Properties

Label 550.2.ba.e.399.1
Level $550$
Weight $2$
Character 550.399
Analytic conductor $4.392$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [550,2,Mod(49,550)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("550.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(550, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([5, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 550 = 2 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 550.ba (of order \(10\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,2,0,6,0,0,2,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.39177211117\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\Q(\zeta_{20})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{6} + x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 399.1
Root \(-0.587785 - 0.809017i\) of defining polynomial
Character \(\chi\) \(=\) 550.399
Dual form 550.2.ba.e.499.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.587785 - 0.809017i) q^{2} +(-1.53884 + 0.500000i) q^{3} +(-0.309017 + 0.951057i) q^{4} +(1.30902 + 0.951057i) q^{6} +(-2.12663 - 0.690983i) q^{7} +(0.951057 - 0.309017i) q^{8} +(-0.309017 + 0.224514i) q^{9} +(3.23607 + 0.726543i) q^{11} -1.61803i q^{12} +(0.138757 + 0.190983i) q^{13} +(0.690983 + 2.12663i) q^{14} +(-0.809017 - 0.587785i) q^{16} +(-0.224514 + 0.309017i) q^{17} +(0.363271 + 0.118034i) q^{18} +(-0.809017 - 2.48990i) q^{19} +3.61803 q^{21} +(-1.31433 - 3.04508i) q^{22} -3.85410i q^{23} +(-1.30902 + 0.951057i) q^{24} +(0.0729490 - 0.224514i) q^{26} +(3.21644 - 4.42705i) q^{27} +(1.31433 - 1.80902i) q^{28} +(0.163119 - 0.502029i) q^{29} +(8.28115 - 6.01661i) q^{31} +1.00000i q^{32} +(-5.34307 + 0.500000i) q^{33} +0.381966 q^{34} +(-0.118034 - 0.363271i) q^{36} +(8.42075 + 2.73607i) q^{37} +(-1.53884 + 2.11803i) q^{38} +(-0.309017 - 0.224514i) q^{39} +(-1.14590 - 3.52671i) q^{41} +(-2.12663 - 2.92705i) q^{42} -9.47214i q^{43} +(-1.69098 + 2.85317i) q^{44} +(-3.11803 + 2.26538i) q^{46} +(0.224514 - 0.0729490i) q^{47} +(1.53884 + 0.500000i) q^{48} +(-1.61803 - 1.17557i) q^{49} +(0.190983 - 0.587785i) q^{51} +(-0.224514 + 0.0729490i) q^{52} +(-0.812299 - 1.11803i) q^{53} -5.47214 q^{54} -2.23607 q^{56} +(2.48990 + 3.42705i) q^{57} +(-0.502029 + 0.163119i) q^{58} +(3.54508 - 10.9106i) q^{59} +(-1.80902 - 1.31433i) q^{61} +(-9.73508 - 3.16312i) q^{62} +(0.812299 - 0.263932i) q^{63} +(0.809017 - 0.587785i) q^{64} +(3.54508 + 4.02874i) q^{66} +9.32624i q^{67} +(-0.224514 - 0.309017i) q^{68} +(1.92705 + 5.93085i) q^{69} +(-7.92705 - 5.75934i) q^{71} +(-0.224514 + 0.309017i) q^{72} +(7.74721 + 2.51722i) q^{73} +(-2.73607 - 8.42075i) q^{74} +2.61803 q^{76} +(-6.37988 - 3.78115i) q^{77} +0.381966i q^{78} +(-9.66312 + 7.02067i) q^{79} +(-2.38197 + 7.33094i) q^{81} +(-2.17963 + 3.00000i) q^{82} +(5.29007 - 7.28115i) q^{83} +(-1.11803 + 3.44095i) q^{84} +(-7.66312 + 5.56758i) q^{86} +0.854102i q^{87} +(3.30220 - 0.309017i) q^{88} +13.1803 q^{89} +(-0.163119 - 0.502029i) q^{91} +(3.66547 + 1.19098i) q^{92} +(-9.73508 + 13.3992i) q^{93} +(-0.190983 - 0.138757i) q^{94} +(-0.500000 - 1.53884i) q^{96} +(7.05342 + 9.70820i) q^{97} +2.00000i q^{98} +(-1.16312 + 0.502029i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{4} + 6 q^{6} + 2 q^{9} + 8 q^{11} + 10 q^{14} - 2 q^{16} - 2 q^{19} + 20 q^{21} - 6 q^{24} + 14 q^{26} - 30 q^{29} + 26 q^{31} + 12 q^{34} + 8 q^{36} + 2 q^{39} - 36 q^{41} - 18 q^{44} - 16 q^{46}+ \cdots + 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/550\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.587785 0.809017i −0.415627 0.572061i
\(3\) −1.53884 + 0.500000i −0.888451 + 0.288675i −0.717462 0.696598i \(-0.754696\pi\)
−0.170989 + 0.985273i \(0.554696\pi\)
\(4\) −0.309017 + 0.951057i −0.154508 + 0.475528i
\(5\) 0 0
\(6\) 1.30902 + 0.951057i 0.534404 + 0.388267i
\(7\) −2.12663 0.690983i −0.803789 0.261167i −0.121824 0.992552i \(-0.538874\pi\)
−0.681965 + 0.731385i \(0.738874\pi\)
\(8\) 0.951057 0.309017i 0.336249 0.109254i
\(9\) −0.309017 + 0.224514i −0.103006 + 0.0748380i
\(10\) 0 0
\(11\) 3.23607 + 0.726543i 0.975711 + 0.219061i
\(12\) 1.61803i 0.467086i
\(13\) 0.138757 + 0.190983i 0.0384843 + 0.0529692i 0.827826 0.560986i \(-0.189578\pi\)
−0.789341 + 0.613955i \(0.789578\pi\)
\(14\) 0.690983 + 2.12663i 0.184673 + 0.568365i
\(15\) 0 0
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) −0.224514 + 0.309017i −0.0544526 + 0.0749476i −0.835375 0.549681i \(-0.814749\pi\)
0.780922 + 0.624628i \(0.214749\pi\)
\(18\) 0.363271 + 0.118034i 0.0856239 + 0.0278209i
\(19\) −0.809017 2.48990i −0.185601 0.571222i 0.814357 0.580364i \(-0.197090\pi\)
−0.999958 + 0.00914245i \(0.997090\pi\)
\(20\) 0 0
\(21\) 3.61803 0.789520
\(22\) −1.31433 3.04508i −0.280216 0.649214i
\(23\) 3.85410i 0.803636i −0.915720 0.401818i \(-0.868378\pi\)
0.915720 0.401818i \(-0.131622\pi\)
\(24\) −1.30902 + 0.951057i −0.267202 + 0.194134i
\(25\) 0 0
\(26\) 0.0729490 0.224514i 0.0143065 0.0440308i
\(27\) 3.21644 4.42705i 0.619004 0.851986i
\(28\) 1.31433 1.80902i 0.248385 0.341872i
\(29\) 0.163119 0.502029i 0.0302904 0.0932244i −0.934768 0.355258i \(-0.884393\pi\)
0.965059 + 0.262033i \(0.0843931\pi\)
\(30\) 0 0
\(31\) 8.28115 6.01661i 1.48734 1.08062i 0.512241 0.858842i \(-0.328816\pi\)
0.975098 0.221773i \(-0.0711844\pi\)
\(32\) 1.00000i 0.176777i
\(33\) −5.34307 + 0.500000i −0.930109 + 0.0870388i
\(34\) 0.381966 0.0655066
\(35\) 0 0
\(36\) −0.118034 0.363271i −0.0196723 0.0605452i
\(37\) 8.42075 + 2.73607i 1.38436 + 0.449807i 0.904101 0.427318i \(-0.140542\pi\)
0.480262 + 0.877125i \(0.340542\pi\)
\(38\) −1.53884 + 2.11803i −0.249633 + 0.343590i
\(39\) −0.309017 0.224514i −0.0494823 0.0359510i
\(40\) 0 0
\(41\) −1.14590 3.52671i −0.178959 0.550780i 0.820833 0.571168i \(-0.193510\pi\)
−0.999792 + 0.0203886i \(0.993510\pi\)
\(42\) −2.12663 2.92705i −0.328146 0.451654i
\(43\) 9.47214i 1.44449i −0.691639 0.722244i \(-0.743111\pi\)
0.691639 0.722244i \(-0.256889\pi\)
\(44\) −1.69098 + 2.85317i −0.254925 + 0.430131i
\(45\) 0 0
\(46\) −3.11803 + 2.26538i −0.459729 + 0.334013i
\(47\) 0.224514 0.0729490i 0.0327487 0.0106407i −0.292597 0.956236i \(-0.594519\pi\)
0.325346 + 0.945595i \(0.394519\pi\)
\(48\) 1.53884 + 0.500000i 0.222113 + 0.0721688i
\(49\) −1.61803 1.17557i −0.231148 0.167939i
\(50\) 0 0
\(51\) 0.190983 0.587785i 0.0267430 0.0823064i
\(52\) −0.224514 + 0.0729490i −0.0311345 + 0.0101162i
\(53\) −0.812299 1.11803i −0.111578 0.153574i 0.749576 0.661919i \(-0.230258\pi\)
−0.861154 + 0.508345i \(0.830258\pi\)
\(54\) −5.47214 −0.744663
\(55\) 0 0
\(56\) −2.23607 −0.298807
\(57\) 2.48990 + 3.42705i 0.329795 + 0.453924i
\(58\) −0.502029 + 0.163119i −0.0659196 + 0.0214186i
\(59\) 3.54508 10.9106i 0.461531 1.42045i −0.401763 0.915744i \(-0.631602\pi\)
0.863294 0.504702i \(-0.168398\pi\)
\(60\) 0 0
