# Properties

 Label 550.2.a.b Level $550$ Weight $2$ Character orbit 550.a Self dual yes Analytic conductor $4.392$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [550,2,Mod(1,550)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(550, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("550.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$550 = 2 \cdot 5^{2} \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 550.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$4.39177211117$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q - q^{2} - 2 q^{3} + q^{4} + 2 q^{6} - q^{8} + q^{9}+O(q^{10})$$ q - q^2 - 2 * q^3 + q^4 + 2 * q^6 - q^8 + q^9 $$q - q^{2} - 2 q^{3} + q^{4} + 2 q^{6} - q^{8} + q^{9} + q^{11} - 2 q^{12} - 3 q^{13} + q^{16} + 4 q^{17} - q^{18} - q^{19} - q^{22} - 3 q^{23} + 2 q^{24} + 3 q^{26} + 4 q^{27} + 5 q^{29} - 3 q^{31} - q^{32} - 2 q^{33} - 4 q^{34} + q^{36} + 12 q^{37} + q^{38} + 6 q^{39} + 8 q^{41} + 5 q^{43} + q^{44} + 3 q^{46} + 8 q^{47} - 2 q^{48} - 7 q^{49} - 8 q^{51} - 3 q^{52} + 10 q^{53} - 4 q^{54} + 2 q^{57} - 5 q^{58} + 8 q^{59} + 10 q^{61} + 3 q^{62} + q^{64} + 2 q^{66} - 14 q^{67} + 4 q^{68} + 6 q^{69} - 5 q^{71} - q^{72} + 4 q^{73} - 12 q^{74} - q^{76} - 6 q^{78} - 8 q^{79} - 11 q^{81} - 8 q^{82} + 9 q^{83} - 5 q^{86} - 10 q^{87} - q^{88} + 3 q^{89} - 3 q^{92} + 6 q^{93} - 8 q^{94} + 2 q^{96} - 3 q^{97} + 7 q^{98} + q^{99}+O(q^{100})$$ q - q^2 - 2 * q^3 + q^4 + 2 * q^6 - q^8 + q^9 + q^11 - 2 * q^12 - 3 * q^13 + q^16 + 4 * q^17 - q^18 - q^19 - q^22 - 3 * q^23 + 2 * q^24 + 3 * q^26 + 4 * q^27 + 5 * q^29 - 3 * q^31 - q^32 - 2 * q^33 - 4 * q^34 + q^36 + 12 * q^37 + q^38 + 6 * q^39 + 8 * q^41 + 5 * q^43 + q^44 + 3 * q^46 + 8 * q^47 - 2 * q^48 - 7 * q^49 - 8 * q^51 - 3 * q^52 + 10 * q^53 - 4 * q^54 + 2 * q^57 - 5 * q^58 + 8 * q^59 + 10 * q^61 + 3 * q^62 + q^64 + 2 * q^66 - 14 * q^67 + 4 * q^68 + 6 * q^69 - 5 * q^71 - q^72 + 4 * q^73 - 12 * q^74 - q^76 - 6 * q^78 - 8 * q^79 - 11 * q^81 - 8 * q^82 + 9 * q^83 - 5 * q^86 - 10 * q^87 - q^88 + 3 * q^89 - 3 * q^92 + 6 * q^93 - 8 * q^94 + 2 * q^96 - 3 * q^97 + 7 * q^98 + q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
−1.00000 −2.00000 1.00000 0 2.00000 0 −1.00000 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$+1$$
$$5$$ $$+1$$
$$11$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 550.2.a.b 1
3.b odd 2 1 4950.2.a.bh 1
4.b odd 2 1 4400.2.a.y 1
5.b even 2 1 550.2.a.l yes 1
5.c odd 4 2 550.2.b.e 2
11.b odd 2 1 6050.2.a.y 1
15.d odd 2 1 4950.2.a.l 1
15.e even 4 2 4950.2.c.i 2
20.d odd 2 1 4400.2.a.g 1
20.e even 4 2 4400.2.b.d 2
55.d odd 2 1 6050.2.a.p 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
550.2.a.b 1 1.a even 1 1 trivial
550.2.a.l yes 1 5.b even 2 1
550.2.b.e 2 5.c odd 4 2
4400.2.a.g 1 20.d odd 2 1
4400.2.a.y 1 4.b odd 2 1
4400.2.b.d 2 20.e even 4 2
4950.2.a.l 1 15.d odd 2 1
4950.2.a.bh 1 3.b odd 2 1
4950.2.c.i 2 15.e even 4 2
6050.2.a.p 1 55.d odd 2 1
6050.2.a.y 1 11.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(550))$$:

 $$T_{3} + 2$$ T3 + 2 $$T_{7}$$ T7 $$T_{13} + 3$$ T13 + 3

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T + 1$$
$3$ $$T + 2$$
$5$ $$T$$
$7$ $$T$$
$11$ $$T - 1$$
$13$ $$T + 3$$
$17$ $$T - 4$$
$19$ $$T + 1$$
$23$ $$T + 3$$
$29$ $$T - 5$$
$31$ $$T + 3$$
$37$ $$T - 12$$
$41$ $$T - 8$$
$43$ $$T - 5$$
$47$ $$T - 8$$
$53$ $$T - 10$$
$59$ $$T - 8$$
$61$ $$T - 10$$
$67$ $$T + 14$$
$71$ $$T + 5$$
$73$ $$T - 4$$
$79$ $$T + 8$$
$83$ $$T - 9$$
$89$ $$T - 3$$
$97$ $$T + 3$$