Properties

Label 55.5.i.c
Level $55$
Weight $5$
Character orbit 55.i
Analytic conductor $5.685$
Analytic rank $0$
Dimension $32$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [55,5,Mod(6,55)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(55, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 9]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("55.6");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 55.i (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.68534796961\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(8\) over \(\Q(\zeta_{10})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

$q$-expansion

The dimension is sufficiently large that we do not compute an algebraic \(q\)-expansion, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 32 q + 3 q^{3} + 40 q^{4} + 200 q^{5} + 60 q^{6} - 60 q^{7} + 240 q^{8} - 333 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 32 q + 3 q^{3} + 40 q^{4} + 200 q^{5} + 60 q^{6} - 60 q^{7} + 240 q^{8} - 333 q^{9} - 79 q^{11} + 818 q^{12} - 645 q^{13} - 627 q^{14} - 75 q^{15} - 676 q^{16} + 1155 q^{17} + 3785 q^{18} + 1020 q^{19} - 1675 q^{20} - 1865 q^{22} - 1252 q^{23} - 2650 q^{24} - 1000 q^{25} - 1548 q^{26} + 1611 q^{27} + 3440 q^{28} + 4965 q^{29} - 800 q^{30} - 2588 q^{31} - 3932 q^{33} - 702 q^{34} - 7926 q^{36} - 112 q^{37} - 505 q^{38} + 4745 q^{39} + 3450 q^{40} + 375 q^{41} - 2185 q^{42} + 4309 q^{44} - 3350 q^{45} + 20795 q^{46} - 8002 q^{47} - 18587 q^{48} - 9550 q^{49} - 6430 q^{51} + 8040 q^{52} - 8477 q^{53} + 5325 q^{55} + 124 q^{56} + 36780 q^{57} - 7530 q^{58} - 5160 q^{59} + 5975 q^{60} - 1010 q^{61} - 7980 q^{62} + 43690 q^{63} + 2028 q^{64} + 23965 q^{66} - 13352 q^{67} + 31005 q^{68} - 3831 q^{69} - 14025 q^{70} - 48516 q^{71} - 68050 q^{72} - 22945 q^{73} + 51070 q^{74} - 1500 q^{75} + 46630 q^{77} + 27460 q^{78} + 64835 q^{79} - 6025 q^{80} + 641 q^{81} - 27685 q^{82} - 60460 q^{83} - 49920 q^{84} + 9225 q^{85} + 32242 q^{86} + 69765 q^{88} - 50048 q^{89} + 37850 q^{90} - 69743 q^{91} - 50582 q^{92} - 46619 q^{93} - 53750 q^{94} + 5700 q^{95} + 117585 q^{96} - 28757 q^{97} + 31558 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
6.1 −6.51152 + 2.11572i −5.57602 4.05121i 24.9793 18.1485i 3.45492 10.6331i 44.8796 + 14.5823i 35.9576 + 49.4914i −59.8666 + 82.3993i −10.3507 31.8563i 76.5475i
6.2 −5.33134 + 1.73226i 4.18265 + 3.03888i 12.4782 9.06595i 3.45492 10.6331i −27.5633 8.95585i −8.84881 12.1793i 1.89819 2.61264i −16.7706 51.6145i 62.6737i
6.3 −1.13026 + 0.367245i −12.1907 8.85708i −11.8016 + 8.57440i 3.45492 10.6331i 17.0314 + 5.53385i 8.86736 + 12.2049i 21.3667 29.4087i 45.1356 + 138.913i 13.2870i
6.4 −1.08647 + 0.353014i 0.967832 + 0.703171i −11.8885 + 8.63749i 3.45492 10.6331i −1.29975 0.422313i −11.5117 15.8444i 20.6108 28.3684i −24.5881 75.6745i 12.7722i
6.5 1.47701 0.479911i 7.72989 + 5.61609i −10.9930 + 7.98689i 3.45492 10.6331i 14.1124 + 4.58539i 48.0319 + 66.1102i −27.0094 + 37.1752i 3.18032 + 9.78802i 17.3633i