\(61\) −1.80902 1.31433i −0.231621 0.168282i 0.465921 0.884826i \(-0.345723\pi\)
−0.697542 + 0.716544i \(0.745723\pi\)
\(62\) −9.73508 3.16312i −1.23636 0.401717i
\(63\) 0.812299 0.263932i 0.102340 0.0332523i
\(64\) 0.809017 0.587785i 0.101127 0.0734732i
\(65\) 0 0
\(66\) 3.54508 + 4.02874i 0.436370 + 0.495904i
\(67\) 9.32624i 1.13938i 0.821859 + 0.569691i \(0.192937\pi\)
−0.821859 + 0.569691i \(0.807063\pi\)
\(68\) −0.224514 0.309017i −0.0272263 0.0374738i
\(69\) 1.92705 + 5.93085i 0.231990 + 0.713991i
\(70\) 0 0
\(71\) −7.92705 5.75934i −0.940768 0.683508i 0.00783751 0.999969i \(-0.497505\pi\)
−0.948605 + 0.316461i \(0.897505\pi\)
\(72\) −0.224514 + 0.309017i −0.0264592 + 0.0364180i
\(73\) 7.74721 + 2.51722i 0.906742 + 0.294618i 0.725017 0.688731i \(-0.241832\pi\)
0.181725 + 0.983349i \(0.441832\pi\)
\(74\) −2.73607 8.42075i −0.318061 0.978892i
\(75\) 0 0
\(76\) 2.61803 0.300309
\(77\) −6.37988 3.78115i −0.727055 0.430902i
\(78\) 0.381966i 0.0432491i
\(79\) −9.66312 + 7.02067i −1.08719 + 0.789887i −0.978922 0.204235i \(-0.934529\pi\)
−0.108264 + 0.994122i \(0.534529\pi\)
\(80\) 0 0
\(81\) −2.38197 + 7.33094i −0.264663 + 0.814549i
\(82\) −2.17963 + 3.00000i −0.240700 + 0.331295i
\(83\) 5.29007 7.28115i 0.580660 0.799210i −0.413107 0.910682i \(-0.635557\pi\)
0.993768 + 0.111472i \(0.0355565\pi\)
\(84\) −1.11803 + 3.44095i −0.121988 + 0.375439i
\(85\) 0 0
\(86\) −7.66312 + 5.56758i −0.826335 + 0.600368i
\(87\) 0.854102i 0.0915693i
\(88\) 3.30220 0.309017i 0.352015 0.0329413i
\(89\) 13.1803 1.39711 0.698557 0.715555i \(-0.253826\pi\)
0.698557 + 0.715555i \(0.253826\pi\)
\(90\) 0 0
\(91\) −0.163119 0.502029i −0.0170995 0.0526269i
\(92\) 3.66547 + 1.19098i 0.382152 + 0.124169i
\(93\) −9.73508 + 13.3992i −1.00948 + 1.38943i
\(94\) −0.190983 0.138757i −0.0196984 0.0143117i
\(95\) 0 0
\(96\) −0.500000 1.53884i −0.0510310 0.157057i
\(97\) 7.05342 + 9.70820i 0.716167 + 0.985719i 0.999642 + 0.0267394i \(0.00851242\pi\)
−0.283476 + 0.958979i \(0.591488\pi\)
\(98\) 2.00000i 0.202031i
\(99\) −1.16312 + 0.502029i −0.116898 + 0.0504558i
\(100\) 0 0
\(101\) −15.1353 + 10.9964i −1.50601 + 1.09418i −0.538107 + 0.842877i \(0.680860\pi\)
−0.967908 + 0.251307i \(0.919140\pi\)
\(102\) −0.587785 + 0.190983i −0.0581994 + 0.0189101i
\(103\) 16.0620 + 5.21885i 1.58263 + 0.514228i 0.962733 0.270453i \(-0.0871736\pi\)
0.619899 + 0.784682i \(0.287174\pi\)
\(104\) 0.190983 + 0.138757i 0.0187274 + 0.0136063i
\(105\) 0 0
\(106\) −0.427051 + 1.31433i −0.0414789 + 0.127659i
\(107\) −7.77997 + 2.52786i −0.752118 + 0.244378i −0.659892 0.751360i \(-0.729398\pi\)
−0.0922255 + 0.995738i \(0.529398\pi\)
\(108\) 3.21644 + 4.42705i 0.309502 + 0.425993i
\(109\) 11.6180 1.11281 0.556403 0.830913i \(-0.312181\pi\)
0.556403 + 0.830913i \(0.312181\pi\)
\(110\) 0 0
\(111\) −14.3262 −1.35979
\(112\) 1.31433 + 1.80902i 0.124192 + 0.170936i
\(113\) −13.9883 + 4.54508i −1.31591 + 0.427566i −0.881089 0.472950i \(-0.843189\pi\)
−0.434823 + 0.900516i \(0.643189\pi\)
\(114\) 1.30902 4.02874i 0.122601 0.377326i
\(115\) 0 0
\(116\) 0.427051 + 0.310271i 0.0396507 + 0.0288079i
\(117\) −0.0857567 0.0278640i −0.00792821 0.00257603i
\(118\) −10.9106 + 3.54508i −1.00441 + 0.326352i
\(119\) 0.690983 0.502029i 0.0633423 0.0460209i
\(120\) 0 0
\(121\) 9.94427 + 4.70228i 0.904025 + 0.427480i
\(122\) 2.23607i 0.202444i
\(123\) 3.52671 + 4.85410i 0.317993 + 0.437680i
\(124\) 3.16312 + 9.73508i 0.284056 + 0.874236i
\(125\) 0 0
\(126\) −0.690983 0.502029i −0.0615577 0.0447243i
\(127\) 1.71036 2.35410i 0.151769 0.208893i −0.726362 0.687313i \(-0.758790\pi\)
0.878131 + 0.478420i \(0.158790\pi\)
\(128\) −0.951057 0.309017i −0.0840623 0.0273135i
\(129\) 4.73607 + 14.5761i 0.416988 + 1.28336i
\(130\) 0 0
\(131\) 11.1459 0.973822 0.486911 0.873452i \(-0.338124\pi\)
0.486911 + 0.873452i \(0.338124\pi\)
\(132\) 1.17557 5.23607i 0.102320 0.455741i
\(133\) 5.85410i 0.507615i
\(134\) 7.54508 5.48183i 0.651796 0.473558i
\(135\) 0 0
\(136\) −0.118034 + 0.363271i −0.0101213 + 0.0311503i
\(137\) 9.26581 12.7533i 0.791631 1.08959i −0.202272 0.979329i \(-0.564832\pi\)
0.993903 0.110258i \(-0.0351676\pi\)
\(138\) 3.66547 5.04508i 0.312025 0.429466i
\(139\) 0.881966 2.71441i 0.0748074 0.230233i −0.906660 0.421862i \(-0.861377\pi\)
0.981468 + 0.191628i \(0.0613768\pi\)
\(140\) 0 0
\(141\) −0.309017 + 0.224514i −0.0260239 + 0.0189075i
\(142\) 9.79837i 0.822261i
\(143\) 0.310271 + 0.718847i 0.0259461 + 0.0601130i
\(144\) 0.381966 0.0318305
\(145\) 0 0
\(146\) −2.51722 7.74721i −0.208327 0.641164i
\(147\) 3.07768 + 1.00000i 0.253843 + 0.0824786i
\(148\) −5.20431 + 7.16312i −0.427792 + 0.588805i
\(149\) −8.66312 6.29412i −0.709710 0.515635i 0.173370 0.984857i \(-0.444534\pi\)
−0.883080 + 0.469222i \(0.844534\pi\)
\(150\) 0 0
\(151\) −5.88197 18.1028i −0.478668 1.47319i −0.840947 0.541118i \(-0.818001\pi\)
0.362279 0.932070i \(-0.381999\pi\)
\(152\) −1.53884 2.11803i −0.124817 0.171795i
\(153\) 0.145898i 0.0117952i
\(154\) 0.690983 + 7.38394i 0.0556810 + 0.595015i
\(155\) 0 0
\(156\) 0.309017 0.224514i 0.0247412 0.0179755i
\(157\) −6.43288 + 2.09017i −0.513400 + 0.166814i −0.554248 0.832352i \(-0.686994\pi\)
0.0408481 + 0.999165i \(0.486994\pi\)
\(158\) 11.3597 + 3.69098i 0.903727 + 0.293639i
\(159\) 1.80902 + 1.31433i 0.143464 + 0.104233i
\(160\) 0 0
\(161\) −2.66312 + 8.19624i −0.209883 + 0.645954i
\(162\) 7.33094 2.38197i 0.575973 0.187145i
\(163\) 0.106001 + 0.145898i 0.00830265 + 0.0114276i 0.813148 0.582057i \(-0.197752\pi\)
−0.804845 + 0.593484i \(0.797752\pi\)
\(164\) 3.70820 0.289562
\(165\) 0 0
\(166\) −9.00000 −0.698535
\(167\) 1.31433 + 1.80902i 0.101706 + 0.139986i 0.856836 0.515588i \(-0.172427\pi\)
−0.755131 + 0.655574i \(0.772427\pi\)
\(168\) 3.44095 1.11803i 0.265475 0.0862582i
\(169\) 4.00000 12.3107i 0.307692 0.946980i
\(170\) 0 0
\(171\) 0.809017 + 0.587785i 0.0618671 + 0.0449491i
\(172\) 9.00854 + 2.92705i 0.686894 + 0.223186i
\(173\) −12.6740 + 4.11803i −0.963587 + 0.313088i −0.748224 0.663446i \(-0.769093\pi\)
−0.215362 + 0.976534i \(0.569093\pi\)
\(174\) 0.690983 0.502029i 0.0523833 0.0380587i
\(175\) 0 0
\(176\) −2.19098 2.48990i −0.165152 0.187683i
\(177\) 18.5623i 1.39523i
\(178\) −7.74721 10.6631i −0.580678 0.799235i
\(179\) −4.52786 13.9353i −0.338428 1.04158i −0.965009 0.262219i \(-0.915546\pi\)
0.626580 0.779357i \(-0.284454\pi\)
\(180\) 0 0
\(181\) 5.70820 + 4.14725i 0.424287 + 0.308263i 0.779361 0.626576i \(-0.215544\pi\)
−0.355073 + 0.934839i \(0.615544\pi\)
\(182\) −0.310271 + 0.427051i −0.0229988 + 0.0316551i
\(183\) 3.44095 + 1.11803i 0.254363 + 0.0826475i
\(184\) −1.19098 3.66547i −0.0878004 0.270222i
\(185\) 0 0
\(186\) 16.5623 1.21441
\(187\) −0.951057 + 0.836881i −0.0695481 + 0.0611988i
\(188\) 0.236068i 0.0172170i
\(189\) −9.89919 + 7.19218i −0.720060 + 0.523154i
\(190\) 0 0
\(191\) −6.13525 + 18.8824i −0.443931 + 1.36628i 0.439720 + 0.898135i \(0.355078\pi\)
