Newspace parameters
Level: | \( N \) | \(=\) | \( 550 = 2 \cdot 5^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 550.g (of order \(5\), degree \(4\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(4.39177211117\) |
Analytic rank: | \(0\) |
Dimension: | \(60\) |
Relative dimension: | \(15\) over \(\Q(\zeta_{5})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
291.1 | 0.309017 | − | 0.951057i | −1.05249 | + | 3.23923i | −0.809017 | − | 0.587785i | 0.949639 | − | 2.02440i | 2.75546 | + | 2.00196i | −1.13526 | + | 0.824814i | −0.809017 | + | 0.587785i | −6.95785 | − | 5.05517i | −1.63186 | − | 1.52873i |
291.2 | 0.309017 | − | 0.951057i | −0.807690 | + | 2.48582i | −0.809017 | − | 0.587785i | −2.21989 | − | 0.268513i | 2.11456 | + | 1.53632i | 3.23079 | − | 2.34731i | −0.809017 | + | 0.587785i | −3.09986 | − | 2.25218i | −0.941354 | + | 2.02826i |
291.3 | 0.309017 | − | 0.951057i | −0.805027 | + | 2.47762i | −0.809017 | − | 0.587785i | 1.01112 | + | 1.99440i | 2.10759 | + | 1.53125i | 2.12811 | − | 1.54617i | −0.809017 | + | 0.587785i | −3.06348 | − | 2.22575i | 2.20924 | − | 0.345330i |
291.4 | 0.309017 | − | 0.951057i | −0.391447 | + | 1.20475i | −0.809017 | − | 0.587785i | −1.60082 | − | 1.56121i | 1.02482 | + | 0.744577i | −1.25694 | + | 0.913224i | −0.809017 | + | 0.587785i | 1.12886 | + | 0.820164i | −1.97948 | + | 1.04003i |
291.5 | 0.309017 | − | 0.951057i | −0.347673 | + | 1.07003i | −0.809017 | − | 0.587785i | 2.09898 | + | 0.770911i | 0.910220 | + | 0.661314i | 0.0285107 | − | 0.0207142i | −0.809017 | + | 0.587785i | 1.40297 | + | 1.01932i | 1.38180 | − | 1.75802i |
291.6 | 0.309017 | − | 0.951057i | −0.337394 | + | 1.03839i | −0.809017 | − | 0.587785i | 1.58445 | − | 1.57782i | 0.883308 | + | 0.641761i | −3.75459 | + | 2.72787i | −0.809017 | + | 0.587785i | 1.46263 | + | 1.06266i | −1.01097 | − | 1.99448i |
291.7 | 0.309017 | − | 0.951057i | −0.118638 | + | 0.365131i | −0.809017 | − | 0.587785i | −2.11479 | − | 0.726402i | 0.310599 | + | 0.225664i | −1.38138 | + | 1.00363i | −0.809017 | + | 0.587785i | 2.30781 | + | 1.67672i | −1.34436 | + | 1.78682i |
291.8 | 0.309017 | − | 0.951057i | −0.0527535 | + | 0.162358i | −0.809017 | − | 0.587785i | 0.755692 | − | 2.10450i | 0.138110 | + | 0.100343i | 3.80372 | − | 2.76356i | −0.809017 | + | 0.587785i | 2.40347 | + | 1.74623i | −1.76798 | − | 1.36903i |
291.9 | 0.309017 | − | 0.951057i | 0.133515 | − | 0.410916i | −0.809017 | − | 0.587785i | −1.52224 | + | 1.63792i | −0.349546 | − | 0.253960i | 1.47926 | − | 1.07475i | −0.809017 | + | 0.587785i | 2.27603 | + | 1.65363i | 1.08735 | + | 1.95388i |
291.10 | 0.309017 | − | 0.951057i | 0.211038 | − | 0.649508i | −0.809017 | − | 0.587785i | 0.918435 | + | 2.03874i | −0.552504 | − | 0.401418i | −3.50766 | + | 2.54847i | −0.809017 | + | 0.587785i | 2.04973 | + | 1.48921i | 2.22277 | − | 0.243478i |
291.11 | 0.309017 | − | 0.951057i | 0.485103 | − | 1.49299i | −0.809017 | − | 0.587785i | 1.93438 | + | 1.12168i | −1.27001 | − | 0.922720i | 0.831135 | − | 0.603855i | −0.809017 | + | 0.587785i | 0.433350 | + | 0.314847i | 1.66454 | − | 1.49309i |
