Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [55,6,Mod(32,55)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(55, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([1, 2]))
N = Newforms(chi, 6, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("55.32");
S:= CuspForms(chi, 6);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 55 = 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 55.e (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(8.82111008971\) |
Analytic rank: | \(0\) |
Dimension: | \(52\) |
Relative dimension: | \(26\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
32.1 | −7.70910 | + | 7.70910i | −16.8901 | + | 16.8901i | − | 86.8603i | −34.5372 | + | 43.9566i | − | 260.415i | 97.1832 | − | 97.1832i | 422.923 | + | 422.923i | − | 327.553i | −72.6145 | − | 605.116i | |||
32.2 | −7.05963 | + | 7.05963i | 1.68959 | − | 1.68959i | − | 67.6769i | 55.5275 | − | 6.45743i | 23.8558i | −73.3168 | + | 73.3168i | 251.866 | + | 251.866i | 237.291i | −346.417 | + | 437.591i | |||||
32.3 | −6.82111 | + | 6.82111i | 5.46634 | − | 5.46634i | − | 61.0552i | −38.9249 | − | 40.1230i | 74.5730i | 17.4759 | − | 17.4759i | 198.189 | + | 198.189i | 183.238i | 539.194 | + | 8.17222i | |||||
32.4 | −6.66565 | + | 6.66565i | 19.1413 | − | 19.1413i | − | 56.8618i | −13.1183 | + | 54.3407i | 255.179i | 17.8098 | − | 17.8098i | 165.720 | + | 165.720i | − | 489.780i | −274.774 | − | 449.658i | ||||
32.5 | −5.22937 | + | 5.22937i | −7.05670 | + | 7.05670i | − | 22.6926i | 7.96459 | + | 55.3314i | − | 73.8041i | −142.717 | + | 142.717i | −48.6720 | − | 48.6720i | 143.406i | −330.998 | − | 247.699i | ||||
32.6 | −4.99853 | + | 4.99853i | −11.9326 | + | 11.9326i | − | 17.9706i | 53.2298 | − | 17.0759i | − | 119.291i | 159.303 | − | 159.303i | −70.1263 | − | 70.1263i | − | 41.7749i | −180.716 | + | 351.425i | |||
32.7 | −4.80775 | + | 4.80775i | −19.8987 | + | 19.8987i | − | 14.2290i | −6.50942 | − | 55.5214i | − | 191.336i | −113.651 | + | 113.651i | −85.4386 | − | 85.4386i | − | 548.917i | 298.229 | + | 235.638i | |||
32.8 | −4.43002 | + | 4.43002i | 16.3501 | − | 16.3501i | − | 7.25019i | 27.0484 | − | 48.9222i | 144.862i | 30.3495 | − | 30.3495i | −109.642 | − | 109.642i | − | 291.649i | 96.9014 | + | 336.552i | ||||
32.9 | −4.04500 | + | 4.04500i | −4.18256 | + | 4.18256i | − | 0.723976i | −55.4681 | − | 6.94934i | − | 33.8369i | 23.8782 | − | 23.8782i | −126.511 | − | 126.511i | 208.012i | 252.478 | − | 196.258i | ||||
32.10 | −2.88475 | + | 2.88475i | 5.55436 | − | 5.55436i | 15.3564i | −11.0950 | + | 54.7896i | 32.0459i | 103.743 | − | 103.743i | −136.612 | − | 136.612i | 181.298i | −126.048 | − | 190.061i | ||||||
32.11 | −2.33566 | + | 2.33566i | 11.4271 | − | 11.4271i | 21.0894i | 53.4426 | + | 16.3977i | 53.3797i | −37.7988 | + | 37.7988i | −123.999 | − | 123.999i | − | 18.1587i | −163.123 | + | 86.5243i | |||||
32.12 | −1.37494 | + | 1.37494i | 16.5868 | − | 16.5868i | 28.2191i | −55.3028 | − | 8.16074i | 45.6116i | −178.839 | + | 178.839i | −82.7976 | − | 82.7976i | − | 307.243i | 87.2585 | − | 64.8175i | |||||
32.13 | −0.819850 | + | 0.819850i | −2.25487 | + | 2.25487i | 30.6557i | 5.74279 | − | 55.6059i | − | 3.69731i | −88.0749 | + | 88.0749i | −51.3683 | − | 51.3683i | 232.831i | 40.8803 | + | 50.2967i | |||||
32.14 | 0.819850 | − | 0.819850i | −2.25487 | + | 2.25487i | 30.6557i | 5.74279 | − | 55.6059i | 3.69731i | 88.0749 | − | 88.0749i | 51.3683 | + | 51.3683i | 232.831i | −40.8803 | − | 50.2967i | ||||||
32.15 | 1.37494 | − | 1.37494i | 16.5868 | − | 16.5868i | 28.2191i | −55.3028 | − | 8.16074i | − | 45.6116i | 178.839 | − | 178.839i | 82.7976 | + | 82.7976i | − | 307.243i | −87.2585 | + | 64.8175i | ||||
32.16 | 2.33566 | − | 2.33566i | 11.4271 | − | 11.4271i | 21.0894i | 53.4426 | + | 16.3977i | − | 53.3797i | 37.7988 | − | 37.7988i | 123.999 | + | 123.999i | − | 18.1587i | 163.123 | − | 86.5243i | ||||
32.17 | 2.88475 | − | 2.88475i | 5.55436 | − | 5.55436i | 15.3564i | −11.0950 | + | 54.7896i | − | 32.0459i | −103.743 | + | 103.743i | 136.612 | + | 136.612i | 181.298i | 126.048 | + | 190.061i | |||||
32.18 | 4.04500 | − | 4.04500i | −4.18256 | + | 4.18256i | − | 0.723976i | −55.4681 | − | 6.94934i | 33.8369i | −23.8782 | + | 23.8782i | 126.511 | + | 126.511i | 208.012i | −252.478 | + | 196.258i | |||||
32.19 | 4.43002 | − | 4.43002i | 16.3501 | − | 16.3501i | − | 7.25019i | 27.0484 | − | 48.9222i | − | 144.862i | −30.3495 | + | 30.3495i | 109.642 | + | 109.642i | − | 291.649i | −96.9014 | − | 336.552i | |||
32.20 | 4.80775 | − | 4.80775i | −19.8987 | + | 19.8987i | − | 14.2290i | −6.50942 | − | 55.5214i | 191.336i | 113.651 | − | 113.651i | 85.4386 | + | 85.4386i | − | 548.917i | −298.229 | − | 235.638i | ||||
See all 52 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
11.b | odd | 2 | 1 | inner |
55.e | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 55.6.e.b | ✓ | 52 |
5.c | odd | 4 | 1 | inner | 55.6.e.b | ✓ | 52 |
11.b | odd | 2 | 1 | inner | 55.6.e.b | ✓ | 52 |
55.e | even | 4 | 1 | inner | 55.6.e.b | ✓ | 52 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
55.6.e.b | ✓ | 52 | 1.a | even | 1 | 1 | trivial |
55.6.e.b | ✓ | 52 | 5.c | odd | 4 | 1 | inner |
55.6.e.b | ✓ | 52 | 11.b | odd | 2 | 1 | inner |
55.6.e.b | ✓ | 52 | 55.e | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{52} + 51268 T_{2}^{48} + 1084701006 T_{2}^{44} + 12359132998700 T_{2}^{40} + \cdots + 21\!\cdots\!00 \)
acting on \(S_{6}^{\mathrm{new}}(55, [\chi])\).