−0.883651 + 0.468146i \(0.844922\pi\)
\(192\) −0.951057 + 1.30902i −0.0686366 + 0.0944702i
\(193\) −1.43284 + 1.97214i −0.103138 + 0.141957i −0.857466 0.514540i \(-0.827963\pi\)
0.754328 + 0.656497i \(0.227963\pi\)
\(194\) 3.70820 11.4127i 0.266234 0.819383i
\(195\) 0 0
\(196\) 1.61803 1.17557i 0.115574 0.0839693i
\(197\) 27.5967i 1.96619i −0.183105 0.983093i \(-0.558615\pi\)
0.183105 0.983093i \(-0.441385\pi\)
\(198\) 1.08981 + 0.645898i 0.0774497 + 0.0459020i
\(199\) 1.29180 0.0915730 0.0457865 0.998951i \(-0.485421\pi\)
0.0457865 + 0.998951i \(0.485421\pi\)
\(200\) 0 0
\(201\) −4.66312 14.3516i −0.328911 1.01228i
\(202\) 17.7926 + 5.78115i 1.25188 + 0.406761i
\(203\) −0.693786 + 0.954915i −0.0486943 + 0.0670219i
\(204\) 0.500000 + 0.363271i 0.0350070 + 0.0254341i
\(205\) 0 0
\(206\) −5.21885 16.0620i −0.363614 1.11909i
\(207\) 0.865300 + 1.19098i 0.0601425 + 0.0827790i
\(208\) 0.236068i 0.0163684i
\(209\) −0.809017 8.64527i −0.0559609 0.598006i
\(210\) 0 0
\(211\) −11.7361 + 8.52675i −0.807944 + 0.587006i −0.913234 0.407436i \(-0.866423\pi\)
0.105290 + 0.994442i \(0.466423\pi\)
\(212\) 1.31433 0.427051i 0.0902684 0.0293300i
\(213\) 15.0781 + 4.89919i 1.03314 + 0.335687i
\(214\) 6.61803 + 4.80828i 0.452399 + 0.328687i
\(215\) 0 0
\(216\) 1.69098 5.20431i 0.115057 0.354108i
\(217\) −21.7683 + 7.07295i −1.47773 + 0.480143i
\(218\) −6.82891 9.39919i −0.462512 0.636593i
\(219\) −13.1803 −0.890645
\(220\) 0 0
\(221\) −0.0901699 −0.00606549
\(222\) 8.42075 + 11.5902i 0.565164 + 0.777881i
\(223\) −1.95511 + 0.635255i −0.130924 + 0.0425398i −0.373746 0.927531i \(-0.621927\pi\)
0.242822 + 0.970071i \(0.421927\pi\)
\(224\) 0.690983 2.12663i 0.0461682 0.142091i
\(225\) 0 0
\(226\) 11.8992 + 8.64527i 0.791522 + 0.575074i
\(227\) −18.7764 6.10081i −1.24623 0.404925i −0.389663 0.920958i \(-0.627408\pi\)
−0.856569 + 0.516033i \(0.827408\pi\)
\(228\) −4.02874 + 1.30902i −0.266810 + 0.0866918i
\(229\) −12.5172 + 9.09429i −0.827161 + 0.600968i −0.918755 0.394829i \(-0.870804\pi\)
0.0915935 + 0.995796i \(0.470804\pi\)
\(230\) 0 0
\(231\) 11.7082 + 2.62866i 0.770343 + 0.172953i
\(232\) 0.527864i 0.0346560i
\(233\) −11.9475 16.4443i −0.782704 1.07730i −0.994978 0.100090i \(-0.968087\pi\)
0.212274 0.977210i \(-0.431913\pi\)
\(234\) 0.0278640 + 0.0857567i 0.00182153 + 0.00560609i
\(235\) 0 0
\(236\) 9.28115 + 6.74315i 0.604152 + 0.438942i
\(237\) 11.3597 15.6353i 0.737890 1.01562i
\(238\) −0.812299 0.263932i −0.0526535 0.0171082i
\(239\) 5.39919 + 16.6170i 0.349244 + 1.07486i 0.959272 + 0.282484i \(0.0911583\pi\)
−0.610028 + 0.792380i \(0.708842\pi\)
\(240\) 0 0
\(241\) 18.0000 1.15948 0.579741 0.814801i \(-0.303154\pi\)
0.579741 + 0.814801i \(0.303154\pi\)
\(242\) −2.04087 10.8090i −0.131192 0.694830i
\(243\) 3.94427i 0.253025i
\(244\) 1.80902 1.31433i 0.115810 0.0841412i
\(245\) 0 0
\(246\) 1.85410 5.70634i 0.118213 0.363823i
\(247\) 0.363271 0.500000i 0.0231144 0.0318142i
\(248\) 6.01661 8.28115i 0.382055 0.525854i
\(249\) −4.50000 + 13.8496i −0.285176 + 0.877681i
\(250\) 0 0
\(251\) −3.88197 + 2.82041i −0.245028 + 0.178023i −0.703520 0.710675i \(-0.748390\pi\)
0.458493 + 0.888698i \(0.348390\pi\)
\(252\) 0.854102i 0.0538034i
\(253\) 2.80017 12.4721i 0.176045 0.784116i
\(254\) −2.90983 −0.182579
\(255\) 0 0
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) −13.1760 4.28115i −0.821898 0.267051i −0.132269 0.991214i \(-0.542226\pi\)
−0.689629 + 0.724163i \(0.742226\pi\)
\(258\) 9.00854 12.3992i 0.560847 0.771940i
\(259\) −16.0172 11.6372i −0.995262 0.723100i
\(260\) 0 0
\(261\) 0.0623059 + 0.191758i 0.00385664 + 0.0118695i
\(262\) −6.55139 9.01722i −0.404747 0.557086i
\(263\) 16.0902i 0.992162i −0.868276 0.496081i \(-0.834772\pi\)
0.868276 0.496081i \(-0.165228\pi\)
\(264\) −4.92705 + 2.12663i −0.303239 + 0.130885i
\(265\) 0 0
\(266\) 4.73607 3.44095i 0.290387 0.210978i
\(267\) −20.2825 + 6.59017i −1.24127 + 0.403312i
\(268\) −8.86978 2.88197i −0.541808 0.176044i
\(269\) 8.01722 + 5.82485i 0.488819 + 0.355147i 0.804730 0.593641i \(-0.202310\pi\)
−0.315911 + 0.948789i \(0.602310\pi\)
\(270\) 0 0
\(271\) 8.64590 26.6093i 0.525201 1.61640i −0.238717 0.971089i \(-0.576727\pi\)
0.763918 0.645313i \(-0.223273\pi\)
\(272\) 0.363271 0.118034i 0.0220266 0.00715686i
\(273\) 0.502029 + 0.690983i 0.0303841 + 0.0418202i
\(274\) −15.7639 −0.952334
\(275\) 0 0
\(276\) −6.23607 −0.375367
\(277\) −11.3067 15.5623i −0.679352 0.935048i 0.320573 0.947224i \(-0.396124\pi\)
−0.999926 + 0.0121753i \(0.996124\pi\)
\(278\) −2.71441 + 0.881966i −0.162800 + 0.0528968i
\(279\) −1.20820 + 3.71847i −0.0723333 + 0.222619i
\(280\) 0 0
\(281\) 18.7082 + 13.5923i 1.11604 + 0.810849i 0.983604 0.180343i \(-0.0577207\pi\)
0.132434 + 0.991192i \(0.457721\pi\)
\(282\) 0.363271 + 0.118034i 0.0216325 + 0.00702882i
\(283\) 20.9232 6.79837i 1.24376 0.404121i 0.388078 0.921627i \(-0.373139\pi\)
0.855680 + 0.517505i \(0.173139\pi\)
\(284\) 7.92705 5.75934i 0.470384 0.341754i
\(285\) 0 0
\(286\) 0.399187 0.673542i 0.0236044 0.0398274i
\(287\) 8.29180i 0.489449i
\(288\) −0.224514 0.309017i −0.0132296 0.0182090i
\(289\) 5.20820 + 16.0292i 0.306365 + 0.942894i
\(290\) 0 0
\(291\) −15.7082 11.4127i −0.920831 0.669023i
\(292\) −4.78804 + 6.59017i −0.280199 + 0.385661i
\(293\) −9.99235 3.24671i −0.583759 0.189675i 0.00222470 0.999998i \(-0.499292\pi\)
−0.585984 + 0.810323i \(0.699292\pi\)
\(294\) −1.00000 3.07768i −0.0583212 0.179494i
\(295\) 0 0
\(296\) 8.85410 0.514634
\(297\) 13.6251 11.9894i 0.790606 0.695693i
\(298\) 10.7082i 0.620310i
\(299\) 0.736068 0.534785i 0.0425679 0.0309274i
\(300\) 0 0
\(301\) −6.54508 + 20.1437i −0.377252 + 1.16106i
\(302\) −11.1882 + 15.3992i −0.643807 + 0.886124i
\(303\) 17.7926 24.4894i 1.02216 1.40688i
\(304\) −0.809017 + 2.48990i −0.0464003 + 0.142805i
\(305\) 0 0
\(306\) −0.118034 + 0.0857567i −0.00674755 + 0.00490238i
\(307\) 28.7984i 1.64361i −0.569769 0.821805i \(-0.692967\pi\)
0.569769 0.821805i \(-0.307033\pi\)
\(308\) 5.56758 4.89919i 0.317242 0.279157i
\(309\) −27.3262 −1.55454
\(310\) 0 0
\(311\) 1.30902 + 4.02874i 0.0742275 + 0.228449i 0.981286 0.192556i \(-0.0616776\pi\)
−0.907058 + 0.421005i \(0.861678\pi\)
\(312\) −0.363271 0.118034i −0.0205662 0.00668236i
\(313\) 0.587785 0.809017i 0.0332236 0.0457283i −0.792082 0.610415i \(-0.791003\pi\)
0.825306 + 0.564686i \(0.191003\pi\)
\(314\) 5.47214 + 3.97574i 0.308810 + 0.224364i
\(315\) 0 0
\(316\) −3.69098 11.3597i −0.207634 0.639032i
\(317\) 1.64484 + 2.26393i 0.0923836 + 0.127155i 0.852707 0.522390i \(-0.174959\pi\)
−0.760323 + 0.649545i \(0.774959\pi\)
\(318\) 2.23607i 0.125392i
\(319\) 0.892609 1.50609i 0.0499765 0.0843246i
\(320\) 0 0
\(321\) 10.7082 7.77997i 0.597674 0.434235i
\(322\) 8.19624 2.66312i 0.456758 0.148410i
\(323\) 0.951057 + 0.309017i 0.0529182 + 0.0171942i
\(324\) −6.23607 4.53077i −0.346448 0.251709i
\(325\) 0 0
