786i 0.0335109 0.0243471i
\(813\) 45.2705 1.58771
\(814\) 2.73607 + 29.2380i 0.0958991 + 1.02479i
\(815\) 0 0
\(816\) −0.500000 + 0.363271i −0.0175035 + 0.0127170i
\(817\) −7.66312 23.5847i −0.268099 0.825123i
\(818\) −5.71885 + 17.6008i −0.199955 + 0.615398i
\(819\) −0.163119 0.118513i −0.00569984 0.00414117i
\(820\) 0 0
\(821\) −12.1631 + 37.4342i −0.424496 + 1.30646i 0.478980 + 0.877826i \(0.341006\pi\)
−0.903476 + 0.428638i \(0.858994\pi\)
\(822\) 7.88197 + 24.2582i 0.274915 + 0.846102i
\(823\) 1.79180 1.30182i 0.0624581 0.0453785i −0.556118 0.831103i \(-0.687710\pi\)
0.618576 + 0.785725i \(0.287710\pi\)
\(824\) −16.8885 −0.588340
\(825\) 0 0
\(826\) 25.6525 0.892564
\(827\) 18.3713 13.3475i 0.638833 0.464140i −0.220616 0.975361i \(-0.570807\pi\)
0.859449 + 0.511221i \(0.170807\pi\)
\(828\) 0.454915 + 1.40008i 0.0158094 + 0.0486563i
\(829\) 11.4377 35.2016i 0.397248 1.22260i −0.529950 0.848029i \(-0.677789\pi\)
0.927197 0.374573i \(-0.122211\pi\)
\(830\) 0 0
\(831\) 25.1803 + 18.2946i 0.873496 + 0.634632i
\(832\) −0.0729490 + 0.224514i −0.00252905 + 0.00778362i
\(833\) −0.236068 0.726543i −0.00817927 0.0251732i
\(834\) −3.73607 + 2.71441i −0.129369 + 0.0939924i
\(835\) 0 0
\(836\) 8.47214 + 1.90211i 0.293015 + 0.0657860i
\(837\) 56.0132 1.93610
\(838\) −25.2254 + 18.3273i −0.871398 + 0.633108i
\(839\) −9.03851 27.8177i −0.312044 0.960372i −0.976954 0.213449i \(-0.931530\pi\)
0.664910 0.746923i \(-0.268470\pi\)
\(840\) 0 0
\(841\) 23.2361 + 16.8820i 0.801244 + 0.582138i
\(842\) −14.2984 10.3884i −0.492755 0.358007i
\(843\) −11.5623 + 35.5851i −0.398227 + 1.22562i
\(844\) 4.48278 + 13.7966i 0.154304 + 0.474898i
\(845\) 0 0
\(846\) 0.0901699 0.00310011
\(847\) 16.8713 17.8986i 0.579706 0.615002i
\(848\) 1.38197 0.0474569
\(849\) 28.7984 20.9232i 0.988358 0.718084i
\(850\) 0 0
\(851\) 10.5451 32.4544i 0.361481 1.11252i
\(852\) −12.8262 9.31881i −0.439420 0.319257i
\(853\) −2.70820 1.96763i −0.0927271 0.0673702i 0.540456 0.841372i \(-0.318252\pi\)
−0.633183 + 0.774002i \(0.718252\pi\)
\(854\) −1.54508 + 4.75528i −0.0528717 + 0.162722i
\(855\) 0 0
\(856\) −6.61803 + 4.80828i −0.226200 + 0.164344i
\(857\) −25.2705 −0.863224 −0.431612 0.902059i \(-0.642055\pi\)
−0.431612 + 0.902059i \(0.642055\pi\)
\(858\) 1.23607 + 0.277515i 0.0421987 + 0.00947419i
\(859\) −1.18034 −0.0402727 −0.0201363 0.999797i \(-0.506410\pi\)
−0.0201363 + 0.999797i \(0.506410\pi\)
\(860\) 0 0
\(861\) −4.14590 12.7598i −0.141292 0.434852i
\(862\) −1.83688 + 5.65334i −0.0625644 + 0.192553i
