Properties

Label 55.2.j.a.9.4
Level $55$
Weight $2$
Character 55.9
Analytic conductor $0.439$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 55.j (of order \(10\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.439177211117\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 7 x^{14} + 25 x^{12} - 57 x^{10} + 194 x^{8} - 303 x^{6} + 235 x^{4} - 33 x^{2} + 121\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 9.4
Root \(0.972539 + 1.33858i\) of defining polynomial
Character \(\chi\) \(=\) 55.9
Dual form 55.2.j.a.49.4

$q$-expansion

\(f(q)\) \(=\) \(q+(1.57360 + 0.511294i) q^{2} +(-1.16075 - 1.59764i) q^{3} +(0.596764 + 0.433574i) q^{4} +(0.264988 + 2.22031i) q^{5} +(-1.00970 - 3.10753i) q^{6} +(-1.31845 + 1.81468i) q^{7} +(-1.22769 - 1.68978i) q^{8} +(-0.278050 + 0.855749i) q^{9} +O(q^{10})\) \(q+(1.57360 + 0.511294i) q^{2} +(-1.16075 - 1.59764i) q^{3} +(0.596764 + 0.433574i) q^{4} +(0.264988 + 2.22031i) q^{5} +(-1.00970 - 3.10753i) q^{6} +(-1.31845 + 1.81468i) q^{7} +(-1.22769 - 1.68978i) q^{8} +(-0.278050 + 0.855749i) q^{9} +(-0.718246 + 3.62937i) q^{10} +(-3.27115 - 0.547326i) q^{11} -1.45668i q^{12} +(3.51868 + 1.14329i) q^{13} +(-3.00254 + 2.18148i) q^{14} +(3.23967 - 3.00058i) q^{15} +(-1.52381 - 4.68982i) q^{16} +(2.11573 - 0.687441i) q^{17} +(-0.875078 + 1.20444i) q^{18} +(4.27714 - 3.10753i) q^{19} +(-0.804534 + 1.43989i) q^{20} +4.42960 q^{21} +(-4.86764 - 2.53379i) q^{22} +3.85415i q^{23} +(-1.27460 + 3.92282i) q^{24} +(-4.85956 + 1.17671i) q^{25} +(4.95244 + 3.59816i) q^{26} +(-3.94448 + 1.28164i) q^{27} +(-1.57360 + 0.511294i) q^{28} +(0.152450 + 0.110762i) q^{29} +(6.63212 - 3.06530i) q^{30} +(0.212253 - 0.653249i) q^{31} -3.98166i q^{32} +(2.92256 + 5.86142i) q^{33} +3.68079 q^{34} +(-4.37854 - 2.44649i) q^{35} +(-0.536960 + 0.390125i) q^{36} +(1.52422 - 2.09791i) q^{37} +(8.31938 - 2.70313i) q^{38} +(-2.25775 - 6.94864i) q^{39} +(3.42650 - 3.17363i) q^{40} +(-6.40421 + 4.65293i) q^{41} +(6.97041 + 2.26482i) q^{42} -8.41368i q^{43} +(-1.71480 - 1.74491i) q^{44} +(-1.97371 - 0.390594i) q^{45} +(-1.97060 + 6.06490i) q^{46} +(7.06117 + 9.71886i) q^{47} +(-5.72386 + 7.87822i) q^{48} +(0.608337 + 1.87227i) q^{49} +(-8.24866 - 0.632992i) q^{50} +(-3.55411 - 2.58222i) q^{51} +(1.60412 + 2.20788i) q^{52} +(-12.0371 - 3.91110i) q^{53} -6.86233 q^{54} +(0.348420 - 7.40801i) q^{55} +4.68506 q^{56} +(-9.92940 - 3.22626i) q^{57} +(0.183264 + 0.252241i) q^{58} +(-0.278050 - 0.202015i) q^{59} +(3.23429 - 0.386003i) q^{60} +(0.535643 + 1.64854i) q^{61} +(0.668004 - 0.919429i) q^{62} +(-1.18632 - 1.63283i) q^{63} +(-1.01183 + 3.11409i) q^{64} +(-1.60605 + 8.11552i) q^{65} +(1.60204 + 10.7178i) q^{66} +0.650461i q^{67} +(1.56065 + 0.507084i) q^{68} +(6.15754 - 4.47371i) q^{69} +(-5.63919 - 6.08852i) q^{70} +(1.43619 + 4.42013i) q^{71} +(1.78738 - 0.580756i) q^{72} +(5.20684 - 7.16660i) q^{73} +(3.47116 - 2.52195i) q^{74} +(7.52070 + 6.39795i) q^{75} +3.89979 q^{76} +(5.30606 - 5.21449i) q^{77} -12.0888i q^{78} +(2.23551 - 6.88019i) q^{79} +(10.0091 - 4.62609i) q^{80} +(8.80999 + 6.40083i) q^{81} +(-12.4567 + 4.04742i) q^{82} +(3.02593 - 0.983185i) q^{83} +(2.64342 + 1.92056i) q^{84} +(2.08698 + 4.51541i) q^{85} +(4.30186 - 13.2398i) q^{86} -0.372127i q^{87} +(3.09111 + 6.19946i) q^{88} -9.92195 q^{89} +(-2.90612 - 1.62378i) q^{90} +(-6.71389 + 4.87793i) q^{91} +(-1.67106 + 2.30002i) q^{92} +(-1.29003 + 0.419156i) q^{93} +(6.14226 + 18.9039i) q^{94} +(8.03307 + 8.67314i) q^{95} +(-6.36125 + 4.62172i) q^{96} +(2.15710 + 0.700884i) q^{97} +3.25724i q^{98} +(1.37792 - 2.64710i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 4q^{4} - 2q^{5} - 18q^{6} + 2q^{9} + O(q^{10}) \) \( 16q - 4q^{4} - 2q^{5} - 18q^{6} + 2q^{9} - 6q^{11} - 12q^{14} - 16q^{15} + 16q^{16} + 6q^{19} - 8q^{20} + 8q^{21} + 6q^{24} - 16q^{25} + 40q^{26} + 2q^{29} + 26q^{30} + 8q^{31} - 16q^{34} + 22q^{35} + 10q^{36} + 30q^{39} + 12q^{40} - 52q^{41} + 4q^{44} + 12q^{45} - 62q^{46} - 10q^{49} + 28q^{50} - 42q^{51} - 40q^{54} - 8q^{55} - 20q^{56} + 2q^{59} - 32q^{60} - 40q^{61} - 8q^{64} - 40q^{65} + 58q^{66} + 26q^{69} - 34q^{70} + 36q^{71} + 48q^{74} - 20q^{75} + 56q^{76} + 38q^{79} + 34q^{80} + 68q^{81} + 12q^{84} + 58q^{85} + 22q^{86} + 24q^{89} + 78q^{90} - 20q^{91} + 14q^{94} + 48q^{95} - 86q^{96} - 72q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/55\mathbb{Z}\right)^\times\).