\(326\) 0.0557281 0.171513i 0.00308649 0.00949925i
\(327\) −17.8783 + 5.80902i −0.988673 + 0.321239i
\(328\) −2.17963 3.00000i −0.120350 0.165647i
\(329\) −0.527864 −0.0291021
\(330\) 0 0
\(331\) −16.9443 −0.931341 −0.465671 0.884958i \(-0.654187\pi\)
−0.465671 + 0.884958i \(0.654187\pi\)
\(332\) 5.29007 + 7.28115i 0.290330 + 0.399605i
\(333\) −3.21644 + 1.04508i −0.176260 + 0.0572703i
\(334\) 0.690983 2.12663i 0.0378089 0.116364i
\(335\) 0 0
\(336\) −2.92705 2.12663i −0.159684 0.116017i
\(337\) 28.6502 + 9.30902i 1.56068 + 0.507094i 0.956988 0.290126i \(-0.0936973\pi\)
0.603688 + 0.797221i \(0.293697\pi\)
\(338\) −12.3107 + 4.00000i −0.669616 + 0.217571i
\(339\) 19.2533 13.9883i 1.04570 0.759742i
\(340\) 0 0
\(341\) 31.1697 13.4535i 1.68793 0.728550i
\(342\) 1.00000i 0.0540738i
\(343\) 11.8290 + 16.2812i 0.638703 + 0.879100i
\(344\) −2.92705 9.00854i −0.157816 0.485708i
\(345\) 0 0
\(346\) 10.7812 + 7.83297i 0.579598 + 0.421103i
\(347\) 11.0822 15.2533i 0.594922 0.818839i −0.400310 0.916380i \(-0.631098\pi\)
0.995232 + 0.0975404i \(0.0310975\pi\)
\(348\) −0.812299 0.263932i −0.0435438 0.0141482i
\(349\) 7.29180 + 22.4418i 0.390321 + 1.20128i 0.932546 + 0.361051i \(0.117582\pi\)
−0.542225 + 0.840233i \(0.682418\pi\)
\(350\) 0 0
\(351\) 1.29180 0.0689510
\(352\) −0.726543 + 3.23607i −0.0387248 + 0.172483i
\(353\) 4.43769i 0.236195i 0.993002 + 0.118097i \(0.0376795\pi\)
−0.993002 + 0.118097i \(0.962321\pi\)
\(354\) 15.0172 10.9106i 0.798156 0.579894i
\(355\) 0 0
\(356\) −4.07295 + 12.5352i −0.215866 + 0.664367i
\(357\) −0.812299 + 1.11803i −0.0429914 + 0.0591726i
\(358\) −8.61251 + 11.8541i −0.455185 + 0.626509i
\(359\) −0.291796 + 0.898056i −0.0154004 + 0.0473976i −0.958461 0.285222i \(-0.907933\pi\)
0.943061 + 0.332620i \(0.107933\pi\)
\(360\) 0 0
\(361\) 9.82624 7.13918i 0.517170 0.375746i
\(362\) 7.05573i 0.370841i
\(363\) −17.6538 2.26393i −0.926584 0.118826i
\(364\) 0.527864 0.0276676
\(365\) 0 0
\(366\) −1.11803 3.44095i −0.0584406 0.179862i
\(367\) 5.08580 + 1.65248i 0.265476 + 0.0862585i 0.438731 0.898619i \(-0.355428\pi\)
−0.173254 + 0.984877i \(0.555428\pi\)
\(368\) −2.26538 + 3.11803i −0.118091 + 0.162539i
\(369\) 1.14590 + 0.832544i 0.0596531 + 0.0433405i
\(370\) 0 0
\(371\) 0.954915 + 2.93893i 0.0495767 + 0.152581i
\(372\) −9.73508 13.3992i −0.504740 0.694715i
\(373\) 2.38197i 0.123334i −0.998097 0.0616668i \(-0.980358\pi\)
0.998097 0.0616668i \(-0.0196416\pi\)
\(374\) 1.23607 + 0.277515i 0.0639156 + 0.0143499i
\(375\) 0 0
\(376\) 0.190983 0.138757i 0.00984920 0.00715586i
\(377\) 0.118513 0.0385072i 0.00610372 0.00198322i
\(378\) 11.6372 + 3.78115i 0.598553 + 0.194482i
\(379\) −4.78115 3.47371i −0.245591 0.178433i 0.458179 0.888860i \(-0.348502\pi\)
−0.703771 + 0.710427i \(0.748502\pi\)
\(380\) 0 0
\(381\) −1.45492 + 4.47777i −0.0745376 + 0.229403i
\(382\) 18.8824 6.13525i 0.966106 0.313907i
\(383\) −1.17557 1.61803i −0.0600688 0.0826777i 0.777926 0.628356i \(-0.216272\pi\)
−0.837995 + 0.545679i \(0.816272\pi\)
\(384\) 1.61803 0.0825700
\(385\) 0 0
\(386\) 2.43769 0.124075
\(387\) 2.12663 + 2.92705i 0.108103 + 0.148790i
\(388\) −11.4127 + 3.70820i −0.579391 + 0.188256i
\(389\) −0.545085 + 1.67760i −0.0276369 + 0.0850576i −0.963924 0.266179i \(-0.914239\pi\)
0.936287 + 0.351237i \(0.114239\pi\)
\(390\) 0 0
\(391\) 1.19098 + 0.865300i 0.0602306 + 0.0437601i
\(392\) −1.90211 0.618034i −0.0960712 0.0312154i
\(393\) −17.1518 + 5.57295i −0.865193 + 0.281118i
\(394\) −22.3262 + 16.2210i −1.12478 + 0.817200i
\(395\) 0 0
\(396\) −0.118034 1.26133i −0.00593143 0.0633841i
\(397\) 17.4721i 0.876901i −0.898755 0.438451i \(-0.855527\pi\)
0.898755 0.438451i \(-0.144473\pi\)
\(398\) −0.759299 1.04508i −0.0380602 0.0523854i
\(399\) −2.92705 9.00854i −0.146536 0.450991i
\(400\) 0 0
\(401\) 1.54508 + 1.12257i 0.0771579 + 0.0560585i 0.625695 0.780067i \(-0.284815\pi\)
−0.548538 + 0.836126i \(0.684815\pi\)
\(402\) −8.86978 + 12.2082i −0.442384 + 0.608890i
\(403\) 2.29814 + 0.746711i 0.114479 + 0.0371963i
\(404\) −5.78115 17.7926i −0.287623 0.885213i
\(405\) 0 0
\(406\) 1.18034 0.0585793
\(407\) 25.2623 + 14.9721i 1.25220 + 0.742141i
\(408\) 0.618034i 0.0305972i
\(409\) 14.9721 10.8779i 0.740324 0.537877i −0.152488 0.988305i \(-0.548729\pi\)
0.892813 + 0.450428i \(0.148729\pi\)
\(410\) 0 0
\(411\) −7.88197 + 24.2582i −0.388789 + 1.19657i
\(412\) −9.92684 + 13.6631i −0.489060 + 0.673134i
\(413\) −15.0781 + 20.7533i −0.741947 + 1.02120i
\(414\) 0.454915 1.40008i 0.0223579 0.0688104i
\(415\) 0 0
\(416\) −0.190983 + 0.138757i −0.00936371 + 0.00680314i
\(417\) 4.61803i 0.226146i
\(418\) −6.51864 + 5.73607i −0.318837 + 0.280560i
\(419\) 31.1803 1.52326 0.761630 0.648013i \(-0.224400\pi\)
0.761630 + 0.648013i \(0.224400\pi\)
\(420\) 0 0
\(421\) −5.46149 16.8087i −0.266177 0.819208i −0.991420 0.130715i \(-0.958273\pi\)
0.725243 0.688493i \(-0.241727\pi\)
\(422\) 13.7966 + 4.48278i 0.671607 + 0.218218i
\(423\) −0.0530006 + 0.0729490i −0.00257698 + 0.00354690i
\(424\) −1.11803 0.812299i −0.0542965 0.0394487i
\(425\) 0 0
\(426\) −4.89919 15.0781i −0.237366 0.730539i
\(427\) 2.93893 + 4.04508i 0.142225 + 0.195755i
\(428\) 8.18034i 0.395412i
\(429\) −0.836881 0.951057i −0.0404050 0.0459174i
\(430\) 0 0
\(431\) −4.80902 + 3.49396i −0.231642 + 0.168298i −0.697552 0.716534i \(-0.745727\pi\)
0.465909 + 0.884832i \(0.345727\pi\)
\(432\) −5.20431 + 1.69098i −0.250393 + 0.0813575i
\(433\) 8.05748 + 2.61803i 0.387218 + 0.125815i 0.496155 0.868234i \(-0.334745\pi\)
−0.108937 + 0.994049i \(0.534745\pi\)
\(434\) 18.5172 + 13.4535i 0.888855 + 0.645791i
\(435\) 0 0
\(436\) −3.59017 + 11.0494i −0.171938 + 0.529171i
\(437\) −9.59632 + 3.11803i −0.459054 + 0.149156i
\(438\) 7.74721 + 10.6631i 0.370176 + 0.509504i
\(439\) −22.7082 −1.08380 −0.541902 0.840442i \(-0.682296\pi\)
−0.541902 + 0.840442i \(0.682296\pi\)
\(440\) 0 0
\(441\) 0.763932 0.0363777
\(442\) 0.0530006 + 0.0729490i 0.00252098 + 0.00346983i
\(443\) −29.0135 + 9.42705i −1.37847 + 0.447893i −0.902167 0.431387i \(-0.858024\pi\)
−0.476305 + 0.879280i \(0.658024\pi\)
\(444\) 4.42705 13.6251i 0.210099 0.646617i
\(445\) 0 0
\(446\) 1.66312 + 1.20833i 0.0787510 + 0.0572159i
\(447\) 16.4782 + 5.35410i 0.779394 + 0.253240i
\(448\) −2.12663 + 0.690983i −0.100474 + 0.0326459i
\(449\) 13.1803 9.57608i 0.622019 0.451923i −0.231607 0.972809i \(-0.574398\pi\)
0.853626 + 0.520886i \(0.174398\pi\)
\(450\) 0 0
\(451\) −1.14590 12.2452i −0.0539582 0.576605i
\(452\) 14.7082i 0.691816i
\(453\) 18.1028 + 24.9164i 0.850545 + 1.17067i
\(454\) 6.10081 + 18.7764i 0.286325 + 0.881219i
\(455\) 0 0
\(456\) 3.42705 + 2.48990i 0.160486 + 0.116600i
\(457\) −7.12667 + 9.80902i −0.333371 + 0.458846i −0.942491 0.334232i \(-0.891523\pi\)
0.609119 + 0.793079i \(0.291523\pi\)
\(458\) 14.7149 + 4.78115i 0.687581 + 0.223409i
\(459\) 0.645898 + 1.98787i 0.0301479 + 0.0927858i
\(460\) 0 0