6.6 4.09361 1.33010i −8.24143 5.98775i 2.04423 1.48522i 3.45492 10.6331i −41.7015 13.5496i −31.1710 42.9032i −34.0871 + 46.9168i 7.03767 + 21.6597i 48.1233i
6.7 5.26648 1.71118i 12.5492 + 9.11756i 11.8634 8.61925i 3.45492 10.6331i 81.6921 + 26.5434i −50.3543 69.3068i −4.34867 + 5.98543i 49.3232 + 151.801i 61.9112i
6.8 6.57658 2.13686i −0.348489 0.253192i 25.7410 18.7019i 3.45492 10.6331i −2.83290 0.920466i 27.5700 + 37.9469i 64.2916 88.4898i −24.9730 76.8591i 77.3124i
41.1 −4.33964 5.97300i −5.15176 15.8555i −11.9000 + 36.6244i 9.04508 + 6.57164i −72.3481 + 99.5786i −34.5328 11.2204i 158.053 51.3544i −159.326 + 115.757i 82.5449i
41.2 −3.52979 4.85833i 0.882567 + 2.71626i −6.19975 + 19.0809i 9.04508 + 6.57164i 10.0812 13.8756i 53.1572 + 17.2718i 23.2040 7.53944i 58.9312 42.8160i 67.1405i
41.3 −3.23013 4.44589i 3.83090 + 11.7903i −4.38793 + 13.5047i 9.04508 + 6.57164i 40.0440 55.1159i −83.1841 27.0282i −9.40947 + 3.05732i −58.8049 + 42.7242i 61.4407i
41.4 −0.539548 0.742624i 2.14850 + 6.61241i 4.68389 14.4155i 9.04508 + 6.57164i 3.75132 5.16324i 14.7007 + 4.77655i −27.2006 + 8.83802i 26.4224 19.1970i 10.2628i
41.5 −0.336982 0.463816i −3.12765 9.62592i 4.84270 14.9043i 9.04508 + 6.57164i −3.41069 + 4.69441i −32.4398 10.5403i −17.2687 + 5.61095i −17.3458 + 12.6025i 6.40978i
41.6 2.17816 + 2.99798i 4.85120 + 14.9304i 0.700761 2.15672i 9.04508 + 6.57164i −34.1945 + 47.0647i 29.0809 + 9.44896i 64.3816 20.9189i −133.854 + 97.2504i 41.4311i
41.7 2.31182 + 3.18195i −1.98676 6.11462i 0.163986 0.504697i 9.04508 + 6.57164i 14.8634 20.4577i 18.0365 + 5.86042i 61.8347 20.0913i 32.0890 23.3141i 43.9735i
41.8 4.13200 + 5.68721i 0.980059 + 3.01631i −10.3266 + 31.7821i 9.04508 + 6.57164i −13.1048 + 18.0372i −13.3596 4.34081i −116.450 + 37.8369i 57.3928 41.6983i 78.5953i
46.1 −6.51152 2.11572i −5.57602 + 4.05121i 24.9793 + 18.1485i 3.45492 + 10.6331i 44.8796 14.5823i 35.9576 49.4914i −59.8666 82.3993i −10.3507 + 31.8563i 76.5475i
46.2 −5.33134 1.73226i 4.18265 3.03888i 12.4782 + 9.06595i 3.45492 + 10.6331i −27.5633 + 8.95585i −8.84881 + 12.1793i 1.89819 + 2.61264i −16.7706 + 51.6145i 62.6737i
46.3 −1.13026 0.367245i −12.1907 + 8.85708i −11.8016 8.57440i 3.45492 + 10.6331i 17.0314 5.53385i 8.86736 12.2049i 21.3667 + 29.4087i 45.1356 138.913i 13.2870i
46.4 −1.08647 0.353014i 0.967832 0.703171i −11.8885 8.63749i 3.45492 + 10.6331i −1.29975 + 0.422313i −11.5117 + 15.8444i 20.6108 + 28.3684i −24.5881 + 75.6745i 12.7722i
See all 32 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 6.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.d odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 55.5.i.c 32
11.d odd 10 1 inner 55.5.i.c 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.5.i.c 32 1.a even 1 1 trivial
55.5.i.c 32 11.d odd 10 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{32} - 84 T_{2}^{30} - 240 T_{2}^{29} + 5741 T_{2}^{28} + 20160 T_{2}^{27} - 325174 T_{2}^{26} + \cdots + 30\!\cdots\!00 \) acting on \(S_{5}^{\mathrm{new}}(55, [\chi])\). Copy content Toggle raw display