\(n\) \(12\) \(46\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.57360 + 0.511294i 1.11270 + 0.361539i 0.806979 0.590581i \(-0.201101\pi\)
0.305725 + 0.952120i \(0.401101\pi\)
\(3\) −1.16075 1.59764i −0.670160 0.922396i 0.329604 0.944119i \(-0.393085\pi\)
−0.999764 + 0.0217231i \(0.993085\pi\)
\(4\) 0.596764 + 0.433574i 0.298382 + 0.216787i
\(5\) 0.264988 + 2.22031i 0.118506 + 0.992953i
\(6\) −1.00970 3.10753i −0.412207 1.26864i
\(7\) −1.31845 + 1.81468i −0.498326 + 0.685886i −0.981896 0.189419i \(-0.939340\pi\)
0.483571 + 0.875305i \(0.339340\pi\)
\(8\) −1.22769 1.68978i −0.434055 0.597426i
\(9\) −0.278050 + 0.855749i −0.0926832 + 0.285250i
\(10\) −0.718246 + 3.62937i −0.227129 + 1.14771i
\(11\) −3.27115 0.547326i −0.986289 0.165025i
\(12\) 1.45668i 0.420508i
\(13\) 3.51868 + 1.14329i 0.975906 + 0.317091i 0.753198 0.657794i \(-0.228510\pi\)
0.222708 + 0.974885i \(0.428510\pi\)
\(14\) −3.00254 + 2.18148i −0.802464 + 0.583024i
\(15\) 3.23967 3.00058i 0.836478 0.774747i
\(16\) −1.52381 4.68982i −0.380954 1.17245i
\(17\) 2.11573 0.687441i 0.513139 0.166729i −0.0409903 0.999160i \(-0.513051\pi\)
0.554129 + 0.832431i \(0.313051\pi\)
\(18\) −0.875078 + 1.20444i −0.206258 + 0.283890i
\(19\) 4.27714 3.10753i 0.981244 0.712916i 0.0232580 0.999729i \(-0.492596\pi\)
0.957986 + 0.286814i \(0.0925961\pi\)
\(20\) −0.804534 + 1.43989i −0.179899 + 0.321970i
\(21\) 4.42960 0.966617
\(22\) −4.86764 2.53379i −1.03778 0.540206i
\(23\) 3.85415i 0.803647i 0.915717 + 0.401823i \(0.131623\pi\)
−0.915717 + 0.401823i \(0.868377\pi\)
\(24\) −1.27460 + 3.92282i −0.260177 + 0.800742i
\(25\) −4.85956 + 1.17671i −0.971913 + 0.235342i
\(26\) 4.95244 + 3.59816i 0.971253 + 0.705657i
\(27\) −3.94448 + 1.28164i −0.759116 + 0.246652i
\(28\) −1.57360 + 0.511294i −0.297383 + 0.0966255i
\(29\) 0.152450 + 0.110762i 0.0283093 + 0.0205679i 0.601850 0.798609i \(-0.294431\pi\)
−0.573541 + 0.819177i \(0.694431\pi\)
\(30\) 6.63212 3.06530i 1.21085 0.559644i
\(31\) 0.212253 0.653249i 0.0381218 0.117327i −0.930185 0.367092i \(-0.880353\pi\)
0.968306 + 0.249765i \(0.0803534\pi\)
\(32\) 3.98166i 0.703866i
\(33\) 2.92256 + 5.86142i 0.508753 + 1.02034i
\(34\) 3.68079 0.631251
\(35\) −4.37854 2.44649i −0.740108 0.413532i
\(36\) −0.536960 + 0.390125i −0.0894934 + 0.0650208i
\(37\) 1.52422 2.09791i 0.250580 0.344894i −0.665134 0.746724i \(-0.731626\pi\)
0.915714 + 0.401830i \(0.131626\pi\)
\(38\) 8.31938 2.70313i 1.34958 0.438506i
\(39\) −2.25775 6.94864i −0.361529 1.11267i
\(40\) 3.42650 3.17363i 0.541778 0.501795i
\(41\) −6.40421 + 4.65293i −1.00017 + 0.726666i −0.962124 0.272611i \(-0.912113\pi\)
−0.0380448 + 0.999276i \(0.512113\pi\)
\(42\) 6.97041 + 2.26482i 1.07556 + 0.349470i
\(43\) 8.41368i 1.28307i −0.767092 0.641537i \(-0.778297\pi\)
0.767092 0.641537i \(-0.221703\pi\)
\(44\) −1.71480 1.74491i −0.258515 0.263055i
\(45\) −1.97371 0.390594i −0.294223 0.0582263i
\(46\) −1.97060 + 6.06490i −0.290550 + 0.894220i
\(47\) 7.06117 + 9.71886i 1.02998 + 1.41764i 0.904965 + 0.425486i \(0.139897\pi\)
0.125012 + 0.992155i \(0.460103\pi\)
\(48\) −5.72386 + 7.87822i −0.826168 + 1.13712i
\(49\) 0.608337 + 1.87227i 0.0869053 + 0.267467i
\(50\) −8.24866 0.632992i −1.16654 0.0895186i
\(51\) −3.55411 2.58222i −0.497676 0.361582i
\(52\) 1.60412 + 2.20788i 0.222451 + 0.306178i
\(53\) −12.0371 3.91110i −1.65343 0.537231i −0.673947 0.738779i \(-0.735403\pi\)
−0.979479 + 0.201549i \(0.935403\pi\)
\(54\) −6.86233 −0.933845
\(55\) 0.348420 7.40801i 0.0469809 0.998896i
\(56\) 4.68506 0.626067
\(57\) −9.92940 3.22626i −1.31518 0.427328i
\(58\) 0.183264 + 0.252241i 0.0240638 + 0.0331209i
\(59\) −0.278050 0.202015i −0.0361990 0.0263001i 0.569539 0.821965i \(-0.307122\pi\)
−0.605738 + 0.795664i \(0.707122\pi\)
\(60\) 3.23429 0.386003i 0.417545 0.0498328i
\(61\) 0.535643 + 1.64854i 0.0685821 + 0.211074i 0.979474 0.201572i \(-0.0646049\pi\)
−0.910892 + 0.412645i \(0.864605\pi\)
\(62\) 0.668004 0.919429i 0.0848366 0.116768i
\(63\) −1.18632 1.63283i −0.149462 0.205717i