\(863\) 0.899187 + 0.653298i 0.0306087 + 0.0222385i 0.602984 0.797753i \(-0.293978\pi\)
−0.572376 + 0.819991i \(0.693978\pi\)
\(864\) −4.42705 3.21644i −0.150611 0.109426i
\(865\) 0 0
\(866\) −2.61803 8.05748i −0.0889644 0.273804i
\(867\) 22.0623 16.0292i 0.749275 0.544380i
\(868\) −22.8885 −0.776888
\(869\) 36.3713 15.6987i 1.23381 0.532542i
\(870\) 0 0
\(871\) −1.78115 + 1.29408i −0.0603521 + 0.0438483i
\(872\) 3.59017 + 11.0494i 0.121578 + 0.374180i
\(873\) −1.41641 + 4.35926i −0.0479381 + 0.147538i
\(874\) −8.16312 5.93085i −0.276122 0.200614i
\(875\) 0 0
\(876\) 4.07295 12.5352i 0.137612 0.423527i
\(877\) −11.6738 35.9281i −0.394195 1.21321i −0.929587 0.368603i \(-0.879836\pi\)
0.535392 0.844604i \(-0.320164\pi\)
\(878\) 18.3713 13.3475i 0.620002 0.450458i
\(879\) −17.0000 −0.573396
\(880\) 0 0
\(881\) 7.67376 0.258536 0.129268 0.991610i \(-0.458737\pi\)
0.129268 + 0.991610i \(0.458737\pi\)
\(882\) 0.618034 0.449028i 0.0208103 0.0151196i
\(883\) −12.0344 37.0382i −0.404991 1.24643i −0.920903 0.389793i \(-0.872547\pi\)
0.515911 0.856642i \(-0.327453\pi\)
\(884\) −0.0278640 + 0.0857567i −0.000937169 + 0.00288431i
\(885\) 0 0
\(886\) 24.6803 + 17.9313i 0.829152 + 0.602414i
\(887\) 12.4443 38.2995i 0.417838 1.28597i −0.491850 0.870680i \(-0.663679\pi\)
0.909688 0.415293i \(-0.136321\pi\)
\(888\) 4.42705 + 13.6251i 0.148562 + 0.457227i
\(889\) 5.26393 3.82447i 0.176547 0.128269i
\(890\) 0 0
\(891\) −13.0344 + 21.9928i −0.436670 + 0.736787i
\(892\) 2.05573 0.0688309
\(893\) −0.500000 + 0.363271i −0.0167319 + 0.0121564i
\(894\) 5.35410 + 16.4782i 0.179068 + 0.551115i
\(895\) 0 0
\(896\) 1.80902 + 1.31433i 0.0604350 + 0.0439086i
\(897\) −1.19098 0.865300i −0.0397658 0.0288915i
\(898\) −5.03444 + 15.4944i −0.168002 + 0.517055i
\(899\) 1.66970 + 5.13880i 0.0556875 + 0.171389i
\(900\) 0 0
\(901\) 0.527864 0.0175857
\(902\) −8.12461 9.23305i −0.270520 0.307427i
\(903\) −34.2705 −1.14045
\(904\) 11.8992 8.64527i 0.395761 0.287537i
\(905\) 0 0
\(906\) 9.51722 29.2910i 0.316188 0.973128i
\(907\) 32.0344 + 23.2744i 1.06369 + 0.772813i 0.974767 0.223226i \(-0.0716587\pi\)
0.0889194 + 0.996039i \(0.471659\pi\)
\(908\) −15.9721 11.6044i −0.530054 0.385107i
\(909\) −2.20820 + 6.79615i −0.0732415 + 0.225414i
\(910\) 0 0
\(911\) 10.2361 7.43694i 0.339136 0.246397i −0.405161 0.914245i \(-0.632785\pi\)
0.744297 + 0.667849i \(0.232785\pi\)
\(912\) 4.23607 0.140270
\(913\) −19.7188 22.4091i −0.652599 0.741632i
\(914\) −12.1246 −0.401047