\(461\) −36.4164 −1.69608 −0.848041 0.529931i \(-0.822218\pi\)
−0.848041 + 0.529931i \(0.822218\pi\)
\(462\) −4.75528 11.0172i −0.221236 0.512568i
\(463\) 38.5967i 1.79374i 0.442291 + 0.896871i \(0.354166\pi\)
−0.442291 + 0.896871i \(0.645834\pi\)
\(464\) −0.427051 + 0.310271i −0.0198253 + 0.0144040i
\(465\) 0 0
\(466\) −6.28115 + 19.3314i −0.290969 + 0.895510i
\(467\) −18.9151 + 26.0344i −0.875288 + 1.20473i 0.102416 + 0.994742i \(0.467343\pi\)
−0.977704 + 0.209989i \(0.932657\pi\)
\(468\) 0.0530006 0.0729490i 0.00244995 0.00337207i
\(469\) 6.44427 19.8334i 0.297569 0.915823i
\(470\) 0 0
\(471\) 8.85410 6.43288i 0.407975 0.296412i
\(472\) 11.4721i 0.528048i
\(473\) 6.88191 30.6525i 0.316431 1.40940i
\(474\) −19.3262 −0.887684
\(475\) 0 0
\(476\) 0.263932 + 0.812299i 0.0120973 + 0.0372317i
\(477\) 0.502029 + 0.163119i 0.0229863 + 0.00746870i
\(478\) 10.2699 14.1353i 0.469733 0.646532i
\(479\) 8.04508 + 5.84510i 0.367589 + 0.267069i 0.756211 0.654328i \(-0.227049\pi\)
−0.388621 + 0.921398i \(0.627049\pi\)
\(480\) 0 0
\(481\) 0.645898 + 1.98787i 0.0294504 + 0.0906391i
\(482\) −10.5801 14.5623i −0.481912 0.663295i
\(483\) 13.9443i 0.634486i
\(484\) −7.54508 + 8.00448i −0.342958 + 0.363840i
\(485\) 0 0
\(486\) 3.19098 2.31838i 0.144746 0.105164i
\(487\) 10.3556 3.36475i 0.469258 0.152471i −0.0648366 0.997896i \(-0.520653\pi\)
0.534095 + 0.845425i \(0.320653\pi\)
\(488\) −2.12663 0.690983i −0.0962679 0.0312793i
\(489\) −0.236068 0.171513i −0.0106754 0.00775611i
\(490\) 0 0
\(491\) 3.76393 11.5842i 0.169864 0.522787i −0.829498 0.558510i \(-0.811373\pi\)
0.999362 + 0.0357226i \(0.0113733\pi\)
\(492\) −5.70634 + 1.85410i −0.257262 + 0.0835894i
\(493\) 0.118513 + 0.163119i 0.00533755 + 0.00734651i
\(494\) −0.618034 −0.0278067
\(495\) 0 0
\(496\) −10.2361 −0.459613
\(497\) 12.8783 + 17.7254i 0.577670 + 0.795094i
\(498\) 13.8496 4.50000i 0.620614 0.201650i
\(499\) −4.77458 + 14.6946i −0.213739 + 0.657822i 0.785501 + 0.618860i \(0.212405\pi\)
−0.999241 + 0.0389621i \(0.987595\pi\)
\(500\) 0 0
\(501\) −2.92705 2.12663i −0.130771 0.0950107i
\(502\) 4.56352 + 1.48278i 0.203680 + 0.0661797i
\(503\) 29.9645 9.73607i 1.33605 0.434110i 0.448075 0.893996i \(-0.352110\pi\)
0.887978 + 0.459886i \(0.152110\pi\)
\(504\) 0.690983 0.502029i 0.0307788 0.0223621i
\(505\) 0 0
\(506\) −11.7361 + 5.06555i −0.521732 + 0.225191i
\(507\) 20.9443i 0.930168i
\(508\) 1.71036 + 2.35410i 0.0758847 + 0.104446i
\(509\) −3.17376 9.76784i −0.140675 0.432952i 0.855755 0.517381i \(-0.173093\pi\)
−0.996429 + 0.0844297i \(0.973093\pi\)
\(510\) 0 0
\(511\) −14.7361 10.7064i −0.651885 0.473622i
\(512\) 0.587785 0.809017i 0.0259767 0.0357538i
\(513\) −13.6251 4.42705i −0.601561 0.195459i
\(514\) 4.28115 + 13.1760i 0.188834 + 0.581170i
\(515\) 0 0
\(516\) −15.3262 −0.674700
\(517\) 0.779543 0.0729490i 0.0342843 0.00320829i
\(518\) 19.7984i 0.869891i
\(519\) 17.4443 12.6740i 0.765719 0.556327i
\(520\) 0 0
\(521\) −3.10081 + 9.54332i −0.135849 + 0.418100i −0.995721 0.0924091i \(-0.970543\pi\)
0.859872 + 0.510510i \(0.170543\pi\)
\(522\) 0.118513 0.163119i 0.00518717 0.00713952i
\(523\) −16.1680 + 22.2533i −0.706976 + 0.973068i 0.292881 + 0.956149i \(0.405386\pi\)
−0.999857 + 0.0169196i \(0.994614\pi\)
\(524\) −3.44427 + 10.6004i −0.150464 + 0.463080i
\(525\) 0 0
\(526\) −13.0172 + 9.45756i −0.567578 + 0.412369i
\(527\) 3.90983i 0.170315i
\(528\) 4.61653 + 2.73607i 0.200908 + 0.119072i
\(529\) 8.14590 0.354169
\(530\) 0 0
\(531\) 1.35410 + 4.16750i 0.0587630 + 0.180854i
\(532\) −5.56758 1.80902i −0.241385 0.0784308i
\(533\) 0.514540 0.708204i 0.0222872 0.0306757i
\(534\) 17.2533 + 12.5352i 0.746623 + 0.542453i
\(535\) 0 0
\(536\) 2.88197 + 8.86978i 0.124482 + 0.383116i
\(537\) 13.9353 + 19.1803i 0.601354 + 0.827693i
\(538\) 9.90983i 0.427243i
\(539\) −4.38197 4.97980i −0.188745 0.214495i
\(540\) 0 0
\(541\) −26.0066 + 18.8949i −1.11811 + 0.812355i −0.983922 0.178601i \(-0.942843\pi\)
−0.134189 + 0.990956i \(0.542843\pi\)
\(542\) −26.6093 + 8.64590i −1.14297 + 0.371373i
\(543\) −10.8576 3.52786i −0.465946 0.151395i
\(544\) −0.309017 0.224514i −0.0132490 0.00962596i
\(545\) 0 0
\(546\) 0.263932 0.812299i 0.0112952 0.0347632i
\(547\) −17.0660 + 5.54508i −0.729690 + 0.237091i −0.650219 0.759746i \(-0.725323\pi\)
−0.0794708 + 0.996837i \(0.525323\pi\)
\(548\) 9.26581 + 12.7533i 0.395816 + 0.544794i
\(549\) 0.854102 0.0364522
\(550\) 0 0
\(551\) −1.38197 −0.0588737
\(552\) 3.66547 + 5.04508i 0.156013 + 0.214733i
\(553\) 25.4010 8.25329i 1.08016 0.350966i
\(554\) −5.94427 + 18.2946i −0.252548 + 0.777263i
\(555\) 0 0
\(556\) 2.30902 + 1.67760i 0.0979241 + 0.0711460i
\(557\) −5.60034 1.81966i −0.237294 0.0771015i 0.187956 0.982177i \(-0.439814\pi\)
−0.425250 + 0.905076i \(0.639814\pi\)
\(558\) 3.71847 1.20820i 0.157415 0.0511474i
\(559\) 1.80902 1.31433i 0.0765133 0.0555901i
\(560\) 0 0
\(561\) 1.04508 1.76336i 0.0441235 0.0744489i
\(562\) 23.1246i 0.975453i
\(563\) 10.3556 + 14.2533i 0.436437 + 0.600705i 0.969416 0.245424i \(-0.0789273\pi\)
−0.532978 + 0.846129i \(0.678927\pi\)
\(564\) −0.118034 0.363271i −0.00497013 0.0152965i
\(565\) 0 0
\(566\) −17.7984 12.9313i −0.748121 0.543542i
\(567\) 10.1311 13.9443i 0.425466 0.585604i
\(568\) −9.31881 3.02786i −0.391008 0.127046i
\(569\) 0.645898 + 1.98787i 0.0270775 + 0.0833358i 0.963682 0.267052i \(-0.0860497\pi\)
−0.936605 + 0.350388i \(0.886050\pi\)
\(570\) 0 0
\(571\) −8.52786 −0.356880 −0.178440 0.983951i \(-0.557105\pi\)
−0.178440 + 0.983951i \(0.557105\pi\)
\(572\) −0.779543 + 0.0729490i −0.0325943 + 0.00305015i
\(573\) 32.1246i 1.34202i
\(574\) 6.70820 4.87380i 0.279995 0.203428i
\(575\) 0 0
\(576\) −0.118034 + 0.363271i −0.00491808 + 0.0151363i
\(577\) −12.7925 + 17.6074i −0.532560 + 0.733005i −0.987518 0.157507i \(-0.949654\pi\)
0.454958 + 0.890513i \(0.349654\pi\)
\(578\) 9.90659 13.6353i 0.412060 0.567152i
\(579\) 1.21885 3.75123i 0.0506536 0.155896i
\(580\) 0 0
\(581\) −16.2812 + 11.8290i −0.675456 + 0.490748i
\(582\) 19.4164i 0.804836i
\(583\) −1.81636 4.20820i −0.0752258 0.174286i
\(584\) 8.14590 0.337080
\(585\) 0 0
\(586\) 3.24671 + 9.99235i 0.134120 + 0.412780i
\(587\) 15.4212 + 5.01064i 0.636500 + 0.206811i 0.609452 0.792823i \(-0.291389\pi\)
0.0270477 + 0.999634i \(0.491389\pi\)
\(588\) −1.90211 + 2.61803i −0.0784418 + 0.107966i
\(589\) −21.6803 15.7517i −0.893323 0.649037i
\(590\) 0 0
\(591\) 13.7984 + 42.4670i 0.567589 + 1.74686i
\(592\) −5.20431 7.16312i −0.213896 0.294402i
\(593\) 42.3951i 1.74096i 0.492205 + 0.870479i \(0.336191\pi\)
−0.492205 + 0.870479i \(0.663809\pi\)
\(594\) −17.7082 3.97574i −0.726576 0.163127i
\(595\) 0 0
\(596\) 8.66312 6.29412i 0.354855 0.257817i
\(597\) −1.98787 + 0.645898i −0.0813581 + 0.0264348i
\(598\) −0.865300 0.281153i −0.0353847 0.0114972i
\(599\) 2.47214 + 1.79611i 0.101009 + 0.0733871i 0.637143 0.770745i \(-0.280116\pi\)