\(64\) −1.01183 + 3.11409i −0.126479 + 0.389261i
\(65\) −1.60605 + 8.11552i −0.199206 + 1.00661i
\(66\) 1.60204 + 10.7178i 0.197197 + 1.31927i
\(67\) 0.650461i 0.0794664i 0.999210 + 0.0397332i \(0.0126508\pi\)
−0.999210 + 0.0397332i \(0.987349\pi\)
\(68\) 1.56065 + 0.507084i 0.189256 + 0.0614930i
\(69\) 6.15754 4.47371i 0.741281 0.538572i
\(70\) −5.63919 6.08852i −0.674012 0.727717i
\(71\) 1.43619 + 4.42013i 0.170444 + 0.524573i 0.999396 0.0347464i \(-0.0110624\pi\)
−0.828952 + 0.559320i \(0.811062\pi\)
\(72\) 1.78738 0.580756i 0.210645 0.0684427i
\(73\) 5.20684 7.16660i 0.609415 0.838787i −0.387115 0.922032i \(-0.626528\pi\)
0.996529 + 0.0832444i \(0.0265282\pi\)
\(74\) 3.47116 2.52195i 0.403515 0.293171i
\(75\) 7.52070 + 6.39795i 0.868416 + 0.738772i
\(76\) 3.89979 0.447336
\(77\) 5.30606 5.21449i 0.604682 0.594246i
\(78\) 12.0888i 1.36878i
\(79\) 2.23551 6.88019i 0.251514 0.774082i −0.742982 0.669311i \(-0.766589\pi\)
0.994496 0.104770i \(-0.0334108\pi\)
\(80\) 10.0091 4.62609i 1.11905 0.517212i
\(81\) 8.80999 + 6.40083i 0.978888 + 0.711203i
\(82\) −12.4567 + 4.04742i −1.37561 + 0.446963i
\(83\) 3.02593 0.983185i 0.332139 0.107919i −0.138200 0.990404i \(-0.544132\pi\)
0.470339 + 0.882486i \(0.344132\pi\)
\(84\) 2.64342 + 1.92056i 0.288421 + 0.209550i
\(85\) 2.08698 + 4.51541i 0.226364 + 0.489765i
\(86\) 4.30186 13.2398i 0.463882 1.42768i
\(87\) 0.372127i 0.0398962i
\(88\) 3.09111 + 6.19946i 0.329514 + 0.660865i
\(89\) −9.92195 −1.05172 −0.525862 0.850570i \(-0.676257\pi\)
−0.525862 + 0.850570i \(0.676257\pi\)
\(90\) −2.90612 1.62378i −0.306332 0.171162i
\(91\) −6.71389 + 4.87793i −0.703807 + 0.511346i
\(92\) −1.67106 + 2.30002i −0.174220 + 0.239793i
\(93\) −1.29003 + 0.419156i −0.133770 + 0.0434644i
\(94\) 6.14226 + 18.9039i 0.633526 + 1.94979i
\(95\) 8.03307 + 8.67314i 0.824175 + 0.889845i
\(96\) −6.36125 + 4.62172i −0.649243 + 0.471703i
\(97\) 2.15710 + 0.700884i 0.219020 + 0.0711640i 0.416472 0.909149i \(-0.363266\pi\)
−0.197451 + 0.980313i \(0.563266\pi\)
\(98\) 3.25724i 0.329031i
\(99\) 1.37792 2.64710i 0.138486 0.266044i
\(100\) −3.41020 1.40476i −0.341020 0.140476i
\(101\) 3.05830 9.41247i 0.304312 0.936576i −0.675621 0.737249i \(-0.736124\pi\)
0.979933 0.199327i \(-0.0638756\pi\)
\(102\) −4.27249 5.88057i −0.423039 0.582263i
\(103\) −6.01958 + 8.28525i −0.593127 + 0.816370i −0.995057 0.0993007i \(-0.968339\pi\)
0.401930 + 0.915670i \(0.368339\pi\)
\(104\) −2.38796 7.34938i −0.234159 0.720666i
\(105\) 1.17379 + 9.83508i 0.114550 + 0.959805i
\(106\) −16.9419 12.3090i −1.64554 1.19556i
\(107\) −5.90536 8.12803i −0.570893 0.785767i 0.421767 0.906704i \(-0.361410\pi\)
−0.992660 + 0.120937i \(0.961410\pi\)
\(108\) −2.90961 0.945389i −0.279977 0.0909701i
\(109\) 8.80173 0.843053 0.421527 0.906816i \(-0.361494\pi\)
0.421527 + 0.906816i \(0.361494\pi\)
\(110\) 4.33594 11.4791i 0.413416 1.09449i
\(111\) −5.12094 −0.486058
\(112\) 10.5196 + 3.41803i 0.994010 + 0.322973i
\(113\) 0.135985 + 0.187168i 0.0127924 + 0.0176073i 0.815365 0.578947i \(-0.196536\pi\)
−0.802573 + 0.596554i \(0.796536\pi\)
\(114\) −13.9753 10.1537i −1.30891 0.950980i
\(115\) −8.55742 + 1.02130i −0.797984 + 0.0952370i
\(116\) 0.0429534 + 0.132197i 0.00398812 + 0.0122742i
\(117\) −1.95673 + 2.69321i −0.180900 + 0.248988i
\(118\) −0.334250 0.460056i −0.0307702 0.0423516i
\(119\) −1.54198 + 4.74573i −0.141353 + 0.435040i
\(120\) −9.04763 1.79051i −0.825932 0.163451i
\(121\) 10.4009 + 3.58078i 0.945533 + 0.325525i
\(122\) 2.86801i 0.259658i
\(123\) 14.8674 + 4.83071i 1.34055 + 0.435570i
\(124\) 0.409897 0.297808i 0.0368098 0.0267439i
\(125\) −3.90039 10.4779i −0.348861 0.937174i
\(126\) −1.03194 3.17598i −0.0919324 0.282939i
\(127\) 2.31140 0.751018i 0.205103 0.0666421i −0.204664 0.978832i \(-0.565610\pi\)
0.409767 + 0.912190i \(0.365610\pi\)
\(128\) −7.86516 + 10.8255i −0.695188 + 0.956844i
\(129\) −13.4420 + 9.76619i −1.18350 + 0.859865i
\(130\) −6.67669 + 11.9494i −0.585585 + 1.04803i
