Defining parameters
Level: | \( N \) | \(=\) | \( 55 = 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 55.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(24\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(55, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 20 | 16 | 4 |
Cusp forms | 16 | 16 | 0 |
Eisenstein series | 4 | 0 | 4 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(55, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
55.4.b.a | $6$ | $3.245$ | \(\mathbb{Q}[x]/(x^{6} + \cdots)\) | None | \(0\) | \(0\) | \(-4\) | \(0\) | \(q+\beta _{1}q^{2}+(\beta _{1}+\beta _{5})q^{3}+(1+\beta _{3})q^{4}+\cdots\) |
55.4.b.b | $10$ | $3.245$ | \(\mathbb{Q}[x]/(x^{10} + \cdots)\) | None | \(0\) | \(0\) | \(14\) | \(0\) | \(q+\beta _{1}q^{2}-\beta _{3}q^{3}+(-6+\beta _{2})q^{4}+(1+\cdots)q^{5}+\cdots\) |