−0.536134 + 0.844133i \(0.680116\pi\)
\(600\) 0 0
\(601\) −2.02786 + 6.24112i −0.0827183 + 0.254581i −0.983859 0.178946i \(-0.942731\pi\)
0.901141 + 0.433527i \(0.142731\pi\)
\(602\) 20.1437 6.54508i 0.820996 0.266758i
\(603\) −2.09387 2.88197i −0.0852690 0.117363i
\(604\) 19.0344 0.774500
\(605\) 0 0
\(606\) −30.2705 −1.22966
\(607\) −7.86572 10.8262i −0.319260 0.439423i 0.618981 0.785406i \(-0.287546\pi\)
−0.938241 + 0.345982i \(0.887546\pi\)
\(608\) 2.48990 0.809017i 0.100979 0.0328100i
\(609\) 0.590170 1.81636i 0.0239149 0.0736025i
\(610\) 0 0
\(611\) 0.0450850 + 0.0327561i 0.00182394 + 0.00132517i
\(612\) 0.138757 + 0.0450850i 0.00560893 + 0.00182245i
\(613\) −6.82891 + 2.21885i −0.275817 + 0.0896184i −0.443659 0.896195i \(-0.646320\pi\)
0.167842 + 0.985814i \(0.446320\pi\)
\(614\) −23.2984 + 16.9273i −0.940246 + 0.683129i
\(615\) 0 0
\(616\) −7.23607 1.62460i −0.291549 0.0654569i
\(617\) 25.7984i 1.03860i 0.854591 + 0.519302i \(0.173808\pi\)
−0.854591 + 0.519302i \(0.826192\pi\)
\(618\) 16.0620 + 22.1074i 0.646107 + 0.889290i
\(619\) 8.10739 + 24.9520i 0.325864 + 1.00290i 0.971049 + 0.238879i \(0.0767800\pi\)
−0.645186 + 0.764026i \(0.723220\pi\)
\(620\) 0 0
\(621\) −17.0623 12.3965i −0.684687 0.497454i
\(622\) 2.48990 3.42705i 0.0998358 0.137412i
\(623\) −28.0297 9.10739i −1.12298 0.364880i
\(624\) 0.118034 + 0.363271i 0.00472514 + 0.0145425i
\(625\) 0 0
\(626\) −1.00000 −0.0399680
\(627\) 5.56758 + 12.8992i 0.222348 + 0.515144i
\(628\) 6.76393i 0.269910i
\(629\) −2.73607 + 1.98787i −0.109094 + 0.0792616i
\(630\) 0 0
\(631\) −2.07295 + 6.37988i −0.0825228 + 0.253979i −0.983802 0.179260i \(-0.942630\pi\)
0.901279 + 0.433239i \(0.142630\pi\)
\(632\) −7.02067 + 9.66312i −0.279267 + 0.384378i
\(633\) 13.7966 18.9894i 0.548365 0.754759i
\(634\) 0.864745 2.66141i 0.0343434 0.105698i
\(635\) 0 0
\(636\) −1.80902 + 1.31433i −0.0717322 + 0.0521165i
\(637\) 0.472136i 0.0187067i
\(638\) −1.74311 + 0.163119i −0.0690104 + 0.00645794i
\(639\) 3.74265 0.148057
\(640\) 0 0
\(641\) −13.0000 40.0099i −0.513469 1.58030i −0.786050 0.618163i \(-0.787877\pi\)
0.272581 0.962133i \(-0.412123\pi\)
\(642\) −12.5882 4.09017i −0.496819 0.161426i
\(643\) 8.30224 11.4271i 0.327408 0.450639i −0.613303 0.789848i \(-0.710159\pi\)
0.940711 + 0.339209i \(0.110159\pi\)
\(644\) −6.97214 5.06555i −0.274741 0.199611i
\(645\) 0 0
\(646\) −0.309017 0.951057i −0.0121581 0.0374188i
\(647\) 0.620541 + 0.854102i 0.0243960 + 0.0335782i 0.821041 0.570870i \(-0.193394\pi\)
−0.796645 + 0.604448i \(0.793394\pi\)
\(648\) 7.70820i 0.302807i
\(649\) 19.3992 32.7319i 0.761485 1.28484i
\(650\) 0 0
\(651\) 29.9615 21.7683i 1.17428 0.853167i
\(652\) −0.171513 + 0.0557281i −0.00671698 + 0.00218248i
\(653\) 9.95959 + 3.23607i 0.389749 + 0.126637i 0.497335 0.867559i \(-0.334312\pi\)
−0.107586 + 0.994196i \(0.534312\pi\)
\(654\) 15.2082 + 11.0494i 0.594688 + 0.432066i
\(655\) 0 0
\(656\) −1.14590 + 3.52671i −0.0447398 + 0.137695i
\(657\) −2.95917 + 0.961493i −0.115448 + 0.0375114i
\(658\) 0.310271 + 0.427051i 0.0120956 + 0.0166482i
\(659\) −43.4508 −1.69260 −0.846302 0.532703i \(-0.821176\pi\)
−0.846302 + 0.532703i \(0.821176\pi\)
\(660\) 0 0
\(661\) 27.5967 1.07339 0.536695 0.843777i \(-0.319673\pi\)
0.536695 + 0.843777i \(0.319673\pi\)
\(662\) 9.95959 + 13.7082i 0.387091 + 0.532784i
\(663\) 0.138757 0.0450850i 0.00538889 0.00175096i
\(664\) 2.78115 8.55951i 0.107930 0.332173i
\(665\) 0 0
\(666\) 2.73607 + 1.98787i 0.106020 + 0.0770284i
\(667\) −1.93487 0.628677i −0.0749184 0.0243425i
\(668\) −2.12663 + 0.690983i −0.0822817 + 0.0267349i
\(669\) 2.69098 1.95511i 0.104039 0.0755891i
\(670\) 0 0
\(671\) −4.89919 5.56758i −0.189131 0.214934i
\(672\) 3.61803i 0.139569i
\(673\) −6.80866 9.37132i −0.262455 0.361238i 0.657370 0.753568i \(-0.271669\pi\)
−0.919824 + 0.392330i \(0.871669\pi\)
\(674\) −9.30902 28.6502i −0.358570 1.10356i
\(675\) 0 0
\(676\) 10.4721 + 7.60845i 0.402774 + 0.292633i
\(677\) 6.36737 8.76393i 0.244718 0.336825i −0.668935 0.743321i \(-0.733249\pi\)
0.913653 + 0.406496i \(0.133249\pi\)
\(678\) −22.6336 7.35410i −0.869238 0.282433i
\(679\) −8.29180 25.5195i −0.318210 0.979349i
\(680\) 0 0
\(681\) 31.9443 1.22411
\(682\) −29.2052 17.3090i −1.11833 0.662797i
\(683\) 6.11146i 0.233848i −0.993141 0.116924i \(-0.962697\pi\)
0.993141 0.116924i \(-0.0373035\pi\)
\(684\) −0.809017 + 0.587785i −0.0309335 + 0.0224745i
\(685\) 0 0
\(686\) 6.21885 19.1396i 0.237437 0.730755i
\(687\) 14.7149 20.2533i 0.561408 0.772711i
\(688\) −5.56758 + 7.66312i −0.212262 + 0.292154i
\(689\) 0.100813 0.310271i 0.00384067 0.0118204i
\(690\) 0 0
\(691\) 32.2984 23.4661i 1.22869 0.892694i 0.231897 0.972740i \(-0.425507\pi\)
0.996791 + 0.0800463i \(0.0255068\pi\)
\(692\) 13.3262i 0.506588i
\(693\) 2.82041 0.263932i 0.107139 0.0100259i
\(694\) −18.8541 −0.715692
\(695\) 0 0
\(696\) 0.263932 + 0.812299i 0.0100043 + 0.0307901i
\(697\) 1.34708 + 0.437694i 0.0510244 + 0.0165788i
\(698\) 13.8698 19.0902i 0.524980 0.722574i
\(699\) 26.6074 + 19.3314i 1.00638 + 0.731181i
\(700\) 0 0
\(701\) −3.89919 12.0005i −0.147270 0.453251i 0.850026 0.526741i \(-0.176586\pi\)
−0.997296 + 0.0734900i \(0.976586\pi\)
\(702\) −0.759299 1.04508i −0.0286579 0.0394442i
\(703\) 23.1803i 0.874263i
\(704\) 3.04508 1.31433i 0.114766 0.0495356i
\(705\) 0 0
\(706\) 3.59017 2.60841i 0.135118 0.0981688i
\(707\) 39.7854 12.9271i 1.49628 0.486172i
\(708\) −17.6538 5.73607i −0.663471 0.215575i
\(709\) −37.3156 27.1114i −1.40142 1.01819i −0.994501 0.104723i \(-0.966604\pi\)
−0.406915 0.913466i \(-0.633396\pi\)
\(710\) 0 0
\(711\) 1.40983 4.33901i 0.0528728 0.162726i
\(712\) 12.5352 4.07295i 0.469778 0.152640i
\(713\) −23.1886 31.9164i −0.868421 1.19528i
\(714\) 1.38197 0.0517188
\(715\) 0 0
\(716\) 14.6525 0.547589
\(717\) −16.6170 22.8713i −0.620573 0.854145i
\(718\) 0.898056 0.291796i 0.0335152 0.0108897i
\(719\) −6.16312 + 18.9681i −0.229846 + 0.707392i 0.767918 + 0.640548i \(0.221293\pi\)
−0.997763 + 0.0668436i \(0.978707\pi\)
\(720\) 0 0
\(721\) −30.5517 22.1971i −1.13780 0.826663i
\(722\) −11.5514 3.75329i −0.429900 0.139683i
\(723\) −27.6992 + 9.00000i −1.03014 + 0.334714i
\(724\) −5.70820 + 4.14725i −0.212144 + 0.154131i
\(725\) 0 0
\(726\) 8.54508 + 15.6129i 0.317138 + 0.579450i
\(727\) 13.8197i 0.512543i −0.966605 0.256271i \(-0.917506\pi\)
0.966605 0.256271i \(-0.0824941\pi\)
\(728\) −0.310271 0.427051i −0.0114994 0.0158276i
\(729\) −9.11803 28.0624i −0.337705 1.03935i
\(730\) 0 0
\(731\) 2.92705 + 2.12663i 0.108261 + 0.0786561i
\(732\) −2.12663 + 2.92705i −0.0786024 + 0.108187i
\(733\) 20.7642 + 6.74671i 0.766945 + 0.249195i 0.666257 0.745723i \(-0.267896\pi\)
0.100688 + 0.994918i \(0.467896\pi\)
\(734\) −1.65248 5.08580i −0.0609940 0.187720i
\(735\) 0 0
\(736\) 3.85410 0.142064
\(737\) −6.77591 + 30.1803i −0.249594 + 1.11171i
\(738\) 1.41641i 0.0521387i