\(131\) 1.58846 0.138785 0.0693924 0.997589i \(-0.477894\pi\)
0.0693924 + 0.997589i \(0.477894\pi\)
\(132\) −0.797281 + 4.76503i −0.0693944 + 0.414743i
\(133\) 11.8588i 1.02829i
\(134\) −0.332577 + 1.02357i −0.0287302 + 0.0884226i
\(135\) −3.89088 8.41836i −0.334874 0.724537i
\(136\) −3.75909 2.73114i −0.322339 0.234193i
\(137\) 17.7866 5.77920i 1.51961 0.493750i 0.573943 0.818895i \(-0.305413\pi\)
0.945664 + 0.325145i \(0.105413\pi\)
\(138\) 11.9769 3.89153i 1.01954 0.331269i
\(139\) 9.40675 + 6.83441i 0.797870 + 0.579687i 0.910289 0.413974i \(-0.135860\pi\)
−0.112418 + 0.993661i \(0.535860\pi\)
\(140\) −1.55222 3.35840i −0.131186 0.283836i
\(141\) 7.33095 22.5624i 0.617378 1.90009i
\(142\) 7.68984i 0.645317i
\(143\) −10.8844 5.66573i −0.910197 0.473792i
\(144\) 4.43700 0.369750
\(145\) −0.205528 + 0.367838i −0.0170682 + 0.0305472i
\(146\) 11.8577 8.61514i 0.981352 0.712994i
\(147\) 2.28508 3.14514i 0.188470 0.259407i
\(148\) 1.81920 0.591094i 0.149537 0.0485876i
\(149\) −1.82800 5.62600i −0.149755 0.460900i 0.847836 0.530258i \(-0.177905\pi\)
−0.997592 + 0.0693580i \(0.977905\pi\)
\(150\) 8.56335 + 13.9131i 0.699194 + 1.13600i
\(151\) −10.3375 + 7.51064i −0.841254 + 0.611207i −0.922721 0.385469i \(-0.874040\pi\)
0.0814664 + 0.996676i \(0.474040\pi\)
\(152\) −10.5020 3.41232i −0.851828 0.276776i
\(153\) 2.00167i 0.161826i
\(154\) 11.0158 5.49257i 0.887675 0.442604i
\(155\) 1.50666 + 0.298166i 0.121018 + 0.0239492i
\(156\) 1.66541 5.12560i 0.133339 0.410376i
\(157\) −8.43394 11.6083i −0.673102 0.926445i 0.326724 0.945120i \(-0.394055\pi\)
−0.999826 + 0.0186749i \(0.994055\pi\)
\(158\) 7.03560 9.68367i 0.559722 0.770391i
\(159\) 7.72359 + 23.7708i 0.612520 + 1.88514i
\(160\) 8.84053 1.05509i 0.698906 0.0834124i
\(161\) −6.99407 5.08149i −0.551210 0.400478i
\(162\) 10.5907 + 14.5768i 0.832084 + 1.14527i
\(163\) 3.44963 + 1.12085i 0.270196 + 0.0877921i 0.440982 0.897516i \(-0.354630\pi\)
−0.170785 + 0.985308i \(0.554630\pi\)
\(164\) −5.83919 −0.455964
\(165\) −12.2397 + 8.04221i −0.952862 + 0.626085i
\(166\) 5.26430 0.408589
\(167\) −3.63370 1.18066i −0.281184 0.0913623i 0.165030 0.986289i \(-0.447228\pi\)
−0.446214 + 0.894926i \(0.647228\pi\)
\(168\) −5.43819 7.48502i −0.419565 0.577482i
\(169\) 0.556767 + 0.404515i 0.0428282 + 0.0311165i
\(170\) 0.975365 + 8.17251i 0.0748071 + 0.626803i
\(171\) 1.47000 + 4.52421i 0.112414 + 0.345975i
\(172\) 3.64795 5.02098i 0.278154 0.382846i
\(173\) 1.23855 + 1.70472i 0.0941651 + 0.129607i 0.853500 0.521093i \(-0.174476\pi\)
−0.759335 + 0.650700i \(0.774476\pi\)
\(174\) 0.190266 0.585579i 0.0144240 0.0443926i
\(175\) 4.27171 10.3700i 0.322911 0.783899i
\(176\) 2.41777 + 16.1751i 0.182246 + 1.21925i
\(177\) 0.678711i 0.0510151i
\(178\) −15.6132 5.07303i −1.17026 0.380240i
\(179\) 4.06448 2.95302i 0.303793 0.220719i −0.425435 0.904989i \(-0.639879\pi\)
0.729229 + 0.684270i \(0.239879\pi\)
\(180\) −1.00849 1.08884i −0.0751681 0.0811574i
\(181\) −4.83538 14.8818i −0.359411 1.10615i −0.953408 0.301685i \(-0.902451\pi\)
0.593997 0.804467i \(-0.297549\pi\)
\(182\) −13.0590 + 4.24314i −0.968000 + 0.314522i
\(183\) 2.01202 2.76931i 0.148733 0.204713i
\(184\) 6.51265 4.73172i 0.480119 0.348827i
\(185\) 5.06191 + 2.82832i 0.372159 + 0.207943i
\(186\) −2.24430 −0.164560
\(187\) −7.29712 + 1.09073i −0.533618 + 0.0797622i
\(188\) 8.86140i 0.646284i
\(189\) 2.87481 8.84777i 0.209112 0.643580i
\(190\) 8.20632 + 17.7553i 0.595349 + 1.28811i
\(191\) −2.52078 1.83145i −0.182397 0.132519i 0.492840 0.870120i \(-0.335959\pi\)
−0.675237 + 0.737601i \(0.735959\pi\)
\(192\) 6.14966 1.99815i 0.443814 0.144204i
\(193\) −9.16474 + 2.97780i −0.659692 + 0.214347i −0.619683 0.784852i \(-0.712739\pi\)
−0.0400095 + 0.999199i \(0.512739\pi\)
\(194\) 3.03606 + 2.20582i 0.217976 + 0.158369i
\(195\) 14.8299 6.85421i 1.06199 0.490841i
\(196\) −0.448734 + 1.38106i −0.0320524 + 0.0986472i
\(197\) 14.3974i 1.02577i 0.858457 + 0.512885i \(0.171423\pi\)
−0.858457 + 0.512885i \(0.828577\pi\)
\(198\) 3.52174 3.46096i 0.250279 0.245960i
