Defining parameters
Level: | \( N \) | \(=\) | \( 55 = 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 55.e (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 55 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(36\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(55, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 64 | 64 | 0 |
Cusp forms | 56 | 56 | 0 |
Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(55, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
55.6.e.a | $4$ | $8.821$ | \(\Q(i, \sqrt{11})\) | \(\Q(\sqrt{-11}) \) | \(0\) | \(-62\) | \(0\) | \(0\) | \(q+(-15+\beta _{1}-2^{4}\beta _{2}+\beta _{3})q^{3}-2^{5}\beta _{2}q^{4}+\cdots\) |
55.6.e.b | $52$ | $8.821$ | None | \(0\) | \(56\) | \(-48\) | \(0\) |