\(739\) 7.85410 5.70634i 0.288918 0.209911i −0.433880 0.900971i \(-0.642856\pi\)
0.722798 + 0.691060i \(0.242856\pi\)
\(740\) 0 0
\(741\) −0.309017 + 0.951057i −0.0113520 + 0.0349379i
\(742\) 1.81636 2.50000i 0.0666805 0.0917779i
\(743\) −24.9973 + 34.4058i −0.917060 + 1.26223i 0.0476373 + 0.998865i \(0.484831\pi\)
−0.964698 + 0.263360i \(0.915169\pi\)
\(744\) −5.11803 + 15.7517i −0.187636 + 0.577485i
\(745\) 0 0
\(746\) −1.92705 + 1.40008i −0.0705543 + 0.0512607i
\(747\) 3.43769i 0.125779i
\(748\) −0.502029 1.16312i −0.0183560 0.0425278i
\(749\) 18.2918 0.668368
\(750\) 0 0
\(751\) 8.31559 + 25.5928i 0.303440 + 0.933893i 0.980255 + 0.197740i \(0.0633600\pi\)
−0.676814 + 0.736154i \(0.736640\pi\)
\(752\) −0.224514 0.0729490i −0.00818718 0.00266018i
\(753\) 4.56352 6.28115i 0.166304 0.228898i
\(754\) −0.100813 0.0732450i −0.00367140 0.00266742i
\(755\) 0 0
\(756\) −3.78115 11.6372i −0.137519 0.423241i
\(757\) 8.94302 + 12.3090i 0.325040 + 0.447379i 0.939998 0.341181i \(-0.110827\pi\)
−0.614958 + 0.788560i \(0.710827\pi\)
\(758\) 5.90983i 0.214655i
\(759\) 1.92705 + 20.5927i 0.0699475 + 0.747469i
\(760\) 0 0
\(761\) 17.2254 12.5150i 0.624421 0.453669i −0.230042 0.973181i \(-0.573886\pi\)
0.854463 + 0.519512i \(0.173886\pi\)
\(762\) 4.47777 1.45492i 0.162212 0.0527060i
\(763\) −24.7072 8.02786i −0.894462 0.290628i
\(764\) −16.0623 11.6699i −0.581114 0.422204i
\(765\) 0 0
\(766\) −0.618034 + 1.90211i −0.0223305 + 0.0687261i
\(767\) 2.57565 0.836881i 0.0930015 0.0302180i
\(768\) −0.951057 1.30902i −0.0343183 0.0472351i
\(769\) 42.2361 1.52307 0.761536 0.648123i \(-0.224446\pi\)
0.761536 + 0.648123i \(0.224446\pi\)
\(770\) 0 0
\(771\) 22.4164 0.807307
\(772\) −1.43284 1.97214i −0.0515691 0.0709787i
\(773\) 39.3893 12.7984i 1.41674 0.460326i 0.502173 0.864767i \(-0.332534\pi\)
0.914564 + 0.404442i \(0.132534\pi\)
\(774\) 1.11803 3.44095i 0.0401869 0.123683i
\(775\) 0 0
\(776\) 9.70820 + 7.05342i 0.348504 + 0.253203i
\(777\) 30.4666 + 9.89919i 1.09298 + 0.355131i
\(778\) 1.67760 0.545085i 0.0601448 0.0195422i
\(779\) −7.85410 + 5.70634i −0.281402 + 0.204451i
\(780\) 0 0
\(781\) −21.4681 24.3970i −0.768188 0.872992i
\(782\) 1.47214i 0.0526435i
\(783\) −1.69784 2.33688i −0.0606760 0.0835133i
\(784\) 0.618034 + 1.90211i 0.0220726 + 0.0679326i
\(785\) 0 0
\(786\) 14.5902 + 10.6004i 0.520414 + 0.378103i
\(787\) 10.5801 14.5623i 0.377141 0.519090i −0.577683 0.816261i \(-0.696043\pi\)
0.954824 + 0.297171i \(0.0960431\pi\)
\(788\) 26.2461 + 8.52786i 0.934977 + 0.303793i
\(789\) 8.04508 + 24.7602i 0.286413 + 0.881487i
\(790\) 0 0
\(791\) 32.8885 1.16938
\(792\) −0.951057 + 0.836881i −0.0337943 + 0.0297373i
\(793\) 0.527864i 0.0187450i
\(794\) −14.1353 + 10.2699i −0.501641 + 0.364464i
\(795\) 0 0
\(796\) −0.399187 + 1.22857i −0.0141488 + 0.0435455i
\(797\) 29.3970 40.4615i 1.04129 1.43322i 0.145176 0.989406i \(-0.453625\pi\)
0.896119 0.443814i \(-0.146375\pi\)
\(798\) −5.56758 + 7.66312i −0.197090 + 0.271271i
\(799\) −0.0278640 + 0.0857567i −0.000985759 + 0.00303385i
\(800\) 0 0
\(801\) −4.07295 + 2.95917i −0.143911 + 0.104557i
\(802\) 1.90983i 0.0674384i
\(803\) 23.2416 + 13.7746i 0.820179 + 0.486094i
\(804\) 15.0902 0.532189
\(805\) 0 0
\(806\) −0.746711 2.29814i −0.0263018 0.0809485i
\(807\) −15.2497 4.95492i −0.536813 0.174421i
\(808\) −10.9964 + 15.1353i −0.386852 + 0.532456i
\(809\) 26.7533 + 19.4374i 0.940596 + 0.683383i 0.948564 0.316586i \(-0.102536\pi\)
−0.00796840 + 0.999968i \(0.502536\pi\)
\(810\) 0 0
\(811\) 4.21885 + 12.9843i 0.148144 + 0.455940i 0.997402 0.0720383i \(-0.0229504\pi\)
−0.849258 + 0.527978i \(0.822950\pi\)
\(812\) −0.693786 0.954915i −0.0243471 0.0335109i
\(813\) 45.2705i 1.58771i
\(814\) −2.73607 29.2380i −0.0958991 1.02479i
\(815\) 0 0
\(816\) −0.500000 + 0.363271i −0.0175035 + 0.0127170i
\(817\) −23.5847 + 7.66312i −0.825123 + 0.268099i
\(818\) −17.6008 5.71885i −0.615398 0.199955i
\(819\) 0.163119 + 0.118513i 0.00569984 + 0.00414117i
\(820\) 0 0
\(821\) −12.1631 + 37.4342i −0.424496 + 1.30646i 0.478980 + 0.877826i \(0.341006\pi\)
−0.903476 + 0.428638i \(0.858994\pi\)
\(822\) 24.2582 7.88197i 0.846102 0.274915i
\(823\) 1.30182 + 1.79180i 0.0453785 + 0.0624581i 0.831103 0.556118i \(-0.187710\pi\)
−0.785725 + 0.618576i \(0.787710\pi\)
\(824\) 16.8885 0.588340
\(825\) 0 0
\(826\) 25.6525 0.892564
\(827\) −13.3475 18.3713i −0.464140 0.638833i 0.511221 0.859449i \(-0.329193\pi\)
−0.975361 + 0.220616i \(0.929193\pi\)
\(828\) −1.40008 + 0.454915i −0.0486563 + 0.0158094i
\(829\) −11.4377 + 35.2016i −0.397248 + 1.22260i 0.529950 + 0.848029i \(0.322211\pi\)
−0.927197 + 0.374573i \(0.877789\pi\)
\(830\) 0 0
\(831\) 25.1803 + 18.2946i 0.873496 + 0.634632i
\(832\) 0.224514 + 0.0729490i 0.00778362 + 0.00252905i
\(833\) 0.726543 0.236068i 0.0251732 0.00817927i
\(834\) 3.73607 2.71441i 0.129369 0.0939924i
\(835\) 0 0
\(836\) 8.47214 + 1.90211i 0.293015 + 0.0657860i
\(837\) 56.0132i 1.93610i
\(838\) −18.3273 25.2254i −0.633108 0.871398i
\(839\) 9.03851 + 27.8177i 0.312044 + 0.960372i 0.976954 + 0.213449i \(0.0684698\pi\)
−0.664910 + 0.746923i \(0.731530\pi\)
\(840\) 0 0
\(841\) 23.2361 + 16.8820i 0.801244 + 0.582138i
\(842\) −10.3884 + 14.2984i −0.358007 + 0.492755i
\(843\) −35.5851 11.5623i −1.22562 0.398227i
\(844\) −4.48278 13.7966i −0.154304 0.474898i
\(845\) 0 0
\(846\) 0.0901699 0.00310011
\(847\) −17.8986 16.8713i −0.615002 0.579706i
\(848\) 1.38197i 0.0474569i
\(849\) −28.7984 + 20.9232i −0.988358 + 0.718084i
\(850\) 0 0
\(851\) 10.5451 32.4544i 0.361481 1.11252i
\(852\) −9.31881 + 12.8262i −0.319257 + 0.439420i
\(853\) 1.96763 2.70820i 0.0673702 0.0927271i −0.774002 0.633183i \(-0.781748\pi\)
0.841372 + 0.540456i \(0.181748\pi\)
\(854\) 1.54508 4.75528i 0.0528717 0.162722i
\(855\) 0 0
\(856\) −6.61803 + 4.80828i −0.226200 + 0.164344i
\(857\) 25.2705i 0.863224i 0.902059 + 0.431612i \(0.142055\pi\)
−0.902059 + 0.431612i \(0.857945\pi\)
\(858\) −0.277515 + 1.23607i −0.00947419 + 0.0421987i
\(859\) 1.18034 0.0402727 0.0201363 0.999797i \(-0.493590\pi\)
0.0201363 + 0.999797i \(0.493590\pi\)
\(860\) 0 0
\(861\) −4.14590 12.7598i −0.141292 0.434852i
\(862\) 5.65334 + 1.83688i 0.192553 + 0.0625644i
\(863\) −0.653298 + 0.899187i −0.0222385 + 0.0306087i −0.819991 0.572376i \(-0.806022\pi\)
0.797753 + 0.602984i \(0.206022\pi\)
\(864\) 4.42705 + 3.21644i 0.150611 + 0.109426i
\(865\) 0 0
\(866\) −2.61803 8.05748i −0.0889644 0.273804i
\(867\) −16.0292 22.0623i −0.544380 0.749275i
\(868\) 22.8885i 0.776888i
\(869\) −36.3713 + 15.6987i −1.23381 + 0.532542i
\(870\) 0 0
\(871\) −1.78115 + 1.29408i −0.0603521 + 0.0438483i
\(872\) 11.0494 3.59017i 0.374180 0.121578i
\(873\) −4.35926 1.41641i −0.147538 0.0479381i
\(874\) 8.16312 + 5.93085i 0.276122 + 0.200614i
\(875\) 0 0
\(876\) 4.07295 12.5352i 0.137612 0.423527i
\(877\) −35.9281 + 11.6738i −1.21321 + 0.394195i −0.844604 0.535392i \(-0.820164\pi\)