\(199\) −14.7978 −1.04899 −0.524493 0.851415i \(-0.675745\pi\)
−0.524493 + 0.851415i \(0.675745\pi\)
\(200\) 7.95443 + 6.76693i 0.562463 + 0.478494i
\(201\) 1.03920 0.755023i 0.0732995 0.0532552i
\(202\) 9.62508 13.2478i 0.677218 0.932111i
\(203\) −0.401995 + 0.130616i −0.0282145 + 0.00916745i
\(204\) −1.00138 3.08194i −0.0701109 0.215779i
\(205\) −12.0280 12.9864i −0.840071 0.907007i
\(206\) −13.7086 + 9.95989i −0.955125 + 0.693939i
\(207\) −3.29819 1.07165i −0.229240 0.0744845i
\(208\) 18.2441i 1.26500i
\(209\) −15.6920 + 7.82420i −1.08544 + 0.541211i
\(210\) −3.18154 + 16.0766i −0.219547 + 1.10939i
\(211\) −2.09250 + 6.44005i −0.144054 + 0.443352i −0.996888 0.0788298i \(-0.974882\pi\)
0.852834 + 0.522181i \(0.174882\pi\)
\(212\) −5.48756 7.55299i −0.376888 0.518741i
\(213\) 5.39471 7.42518i 0.369640 0.508765i
\(214\) −5.13687 15.8097i −0.351149 1.08073i
\(215\) 18.6810 2.22952i 1.27403 0.152052i
\(216\) 7.00830 + 5.09183i 0.476854 + 0.346455i
\(217\) 0.905596 + 1.24645i 0.0614759 + 0.0846143i
\(218\) 13.8504 + 4.50027i 0.938069 + 0.304797i
\(219\) −17.4935 −1.18210
\(220\) 3.41985 4.26976i 0.230566 0.287867i
\(221\) 8.23051 0.553644
\(222\) −8.05832 2.61831i −0.540839 0.175729i
\(223\) 5.12388 + 7.05242i 0.343121 + 0.472265i 0.945350 0.326058i \(-0.105721\pi\)
−0.602229 + 0.798323i \(0.705721\pi\)
\(224\) 7.22547 + 5.24961i 0.482772 + 0.350754i
\(225\) 0.344231 4.48575i 0.0229487 0.299050i
\(226\) 0.118289 + 0.364056i 0.00786846 + 0.0242166i
\(227\) −2.23795 + 3.08028i −0.148538 + 0.204445i −0.876802 0.480852i \(-0.840328\pi\)
0.728264 + 0.685297i \(0.240328\pi\)
\(228\) −4.52668 6.23044i −0.299787 0.412621i
\(229\) 0.838570 2.58085i 0.0554142 0.170547i −0.919519 0.393046i \(-0.871421\pi\)
0.974933 + 0.222499i \(0.0714213\pi\)
\(230\) −13.9881 2.76823i −0.922351 0.182532i
\(231\) −14.4899 2.42443i −0.953364 0.159516i
\(232\) 0.393588i 0.0258403i
\(233\) −9.99634 3.24801i −0.654882 0.212784i −0.0373166 0.999303i \(-0.511881\pi\)
−0.617566 + 0.786519i \(0.711881\pi\)
\(234\) −4.45614 + 3.23758i −0.291307 + 0.211647i
\(235\) −19.7078 + 18.2534i −1.28559 + 1.19072i
\(236\) −0.0783415 0.241110i −0.00509959 0.0156949i
\(237\) −13.5869 + 4.41466i −0.882565 + 0.286763i
\(238\) −4.85293 + 6.67948i −0.314569 + 0.432966i
\(239\) 16.2124 11.7790i 1.04869 0.761919i 0.0767288 0.997052i \(-0.475552\pi\)
0.971963 + 0.235133i \(0.0755524\pi\)
\(240\) −19.0088 10.6211i −1.22702 0.685590i
\(241\) 28.4450 1.83230 0.916152 0.400832i \(-0.131279\pi\)
0.916152 + 0.400832i \(0.131279\pi\)
\(242\) 14.5360 + 10.9526i 0.934408 + 0.704060i
\(243\) 9.06251i 0.581361i
\(244\) −0.395112 + 1.21603i −0.0252944 + 0.0778483i
\(245\) −3.99582 + 1.84683i −0.255283 + 0.117989i
\(246\) 20.9254 + 15.2032i 1.33416 + 0.969321i
\(247\) 18.6027 6.04438i 1.18366 0.384595i
\(248\) −1.36443 + 0.443329i −0.0866411 + 0.0281514i
\(249\) −5.08313 3.69311i −0.322130 0.234041i
\(250\) −0.780354 18.4823i −0.0493539 1.16892i
\(251\) −7.36604 + 22.6703i −0.464940 + 1.43094i 0.394117 + 0.919060i \(0.371050\pi\)
−0.859058 + 0.511879i \(0.828950\pi\)
\(252\) 1.48877i 0.0937838i
\(253\) 2.10948 12.6075i 0.132622 0.792628i
\(254\) 4.02120 0.252313
\(255\) 4.79152 8.57550i 0.300057 0.537018i
\(256\) −12.6136 + 9.16432i −0.788350 + 0.572770i
\(257\) −14.5044 + 19.9636i −0.904758 + 1.24529i 0.0641671 + 0.997939i \(0.479561\pi\)
−0.968925 + 0.247354i \(0.920439\pi\)
\(258\) −26.1458 + 8.49527i −1.62776 + 0.528892i
\(259\) 1.79744 + 5.53196i 0.111688 + 0.343739i
\(260\) −4.47711 + 4.14670i −0.277659 + 0.257168i
\(261\) −0.137173 + 0.0996619i −0.00849079 + 0.00616892i
\(262\) 2.49961 + 0.812172i 0.154426 + 0.0501761i
\(263\) 5.44098i 0.335505i 0.985829 + 0.167753i \(0.0536510\pi\)
−0.985829 + 0.167753i \(0.946349\pi\)
\(264\) 6.31647 12.1345i 0.388752 0.746827i
\(265\) 5.49416 27.7625i 0.337504 1.70544i
\(266\) −6.06332 + 18.6610i −0.371766 + 1.14418i
\(267\) 11.5169 + 15.8517i 0.704824 + 0.970107i
\(268\) −0.282023 + 0.388171i −0.0172273 + 0.0237113i
