Properties

Label 55.4.b
Level $55$
Weight $4$
Character orbit 55.b
Rep. character $\chi_{55}(34,\cdot)$
Character field $\Q$
Dimension $16$
Newform subspaces $2$
Sturm bound $24$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 55.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(24\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(55, [\chi])\).

Total New Old
Modular forms 20 16 4
Cusp forms 16 16 0
Eisenstein series 4 0 4

Trace form

\( 16 q - 60 q^{4} + 10 q^{5} + 4 q^{6} - 176 q^{9} + 62 q^{10} + 44 q^{11} - 16 q^{14} - 26 q^{15} + 360 q^{16} + 168 q^{19} - 116 q^{20} - 176 q^{21} - 200 q^{24} - 126 q^{25} + 36 q^{26} + 552 q^{29} - 950 q^{30}+ \cdots - 1408 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(55, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
55.4.b.a 55.b 5.b $6$ $3.245$ \(\mathbb{Q}[x]/(x^{6} + \cdots)\) None 55.4.b.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}+(\beta _{1}+\beta _{5})q^{3}+(1+\beta _{3})q^{4}+\cdots\)
55.4.b.b 55.b 5.b $10$ $3.245$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 55.4.b.b \(0\) \(0\) \(14\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{2}-\beta _{3}q^{3}+(-6+\beta _{2})q^{4}+(1+\cdots)q^{5}+\cdots\)