\(915\) 0 0
\(916\) −4.78115 14.7149i −0.157974 0.486193i
\(917\) 7.70163 23.7032i 0.254330 0.782748i
\(918\) −1.69098 1.22857i −0.0558108 0.0405489i
\(919\) 17.2082 + 12.5025i 0.567646 + 0.412419i 0.834249 0.551387i \(-0.185901\pi\)
−0.266603 + 0.963806i \(0.585901\pi\)
\(920\) 0 0
\(921\) 14.3992 + 44.3161i 0.474469 + 1.46027i
\(922\) −29.4615 + 21.4050i −0.970263 + 0.704937i
\(923\) −2.31308 −0.0761360
\(924\) 6.11803 10.3229i 0.201269 0.339597i
\(925\) 0 0
\(926\) 31.2254 22.6866i 1.02613 0.745528i
\(927\) −1.99342 6.13512i −0.0654726 0.201504i
\(928\) 0.163119 0.502029i 0.00535464 0.0164799i
\(929\) 18.9443 + 13.7638i 0.621541 + 0.451576i 0.853460 0.521159i \(-0.174500\pi\)
−0.231918 + 0.972735i \(0.574500\pi\)
\(930\) 0 0
\(931\) −1.61803 + 4.97980i −0.0530289 + 0.163206i
\(932\) 6.28115 + 19.3314i 0.205746 + 0.633221i
\(933\) −5.54508 + 4.02874i −0.181538 + 0.131895i
\(934\) −32.1803 −1.05297
\(935\) 0 0
\(936\) −0.0901699 −0.00294730
\(937\) 19.1353 13.9026i 0.625122 0.454177i −0.229585 0.973289i \(-0.573737\pi\)
0.854707 + 0.519111i \(0.173737\pi\)
\(938\) 6.44427 + 19.8334i 0.210413 + 0.647584i
\(939\) 0.500000 1.53884i 0.0163169 0.0502182i
\(940\) 0 0
\(941\) −20.5172 14.9066i −0.668842 0.485942i 0.200795 0.979633i \(-0.435647\pi\)
−0.869637 + 0.493691i \(0.835647\pi\)
\(942\) 3.38197 10.4086i 0.110190 0.339131i
\(943\) 4.41641 + 13.5923i 0.143818 + 0.442626i
\(944\) 9.28115 6.74315i 0.302076 0.219471i
\(945\) 0 0
\(946\) −28.8435 + 12.4495i −0.937782 + 0.404768i
\(947\) −18.0000 −0.584921 −0.292461 0.956278i \(-0.594474\pi\)
−0.292461 + 0.956278i \(0.594474\pi\)
\(948\) 15.6353 11.3597i 0.507809 0.368945i
\(949\) −0.594235 1.82887i −0.0192897 0.0593676i
\(950\) 0 0
\(951\) −3.66312 2.66141i −0.118785 0.0863022i
\(952\) 0.690983 + 0.502029i 0.0223949 + 0.0162708i
\(953\) 12.7082 39.1118i 0.411659 1.26696i −0.503546 0.863968i \(-0.667972\pi\)
0.915205 0.402988i \(-0.132028\pi\)
\(954\) 0.163119 + 0.502029i 0.00528117 + 0.0162538i
\(955\) 0 0
\(956\) −17.4721 −0.565089
\(957\) −2.76393 0.620541i −0.0893452 0.0200593i
\(958\) −9.94427 −0.321285
\(959\) 28.5172 20.7190i 0.920869 0.669051i
\(960\) 0 0
\(961\) 22.7984 70.1662i 0.735431 2.26343i
\(962\) 1.69098 + 1.22857i 0.0545195 + 0.0396107i
\(963\) −2.52786 1.83660i −0.0814593 0.0591836i
\(964\) 5.56231 17.1190i 0.179150 0.551366i
\(965\) 0 0
\(966\) −11.2812 + 8.19624i −0.362965 + 0.263710i
\(967\) −20.0557 −0.644949 −0.322474 0.946578i \(-0.604515\pi\)
−0.322474 + 0.946578i \(0.604515\pi\)