\(269\) 2.07213 + 6.37738i 0.126340 + 0.388835i 0.994143 0.108074i \(-0.0344682\pi\)
−0.867803 + 0.496909i \(0.834468\pi\)
\(270\) −1.81843 15.2365i −0.110666 0.927265i
\(271\) 4.09349 + 2.97409i 0.248662 + 0.180663i 0.705134 0.709075i \(-0.250887\pi\)
−0.456472 + 0.889738i \(0.650887\pi\)
\(272\) −6.44795 8.87484i −0.390964 0.538116i
\(273\) 15.5863 + 5.06430i 0.943327 + 0.306505i
\(274\) 30.9438 1.86938
\(275\) 16.5404 1.18943i 0.997424 0.0717254i
\(276\) 5.61428 0.337940
\(277\) 10.1703 + 3.30453i 0.611074 + 0.198550i 0.598173 0.801367i \(-0.295893\pi\)
0.0129009 + 0.999917i \(0.495893\pi\)
\(278\) 11.3081 + 15.5642i 0.678214 + 0.933481i
\(279\) 0.500000 + 0.363271i 0.0299342 + 0.0217485i
\(280\) 1.24148 + 10.4023i 0.0741928 + 0.621655i
\(281\) −4.23963 13.0482i −0.252915 0.778392i −0.994233 0.107238i \(-0.965799\pi\)
0.741319 0.671153i \(-0.234201\pi\)
\(282\) 23.0720 31.7559i 1.37392 1.89103i
\(283\) 12.9132 + 17.7735i 0.767611 + 1.05653i 0.996543 + 0.0830832i \(0.0264767\pi\)
−0.228932 + 0.973442i \(0.573523\pi\)
\(284\) −1.05939 + 3.26047i −0.0628633 + 0.193473i
\(285\) 4.53213 22.9013i 0.268460 1.35655i
\(286\) −14.2308 14.4807i −0.841485 0.856263i
\(287\) 17.7563i 1.04812i
\(288\) 3.40730 + 1.10710i 0.200777 + 0.0652365i
\(289\) −9.74956 + 7.08347i −0.573504 + 0.416675i
\(290\) −0.511492 + 0.473744i −0.0300358 + 0.0278192i
\(291\) −1.38410 4.25981i −0.0811372 0.249715i
\(292\) 6.21450 2.01922i 0.363676 0.118166i
\(293\) 8.25135 11.3570i 0.482049 0.663483i −0.496848 0.867837i \(-0.665509\pi\)
0.978897 + 0.204354i \(0.0655094\pi\)
\(294\) 5.20389 3.78085i 0.303497 0.220504i
\(295\) 0.374856 0.670888i 0.0218250 0.0390606i
\(296\) −5.41627 −0.314815
\(297\) 13.6045 2.03352i 0.789412 0.117997i
\(298\) 9.78772i 0.566988i
\(299\) −4.40641 + 13.5615i −0.254829 + 0.784283i
\(300\) 1.71409 + 7.07884i 0.0989633 + 0.408697i
\(301\) 15.2682 + 11.0930i 0.880043 + 0.639389i
\(302\) −20.1073 + 6.53324i −1.15704 + 0.375946i
\(303\) −18.5876 + 6.03949i −1.06783 + 0.346960i
\(304\) −21.0913 15.3237i −1.20967 0.878877i
\(305\) −3.51833 + 1.62614i −0.201459 + 0.0931123i
\(306\) −1.02344 + 3.14983i −0.0585064 + 0.180064i
\(307\) 6.86951i 0.392064i 0.980598 + 0.196032i \(0.0628056\pi\)
−0.980598 + 0.196032i \(0.937194\pi\)
\(308\) 5.42733 0.811246i 0.309251 0.0462251i
\(309\) 20.2241 1.15051
\(310\) 2.21843 + 1.23954i 0.125998 + 0.0704011i
\(311\) 4.45087 3.23374i 0.252385 0.183369i −0.454398 0.890799i \(-0.650146\pi\)
0.706783 + 0.707430i \(0.250146\pi\)
\(312\) −8.96982 + 12.3459i −0.507816 + 0.698949i
\(313\) −13.5354 + 4.39793i −0.765068 + 0.248586i −0.665452 0.746440i \(-0.731761\pi\)
−0.0996156 + 0.995026i \(0.531761\pi\)
\(314\) −7.33639 22.5791i −0.414016 1.27421i
\(315\) 3.31103 3.06668i 0.186555 0.172788i
\(316\) 4.31714 3.13659i 0.242858 0.176447i
\(317\) −17.7718 5.77442i −0.998166 0.324324i −0.236033 0.971745i \(-0.575847\pi\)
−0.762132 + 0.647421i \(0.775847\pi\)
\(318\) 41.3547i 2.31906i
\(319\) −0.438065 0.445758i −0.0245269 0.0249577i
\(320\) −7.18237 1.42138i −0.401506 0.0794575i
\(321\) −6.13099 + 18.8693i −0.342199 + 1.05318i
\(322\) −8.40774 11.5723i −0.468545 0.644897i
\(323\) 6.91303 9.51497i 0.384651 0.529427i
\(324\) 2.48225 + 7.63957i 0.137903 + 0.424420i
\(325\) −18.4446 1.41541i −1.02312 0.0785130i
\(326\) 4.85526 + 3.52755i 0.268908 + 0.195373i
\(327\) −10.2166 14.0620i −0.564981 0.777629i
\(328\) 15.7248 + 5.10930i 0.868257 + 0.282114i
\(329\) −26.9464 −1.48560
\(330\) −23.3724 + 6.39712i −1.28661 + 0.352150i
\(331\) 0.468249 0.0257373 0.0128686 0.999917i \(-0.495904\pi\)
0.0128686 + 0.999917i \(0.495904\pi\)
\(332\) 2.23205 + 0.725237i 0.122500 + 0.0398025i
\(333\) 1.37148 + 1.88767i 0.0751564 + 0.103444i
\(334\) −5.11433 3.71578i −0.279844 0.203318i
\(335\) −1.44423 + 0.172364i −0.0789065 + 0.00941726i
\(336\) −6.74988 20.7740i −0.368236 1.13331i
\(337\) −20.0360 + 27.5771i −1.09143 + 1.50222i −0.245146 + 0.969486i \(0.578836\pi\)
−0.846282 + 0.532735i \(0.821164\pi\)
