Properties

Label 55.4.b.a
Level $55$
Weight $4$
Character orbit 55.b
Analytic conductor $3.245$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [55,4,Mod(34,55)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(55, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("55.34");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 55.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.24510505032\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 22x^{4} + 101x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{5} + \beta_1) q^{3} + (\beta_{3} + 1) q^{4} + ( - \beta_{5} - \beta_{4} + \cdots - \beta_1) q^{5}+ \cdots + ( - 3 \beta_{4} - 3 \beta_{3} - 4) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{2} + (\beta_{5} + \beta_1) q^{3} + (\beta_{3} + 1) q^{4} + ( - \beta_{5} - \beta_{4} + \cdots - \beta_1) q^{5}+ \cdots + (33 \beta_{4} + 33 \beta_{3} + 44) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 4 q^{4} - 4 q^{5} - 22 q^{6} - 24 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 4 q^{4} - 4 q^{5} - 22 q^{6} - 24 q^{9} + 26 q^{10} - 66 q^{11} + 18 q^{14} + 150 q^{15} - 108 q^{16} + 258 q^{19} + 194 q^{20} - 478 q^{21} + 6 q^{24} + 106 q^{25} - 356 q^{26} + 494 q^{29} + 440 q^{30} - 514 q^{31} + 6 q^{34} + 570 q^{35} - 874 q^{36} + 560 q^{39} + 422 q^{40} - 824 q^{41} - 44 q^{44} + 112 q^{45} - 940 q^{46} + 496 q^{49} + 816 q^{50} - 438 q^{51} - 410 q^{54} + 44 q^{55} - 130 q^{56} + 200 q^{59} + 1530 q^{60} - 2210 q^{61} + 676 q^{64} - 168 q^{65} + 242 q^{66} + 1296 q^{69} + 20 q^{70} - 270 q^{71} - 266 q^{74} - 520 q^{75} + 422 q^{76} + 824 q^{79} + 534 q^{80} + 510 q^{81} - 3858 q^{84} - 1054 q^{85} + 2476 q^{86} - 186 q^{89} - 8 q^{90} + 2000 q^{91} - 660 q^{94} - 2884 q^{95} + 906 q^{96} + 264 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} + 22x^{4} + 101x^{2} + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 13\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} + 7 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{4} + 17\nu^{2} + 32 ) / 4 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{5} + 21\nu^{3} + 84\nu ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} - 7 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{2} - 13\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 4\beta_{4} - 17\beta_{3} + 87 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 4\beta_{5} - 42\beta_{2} + 189\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/55\mathbb{Z}\right)^\times\).

\(n\) \(12\) \(46\)
\(\chi(n)\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
34.1
3.94784i
2.50006i
0.405276i
0.405276i
2.50006i
3.94784i
3.94784i 3.56498i −7.58548 −11.0740 1.53855i −14.0740 2.30429i 1.63647i 14.2909 −6.07397 + 43.7183i
34.2 2.50006i 2.61871i 1.74972 9.54691 + 5.81864i 6.54691 4.41889i 24.3748i 20.1424 14.5469 23.8678i
34.3 0.405276i 8.56932i 7.83575 −0.472938 + 11.1703i −3.47294 27.4984i 6.41784i −46.4333 4.52706 + 0.191670i
34.4 0.405276i 8.56932i 7.83575 −0.472938 11.1703i −3.47294 27.4984i 6.41784i −46.4333 4.52706 0.191670i
34.5 2.50006i 2.61871i 1.74972 9.54691 5.81864i 6.54691 4.41889i 24.3748i 20.1424 14.5469 + 23.8678i
34.6 3.94784i 3.56498i −7.58548 −11.0740 + 1.53855i −14.0740 2.30429i 1.63647i 14.2909 −6.07397 43.7183i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 34.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 55.4.b.a 6
3.b odd 2 1 495.4.c.a 6
4.b odd 2 1 880.4.b.f 6
5.b even 2 1 inner 55.4.b.a 6
5.c odd 4 2 275.4.a.j 6
15.d odd 2 1 495.4.c.a 6
15.e even 4 2 2475.4.a.bn 6
20.d odd 2 1 880.4.b.f 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.4.b.a 6 1.a even 1 1 trivial
55.4.b.a 6 5.b even 2 1 inner
275.4.a.j 6 5.c odd 4 2
495.4.c.a 6 3.b odd 2 1
495.4.c.a 6 15.d odd 2 1
880.4.b.f 6 4.b odd 2 1
880.4.b.f 6 20.d odd 2 1
2475.4.a.bn 6 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} + 22T_{2}^{4} + 101T_{2}^{2} + 16 \) acting on \(S_{4}^{\mathrm{new}}(55, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 22 T^{4} + \cdots + 16 \) Copy content Toggle raw display
$3$ \( T^{6} + 93 T^{4} + \cdots + 6400 \) Copy content Toggle raw display
$5$ \( T^{6} + 4 T^{5} + \cdots + 1953125 \) Copy content Toggle raw display
$7$ \( T^{6} + 781 T^{4} + \cdots + 78400 \) Copy content Toggle raw display
$11$ \( (T + 11)^{6} \) Copy content Toggle raw display
$13$ \( T^{6} + 3096 T^{4} + \cdots + 595360000 \) Copy content Toggle raw display
$17$ \( T^{6} + 5441 T^{4} + \cdots + 545502736 \) Copy content Toggle raw display
$19$ \( (T^{3} - 129 T^{2} + \cdots + 493744)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots + 994439750656 \) Copy content Toggle raw display
$29$ \( (T^{3} - 247 T^{2} + \cdots + 2047004)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} + 257 T^{2} + \cdots - 484864)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 294700670255104 \) Copy content Toggle raw display
$41$ \( (T^{3} + 412 T^{2} + \cdots + 143488)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots + 23\!\cdots\!96 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 5233772609536 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 14\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( (T^{3} - 100 T^{2} + \cdots + 20068352)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} + 1105 T^{2} + \cdots - 114682660)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 10\!\cdots\!44 \) Copy content Toggle raw display
$71$ \( (T^{3} + 135 T^{2} + \cdots - 68294144)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 27232283023936 \) Copy content Toggle raw display
$79$ \( (T^{3} - 412 T^{2} + \cdots + 287752192)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 35\!\cdots\!64 \) Copy content Toggle raw display
$89$ \( (T^{3} + 93 T^{2} + \cdots + 155639300)^{2} \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
show more
show less