\(968\) 1.39919 10.9106i 0.0449716 0.350682i
\(969\) 1.61803 0.0519787
\(970\) 0 0
\(971\) 15.6140 + 48.0549i 0.501076 + 1.54215i 0.807269 + 0.590184i \(0.200945\pi\)
−0.306193 + 0.951970i \(0.599055\pi\)
\(972\) 1.21885 3.75123i 0.0390945 0.120321i
\(973\) 5.16312 + 3.75123i 0.165522 + 0.120259i
\(974\) 8.80902 + 6.40013i 0.282259 + 0.205073i
\(975\) 0 0
\(976\) 0.690983 + 2.12663i 0.0221178 + 0.0680717i
\(977\) −6.87132 + 4.99231i −0.219833 + 0.159718i −0.692252 0.721656i \(-0.743381\pi\)
0.472418 + 0.881374i \(0.343381\pi\)
\(978\) 0.291796 0.00933061
\(979\) −42.6525 9.57608i −1.36318 0.306053i
\(980\) 0 0
\(981\) −3.59017 + 2.60841i −0.114625 + 0.0832802i
\(982\) −3.76393 11.5842i −0.120112 0.369666i
\(983\) −8.52786 + 26.2461i −0.271997 + 0.837120i 0.718002 + 0.696041i \(0.245057\pi\)
−0.989998 + 0.141078i \(0.954943\pi\)
\(984\) −4.85410 3.52671i −0.154743 0.112427i
\(985\) 0 0
\(986\) 0.0623059 0.191758i 0.00198422 0.00610681i
\(987\) 0.263932 + 0.812299i 0.00840105 + 0.0258558i
\(988\) 0.500000 0.363271i 0.0159071 0.0115572i
\(989\) 36.5066 1.16084
\(990\) 0 0
\(991\) −2.11146 −0.0670726 −0.0335363 0.999437i \(-0.510677\pi\)
−0.0335363 + 0.999437i \(0.510677\pi\)
\(992\) −8.28115 + 6.01661i −0.262927 + 0.191028i
\(993\) −8.47214 26.0746i −0.268855 0.827451i
\(994\) −6.77051 + 20.8375i −0.214748 + 0.660925i
\(995\) 0 0
\(996\) −11.7812 8.55951i −0.373300 0.271218i
\(997\) 8.93363 27.4949i 0.282931 0.870772i −0.704080 0.710120i \(-0.748641\pi\)
0.987011 0.160651i \(-0.0513595\pi\)
\(998\) −4.77458 14.6946i −0.151137 0.465150i
\(999\) −39.1976 + 28.4787i −1.24016 + 0.901026i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 550.2.h.g.201.1 yes 4
5.2 odd 4 550.2.ba.e.399.2 8
5.3 odd 4 550.2.ba.e.399.1 8
5.4 even 2 550.2.h.c.201.1 4
11.2 odd 10 6050.2.a.cr.1.2 2
11.4 even 5 inner 550.2.h.g.301.1 yes 4
11.9 even 5 6050.2.a.ca.1.2 2
55.4 even 10 550.2.h.c.301.1 yes 4
55.9 even 10 6050.2.a.co.1.1 2
55.24 odd 10 6050.2.a.bx.1.1 2
55.37 odd 20 550.2.ba.e.499.1 8
55.48 odd 20 550.2.ba.e.499.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
550.2.h.c.201.1 4 5.4 even 2
550.2.h.c.301.1 yes 4 55.4 even 10
550.2.h.g.201.1 yes 4 1.1 even 1 trivial
550.2.h.g.301.1 yes 4 11.4 even 5 inner
550.2.ba.e.399.1 8 5.3 odd 4
550.2.ba.e.399.2 8 5.2 odd 4
550.2.ba.e.499.1 8 55.37 odd 20
550.2.ba.e.499.2 8 55.48 odd 20
6050.2.a.bx.1.1 2 55.24 odd 10
6050.2.a.ca.1.2 2 11.9 even 5
6050.2.a.co.1.1 2 55.9 even 10
6050.2.a.cr.1.2 2 11.2 odd 10