291.12 | 0.309017 | − | 0.951057i | 0.541268 | − | 1.66585i | −0.809017 | − | 0.587785i | 0.244213 | − | 2.22269i | −1.41706 | − | 1.02955i | −1.01444 | + | 0.737034i | −0.809017 | + | 0.587785i | −0.0550374 | − | 0.0399870i | −2.03844 | − | 0.919110i |
291.13 | 0.309017 | − | 0.951057i | 0.808711 | − | 2.48896i | −0.809017 | − | 0.587785i | −1.57774 | + | 1.58453i | −2.11723 | − | 1.53826i | −3.91599 | + | 2.84513i | −0.809017 | + | 0.587785i | −3.11384 | − | 2.26234i | 1.01943 | + | 1.99017i |
291.14 | 0.309017 | − | 0.951057i | 0.834075 | − | 2.56702i | −0.809017 | − | 0.587785i | −1.52907 | − | 1.63155i | −2.18364 | − | 1.58651i | 2.81132 | − | 2.04255i | −0.809017 | + | 0.587785i | −3.46686 | − | 2.51882i | −2.02420 | + | 0.950058i |
291.15 | 0.309017 | − | 0.951057i | 1.01744 | − | 3.13136i | −0.809017 | − | 0.587785i | 2.18567 | − | 0.472054i | −2.66369 | − | 1.93528i | −0.773637 | + | 0.562080i | −0.809017 | + | 0.587785i | −6.34316 | − | 4.60857i | 0.226460 | − | 2.22457i |
361.1 | 0.309017 | + | 0.951057i | −1.05249 | − | 3.23923i | −0.809017 | + | 0.587785i | 0.949639 | + | 2.02440i | 2.75546 | − | 2.00196i | −1.13526 | − | 0.824814i | −0.809017 | − | 0.587785i | −6.95785 | + | 5.05517i | −1.63186 | + | 1.52873i |
361.2 | 0.309017 | + | 0.951057i | −0.807690 | − | 2.48582i | −0.809017 | + | 0.587785i | −2.21989 | + | 0.268513i | 2.11456 | − | 1.53632i | 3.23079 | + | 2.34731i | −0.809017 | − | 0.587785i | −3.09986 | + | 2.25218i | −0.941354 | − | 2.02826i |
361.3 | 0.309017 | + | 0.951057i | −0.805027 | − | 2.47762i | −0.809017 | + | 0.587785i | 1.01112 | − | 1.99440i | 2.10759 | − | 1.53125i | 2.12811 | + | 1.54617i | −0.809017 | − | 0.587785i | −3.06348 | + | 2.22575i | 2.20924 | + | 0.345330i |
361.4 | 0.309017 | + | 0.951057i | −0.391447 | − | 1.20475i | −0.809017 | + | 0.587785i | −1.60082 | + | 1.56121i | 1.02482 | − | 0.744577i | −1.25694 | − | 0.913224i | −0.809017 | − | 0.587785i | 1.12886 | − | 0.820164i | −1.97948 | − | 1.04003i |
361.5 | 0.309017 | + | 0.951057i | −0.347673 | − | 1.07003i | −0.809017 | + | 0.587785i | 2.09898 | − | 0.770911i | 0.910220 | − | 0.661314i | 0.0285107 | + | 0.0207142i | −0.809017 | − | 0.587785i | 1.40297 | − | 1.01932i | 1.38180 | + | 1.75802i |
See all 60 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
275.g | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 550.2.g.c | ✓ | 60 |
11.c | even | 5 | 1 | 550.2.j.c | yes | 60 | |
25.d | even | 5 | 1 | 550.2.j.c | yes | 60 | |
275.g | even | 5 | 1 | inner | 550.2.g.c | ✓ | 60 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
550.2.g.c | ✓ | 60 | 1.a | even | 1 | 1 | trivial |
550.2.g.c | ✓ | 60 | 275.g | even | 5 | 1 | inner |
550.2.j.c | yes | 60 | 11.c | even | 5 | 1 | |
550.2.j.c | yes | 60 | 25.d | even | 5 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{60} + 4 T_{3}^{59} + 39 T_{3}^{58} + 132 T_{3}^{57} + 817 T_{3}^{56} + 2444 T_{3}^{55} + \cdots + 2253001 \)
acting on \(S_{2}^{\mathrm{new}}(550, [\chi])\).