Properties

Label 55.8.e.a
Level $55$
Weight $8$
Character orbit 55.e
Analytic conductor $17.181$
Analytic rank $0$
Dimension $4$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [55,8,Mod(32,55)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(55, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1, 2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("55.32");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 55.e (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(17.1811764016\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{11})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (13 \beta_{3} - 35 \beta_{2} + \cdots + 48) q^{3}+ \cdots + (2158 \beta_{3} - 2187 \beta_{2} + 1079) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (13 \beta_{3} - 35 \beta_{2} + \cdots + 48) q^{3}+ \cdots + (5821794 \beta_{3} - 15797639 \beta_{2} + 2910897) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 166 q^{3}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 166 q^{3} + 21248 q^{12} - 31928 q^{15} - 65536 q^{16} + 129792 q^{20} - 182934 q^{23} - 201598 q^{25} - 308594 q^{27} + 380666 q^{33} + 1119744 q^{36} - 1124942 q^{37} - 2217618 q^{45} + 2629848 q^{47} - 2719744 q^{48} + 726756 q^{53} + 2079022 q^{55} + 6685952 q^{60} - 1369342 q^{67} + 22916868 q^{71} - 13513888 q^{75} - 32094728 q^{81} - 23415552 q^{92} + 28407522 q^{93} + 30364958 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 5x^{2} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} - 2\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 3\beta_{2} + 2\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/55\mathbb{Z}\right)^\times\).

\(n\) \(12\) \(46\)
\(\chi(n)\) \(\beta_{2}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
32.1
1.65831 + 0.500000i
−1.65831 + 0.500000i
1.65831 0.500000i
−1.65831 0.500000i
0 19.9419 19.9419i 128.000i −117.740 253.500i 0 0 0 1391.64i 0
32.2 0 63.0581 63.0581i 128.000i 117.740 253.500i 0 0 0 5765.64i 0
43.1 0 19.9419 + 19.9419i 128.000i −117.740 + 253.500i 0 0 0 1391.64i 0
43.2 0 63.0581 + 63.0581i 128.000i 117.740 + 253.500i 0 0 0 5765.64i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)
5.c odd 4 1 inner
55.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 55.8.e.a 4
5.c odd 4 1 inner 55.8.e.a 4
11.b odd 2 1 CM 55.8.e.a 4
55.e even 4 1 inner 55.8.e.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.8.e.a 4 1.a even 1 1 trivial
55.8.e.a 4 5.c odd 4 1 inner
55.8.e.a 4 11.b odd 2 1 CM
55.8.e.a 4 55.e even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} \) acting on \(S_{8}^{\mathrm{new}}(55, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} - 166 T^{3} + \cdots + 6325225 \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 6103515625 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} - 19487171)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 24\!\cdots\!25 \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} - 108524382219)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 16\!\cdots\!25 \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 51\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 49\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( (T^{2} + 9932119437251)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 13\!\cdots\!25 \) Copy content Toggle raw display
$71$ \( (T - 5729217)^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( (T^{2} + 19572846622641)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 47\!\cdots\!25 \) Copy content Toggle raw display
show more
show less