\(338\) 0.669303 + 0.921216i 0.0364053 + 0.0501075i
\(339\) 0.141181 0.434511i 0.00766790 0.0235994i
\(340\) −0.712333 + 3.59949i −0.0386317 + 0.195210i
\(341\) −1.05185 + 2.02070i −0.0569611 + 0.109427i
\(342\) 7.87090i 0.425610i
\(343\) −19.1327 6.21658i −1.03307 0.335664i
\(344\) −14.2172 + 10.3294i −0.766542 + 0.556925i
\(345\) 11.5647 + 12.4862i 0.622623 + 0.672233i
\(346\) 1.07737 + 3.31580i 0.0579198 + 0.178259i
\(347\) 3.41707 1.11027i 0.183438 0.0596026i −0.215858 0.976425i \(-0.569255\pi\)
0.399296 + 0.916822i \(0.369255\pi\)
\(348\) 0.161345 0.222072i 0.00864898 0.0119043i
\(349\) −5.15433 + 3.74484i −0.275905 + 0.200457i −0.717129 0.696940i \(-0.754544\pi\)
0.441224 + 0.897397i \(0.354544\pi\)
\(350\) 12.0241 14.1341i 0.642714 0.755502i
\(351\) −15.3446 −0.819037
\(352\) −2.17927 + 13.0246i −0.116156 + 0.694215i
\(353\) 12.1971i 0.649186i −0.945854 0.324593i \(-0.894773\pi\)
0.945854 0.324593i \(-0.105227\pi\)
\(354\) −0.347021 + 1.06802i −0.0184440 + 0.0567647i
\(355\) −9.43350 + 4.36007i −0.500678 + 0.231408i
\(356\) −5.92106 4.30190i −0.313815 0.228000i
\(357\) 9.37181 3.04509i 0.496009 0.161163i
\(358\) 7.90573 2.56873i 0.417831 0.135761i
\(359\) 19.5093 + 14.1744i 1.02966 + 0.748094i 0.968241 0.250018i \(-0.0804364\pi\)
0.0614222 + 0.998112i \(0.480436\pi\)
\(360\) 1.76309 + 3.81465i 0.0929232 + 0.201050i
\(361\) 2.76592 8.51262i 0.145575 0.448032i
\(362\) 25.8902i 1.36076i
\(363\) −6.35204 20.7732i −0.333396 1.09031i
\(364\) −6.12155 −0.320856
\(365\) 17.2918 + 9.66174i 0.905096 + 0.505719i
\(366\) 4.58205 3.32905i 0.239507 0.174012i
\(367\) 11.9849 16.4958i 0.625606 0.861073i −0.372140 0.928177i \(-0.621376\pi\)
0.997746 + 0.0671034i \(0.0213757\pi\)
\(368\) 18.0753 5.87302i 0.942239 0.306152i
\(369\) −2.20105 6.77414i −0.114582 0.352648i
\(370\) 6.51933 + 7.03878i 0.338924 + 0.365929i
\(371\) 22.9677 16.6870i 1.19242 0.866347i
\(372\) −0.951577 0.309186i −0.0493370 0.0160305i
\(373\) 7.51997i 0.389369i 0.980866 + 0.194685i \(0.0623684\pi\)
−0.980866 + 0.194685i \(0.937632\pi\)
\(374\) −12.0404 2.01460i −0.622596 0.104172i
\(375\) −12.2125 + 18.3937i −0.630653 + 0.949845i
\(376\) 7.75374 23.8636i 0.399869 1.23067i
\(377\) 0.409791 + 0.564029i 0.0211053 + 0.0290490i
\(378\) 9.04762 12.4530i 0.465359 0.640512i
\(379\) −7.16649 22.0562i −0.368118 1.13295i −0.948006 0.318254i \(-0.896904\pi\)
0.579888 0.814696i \(-0.303096\pi\)
\(380\) 1.03340 + 8.65874i 0.0530121 + 0.444184i
\(381\) −3.88281 2.82103i −0.198922 0.144526i
\(382\) −3.03029 4.17083i −0.155043 0.213398i
\(383\) 2.32095 + 0.754123i 0.118595 + 0.0385339i 0.367713 0.929939i \(-0.380141\pi\)
−0.249118 + 0.968473i \(0.580141\pi\)
\(384\) 26.4246 1.34848
\(385\) 12.9838 + 10.3993i 0.661717 + 0.529999i
\(386\) −15.9442 −0.811537
\(387\) 7.20000 + 2.33942i 0.365997 + 0.118919i
\(388\) 0.983393 + 1.35352i 0.0499242 + 0.0687148i
\(389\) 27.4849 + 19.9689i 1.39354 + 1.01246i 0.995467 + 0.0951096i \(0.0303201\pi\)
0.398071 + 0.917355i \(0.369680\pi\)
\(390\) 26.8408 3.20337i 1.35914 0.162209i
\(391\) 2.64950 + 8.15434i 0.133991 + 0.412383i
\(392\) 2.41686 3.32653i 0.122070 0.168015i
\(393\) −1.84381 2.53779i −0.0930080 0.128015i
\(394\) −7.36129 + 22.6557i −0.370856 + 1.14138i
\(395\) 15.8685 + 3.14036i 0.798433 + 0.158009i
\(396\) 1.97000 0.982264i 0.0989964 0.0493606i
\(397\) 27.4961i 1.37999i 0.723814 + 0.689995i \(0.242387\pi\)
−0.723814 + 0.689995i \(0.757613\pi\)
\(398\) −23.2858 7.56601i −1.16721 0.379250i
\(399\) 18.9460 13.7651i 0.948487 0.689116i
\(400\) 12.9236 + 20.9974i 0.646182 + 1.04987i
\(401\) −0.583247 1.79505i −0.0291259 0.0896404i 0.935437 0.353494i \(-0.115006\pi\)
−0.964563 + 0.263853i \(0.915006\pi\)
\(402\) 2.02132 0.656768i 0.100815 0.0327566i
\(403\) 1.49370 2.05591i 0.0744067 0.102412i
\(404\) 5.90608 4.29102i 0.293839 0.213486i
\(405\) −11.8773 + 21.2571i −0.590188 + 1.05627i
\(406\) −0.699363 −0.0347088
\(407\) −6.13420 + 6.02834i −0.304061 + 0.298814i
\(408\) 9.17582i 0.454271i