−0.368603 + 0.929587i \(0.620164\pi\)
\(878\) 13.3475 + 18.3713i 0.450458 + 0.620002i
\(879\) 17.0000 0.573396
\(880\) 0 0
\(881\) 7.67376 0.258536 0.129268 0.991610i \(-0.458737\pi\)
0.129268 + 0.991610i \(0.458737\pi\)
\(882\) −0.449028 0.618034i −0.0151196 0.0208103i
\(883\) 37.0382 12.0344i 1.24643 0.404991i 0.389793 0.920903i \(-0.372547\pi\)
0.856642 + 0.515911i \(0.172547\pi\)
\(884\) 0.0278640 0.0857567i 0.000937169 0.00288431i
\(885\) 0 0
\(886\) 24.6803 + 17.9313i 0.829152 + 0.602414i
\(887\) −38.2995 12.4443i −1.28597 0.417838i −0.415293 0.909688i \(-0.636321\pi\)
−0.870680 + 0.491850i \(0.836321\pi\)
\(888\) −13.6251 + 4.42705i −0.457227 + 0.148562i
\(889\) −5.26393 + 3.82447i −0.176547 + 0.128269i
\(890\) 0 0
\(891\) −13.0344 + 21.9928i −0.436670 + 0.736787i
\(892\) 2.05573i 0.0688309i
\(893\) −0.363271 0.500000i −0.0121564 0.0167319i
\(894\) −5.35410 16.4782i −0.179068 0.551115i
\(895\) 0 0
\(896\) 1.80902 + 1.31433i 0.0604350 + 0.0439086i
\(897\) −0.865300 + 1.19098i −0.0288915 + 0.0397658i
\(898\) −15.4944 5.03444i −0.517055 0.168002i
\(899\) −1.66970 5.13880i −0.0556875 0.171389i
\(900\) 0 0
\(901\) 0.527864 0.0175857
\(902\) −9.23305 + 8.12461i −0.307427 + 0.270520i
\(903\) 34.2705i 1.14045i
\(904\) −11.8992 + 8.64527i −0.395761 + 0.287537i
\(905\) 0 0
\(906\) 9.51722 29.2910i 0.316188 0.973128i
\(907\) 23.2744 32.0344i 0.772813 1.06369i −0.223226 0.974767i \(-0.571659\pi\)
0.996039 0.0889194i \(-0.0283413\pi\)
\(908\) 11.6044 15.9721i 0.385107 0.530054i
\(909\) 2.20820 6.79615i 0.0732415 0.225414i
\(910\) 0 0
\(911\) 10.2361 7.43694i 0.339136 0.246397i −0.405161 0.914245i \(-0.632785\pi\)
0.744297 + 0.667849i \(0.232785\pi\)
\(912\) 4.23607i 0.140270i
\(913\) 22.4091 19.7188i 0.741632 0.652599i
\(914\) 12.1246 0.401047
\(915\) 0 0
\(916\) −4.78115 14.7149i −0.157974 0.486193i
\(917\) −23.7032 7.70163i −0.782748 0.254330i
\(918\) 1.22857 1.69098i 0.0405489 0.0558108i
\(919\) −17.2082 12.5025i −0.567646 0.412419i 0.266603 0.963806i \(-0.414099\pi\)
−0.834249 + 0.551387i \(0.814099\pi\)
\(920\) 0 0
\(921\) 14.3992 + 44.3161i 0.474469 + 1.46027i
\(922\) 21.4050 + 29.4615i 0.704937 + 0.970263i
\(923\) 2.31308i 0.0761360i
\(924\) −6.11803 + 10.3229i −0.201269 + 0.339597i
\(925\) 0 0
\(926\) 31.2254 22.6866i 1.02613 0.745528i
\(927\) −6.13512 + 1.99342i −0.201504 + 0.0654726i
\(928\) 0.502029 + 0.163119i 0.0164799 + 0.00535464i
\(929\) −18.9443 13.7638i −0.621541 0.451576i 0.231918 0.972735i \(-0.425500\pi\)
−0.853460 + 0.521159i \(0.825500\pi\)
\(930\) 0 0
\(931\) −1.61803 + 4.97980i −0.0530289 + 0.163206i
\(932\) 19.3314 6.28115i 0.633221 0.205746i
\(933\) −4.02874 5.54508i −0.131895 0.181538i
\(934\) 32.1803 1.05297
\(935\) 0 0
\(936\) −0.0901699 −0.00294730
\(937\) −13.9026 19.1353i −0.454177 0.625122i 0.519111 0.854707i \(-0.326263\pi\)
−0.973289 + 0.229585i \(0.926263\pi\)
\(938\) −19.8334 + 6.44427i −0.647584 + 0.210413i
\(939\) −0.500000 + 1.53884i −0.0163169 + 0.0502182i
\(940\) 0 0
\(941\) −20.5172 14.9066i −0.668842 0.485942i 0.200795 0.979633i \(-0.435647\pi\)
−0.869637 + 0.493691i \(0.835647\pi\)
\(942\) −10.4086 3.38197i −0.339131 0.110190i
\(943\) −13.5923 + 4.41641i −0.442626 + 0.143818i
\(944\) −9.28115 + 6.74315i −0.302076 + 0.219471i
\(945\) 0 0
\(946\) −28.8435 + 12.4495i −0.937782 + 0.404768i
\(947\) 18.0000i 0.584921i 0.956278 + 0.292461i \(0.0944741\pi\)
−0.956278 + 0.292461i \(0.905526\pi\)
\(948\) 11.3597 + 15.6353i 0.368945 + 0.507809i
\(949\) 0.594235 + 1.82887i 0.0192897 + 0.0593676i
\(950\) 0 0
\(951\) −3.66312 2.66141i −0.118785 0.0863022i
\(952\) 0.502029 0.690983i 0.0162708 0.0223949i
\(953\) 39.1118 + 12.7082i 1.26696 + 0.411659i 0.863968 0.503546i \(-0.167972\pi\)
0.402988 + 0.915205i \(0.367972\pi\)
\(954\) −0.163119 0.502029i −0.00528117 0.0162538i
\(955\) 0 0
\(956\) −17.4721 −0.565089
\(957\) −0.620541 + 2.76393i −0.0200593 + 0.0893452i
\(958\) 9.94427i 0.321285i
\(959\) −28.5172 + 20.7190i −0.920869 + 0.669051i
\(960\) 0 0
\(961\) 22.7984 70.1662i 0.735431 2.26343i
\(962\) 1.22857 1.69098i 0.0396107 0.0545195i
\(963\) 1.83660 2.52786i 0.0591836 0.0814593i
\(964\) −5.56231 + 17.1190i −0.179150 + 0.551366i
\(965\) 0 0
\(966\) −11.2812 + 8.19624i −0.362965 + 0.263710i
\(967\) 20.0557i 0.644949i 0.946578 + 0.322474i \(0.104515\pi\)
−0.946578 + 0.322474i \(0.895485\pi\)
\(968\) 10.9106 + 1.39919i 0.350682 + 0.0449716i
\(969\) −1.61803 −0.0519787
\(970\) 0 0
\(971\) 15.6140 + 48.0549i 0.501076 + 1.54215i 0.807269 + 0.590184i \(0.200945\pi\)
−0.306193 + 0.951970i \(0.599055\pi\)
\(972\) −3.75123 1.21885i −0.120321 0.0390945i
\(973\) −3.75123 + 5.16312i −0.120259 + 0.165522i
\(974\) −8.80902 6.40013i −0.282259 0.205073i
\(975\) 0 0
\(976\) 0.690983 + 2.12663i 0.0221178 + 0.0680717i
\(977\) 4.99231 + 6.87132i 0.159718 + 0.219833i 0.881374 0.472418i \(-0.156619\pi\)
−0.721656 + 0.692252i \(0.756619\pi\)
\(978\) 0.291796i 0.00933061i
\(979\) 42.6525 + 9.57608i 1.36318 + 0.306053i
\(980\) 0 0
\(981\) −3.59017 + 2.60841i −0.114625 + 0.0832802i
\(982\) −11.5842 + 3.76393i −0.369666 + 0.120112i
\(983\) −26.2461 8.52786i −0.837120 0.271997i −0.141078 0.989998i \(-0.545057\pi\)
−0.696041 + 0.718002i \(0.745057\pi\)
\(984\) 4.85410 + 3.52671i 0.154743 + 0.112427i
\(985\) 0 0
\(986\) 0.0623059 0.191758i 0.00198422 0.00610681i
\(987\) 0.812299 0.263932i 0.0258558 0.00840105i
\(988\) 0.363271 + 0.500000i 0.0115572 + 0.0159071i
\(989\) −36.5066 −1.16084
\(990\) 0 0
\(991\) −2.11146 −0.0670726 −0.0335363 0.999437i \(-0.510677\pi\)
−0.0335363 + 0.999437i \(0.510677\pi\)
\(992\) 6.01661 + 8.28115i 0.191028 + 0.262927i
\(993\) 26.0746 8.47214i 0.827451 0.268855i
\(994\) 6.77051 20.8375i 0.214748 0.660925i
\(995\) 0 0
\(996\) −11.7812 8.55951i −0.373300 0.271218i
\(997\) −27.4949 8.93363i −0.870772 0.282931i −0.160651 0.987011i \(-0.551359\pi\)
−0.710120 + 0.704080i \(0.751359\pi\)
\(998\) 14.6946 4.77458i 0.465150 0.151137i
\(999\) 39.1976 28.4787i 1.24016 0.901026i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 550.2.ba.e.399.1 8
5.2 odd 4 550.2.h.g.201.1 yes 4
5.3 odd 4 550.2.h.c.201.1 4
5.4 even 2 inner 550.2.ba.e.399.2 8
11.4 even 5 inner 550.2.ba.e.499.2 8
55.2 even 20 6050.2.a.cr.1.2 2
55.4 even 10 inner 550.2.ba.e.499.1 8
55.13 even 20 6050.2.a.bx.1.1 2
55.37 odd 20 550.2.h.g.301.1 yes 4
55.42 odd 20 6050.2.a.ca.1.2 2
55.48 odd 20 550.2.h.c.301.1 yes 4
55.53 odd 20 6050.2.a.co.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
550.2.h.c.201.1 4 5.3 odd 4
550.2.h.c.301.1 yes 4 55.48 odd 20
550.2.h.g.201.1 yes 4 5.2 odd 4
550.2.h.g.301.1 yes 4 55.37 odd 20
550.2.ba.e.399.1 8 1.1 even 1 trivial
550.2.ba.e.399.2 8 5.4 even 2 inner
550.2.ba.e.499.1 8 55.4 even 10 inner
550.2.ba.e.499.2 8 11.4 even 5 inner
6050.2.a.bx.1.1 2 55.13 even 20
6050.2.a.ca.1.2 2 55.42 odd 20
6050.2.a.co.1.1 2 55.53 odd 20
6050.2.a.cr.1.2 2 55.2 even 20