\(409\) −4.18949 + 12.8939i −0.207157 + 0.637563i 0.792461 + 0.609923i \(0.208799\pi\)
−0.999618 + 0.0276408i \(0.991201\pi\)
\(410\) −12.2874 26.5852i −0.606831 1.31295i
\(411\) −29.8788 21.7082i −1.47381 1.07079i
\(412\) −7.18454 + 2.33440i −0.353957 + 0.115008i
\(413\) 0.733187 0.238227i 0.0360778 0.0117224i
\(414\) −4.64210 3.37269i −0.228147 0.165758i
\(415\) 2.98481 + 6.45798i 0.146519 + 0.317010i
\(416\) 4.55219 14.0102i 0.223189 0.686906i
\(417\) 22.9616i 1.12444i
\(418\) −28.6934 + 4.28893i −1.40344 + 0.209779i
\(419\) 22.1368 1.08145 0.540727 0.841198i \(-0.318149\pi\)
0.540727 + 0.841198i \(0.318149\pi\)
\(420\) −3.56376 + 6.37814i −0.173894 + 0.311221i
\(421\) −14.4835 + 10.5229i −0.705881 + 0.512853i −0.881842 0.471544i \(-0.843697\pi\)
0.175961 + 0.984397i \(0.443697\pi\)
\(422\) −6.58552 + 9.06419i −0.320578 + 0.441238i
\(423\) −10.2803 + 3.34026i −0.499843 + 0.162409i
\(424\) 8.16902 + 25.1417i 0.396723 + 1.22099i
\(425\) −9.47259 + 5.83026i −0.459488 + 0.282809i
\(426\) 12.2856 8.92599i 0.595238 0.432466i
\(427\) −3.69780 1.20149i −0.178949 0.0581440i
\(428\) 7.41093i 0.358221i
\(429\) 3.58227 + 23.9658i 0.172954 + 1.15708i
\(430\) 30.5364 + 6.04310i 1.47259 + 0.291424i
\(431\) 10.3353 31.8087i 0.497833 1.53217i −0.314662 0.949204i \(-0.601891\pi\)
0.812495 0.582968i \(-0.198109\pi\)
\(432\) 12.0213 + 16.5459i 0.578376 + 0.796066i
\(433\) 18.5102 25.4771i 0.889543 1.22435i −0.0841428 0.996454i \(-0.526815\pi\)
0.973685 0.227897i \(-0.0731848\pi\)
\(434\) 0.787747 + 2.42443i 0.0378130 + 0.116377i
\(435\) 0.826238 0.0986091i 0.0396151 0.00472794i
\(436\) 5.25255 + 3.81620i 0.251552 + 0.182763i
\(437\) 11.9769 + 16.4848i 0.572932 + 0.788574i
\(438\) −27.5277 8.94431i −1.31533 0.427375i
\(439\) −35.6208 −1.70009 −0.850045 0.526710i \(-0.823425\pi\)
−0.850045 + 0.526710i \(0.823425\pi\)
\(440\) −12.9456 + 8.50601i −0.617158 + 0.405508i
\(441\) −1.77134 −0.0843495
\(442\) 12.9515 + 4.20821i 0.616041 + 0.200164i
\(443\) −13.8056 19.0018i −0.655926 0.902805i 0.343412 0.939185i \(-0.388417\pi\)
−0.999338 + 0.0363802i \(0.988417\pi\)
\(444\) −3.05599 2.22031i −0.145031 0.105371i
\(445\) −2.62920 22.0298i −0.124636 1.04431i
\(446\) 4.45709 + 13.7175i 0.211049 + 0.649543i
\(447\) −6.86646 + 9.45086i −0.324772 + 0.447011i
\(448\) −4.31705 5.94191i −0.203961 0.280729i
\(449\) 9.70066 29.8555i 0.457802 1.40897i −0.410011 0.912080i \(-0.634475\pi\)
0.867814 0.496890i \(-0.165525\pi\)
\(450\) 2.83522 6.88277i 0.133653 0.324457i
\(451\) 23.4958 11.7152i 1.10637 0.551649i
\(452\) 0.170655i 0.00802692i
\(453\) 23.9985 + 7.79760i 1.12755 + 0.366363i
\(454\) −5.09658 + 3.70288i −0.239194 + 0.173785i
\(455\) −12.6096 13.6143i −0.591148 0.638250i
\(456\) 6.73861 + 20.7393i 0.315564 + 0.971207i
\(457\) 37.1964 12.0859i 1.73998 0.565352i 0.745145 0.666903i \(-0.232380\pi\)
0.994830 + 0.101550i \(0.0323803\pi\)
\(458\) 2.63915 3.63247i 0.123319 0.169734i
\(459\) −7.46440 + 5.42320i −0.348408 + 0.253133i
\(460\) −5.54957 3.10080i −0.258750 0.144575i
\(461\) −8.88399 −0.413769 −0.206884 0.978365i \(-0.566332\pi\)
−0.206884 + 0.978365i \(0.566332\pi\)
\(462\) −21.5617 11.2237i −1.00314 0.522173i
\(463\) 4.21081i 0.195693i 0.995202 + 0.0978464i \(0.0311954\pi\)
−0.995202 + 0.0978464i \(0.968805\pi\)
\(464\) 0.287146 0.883744i 0.0133304 0.0410268i
\(465\) −1.27250 2.75319i −0.0590107 0.127676i
\(466\) −14.0696 10.2221i −0.651760 0.473531i
\(467\) −6.39912 + 2.07920i −0.296116 + 0.0962139i −0.453307 0.891354i \(-0.649756\pi\)
0.157191 + 0.987568i \(0.449756\pi\)
\(468\) −2.33542 + 0.758822i −0.107955 + 0.0350766i
\(469\) −1.18038 0.857597i −0.0545049 0.0396002i
\(470\) −40.3450 + 18.6470i −1.86098 + 0.860124i
\(471\) −8.75618 + 26.9487i −0.403463 + 1.24173i
\(472\) 0.717854i 0.0330419i
\(473\) −4.60503 + 27.5224i −0.211740 + 1.26548i
\(474\) −23.6376 −1.08571
\(475\) −17.1284 + 20.1342i −0.785905 + 0.923820i
\(476\) −2.97782 + 2.16352i −0.136488 + 0.0991646i
\(477\) 6.69383 9.21327i 0.306490 0.421847i
\(478\) 31.5343 10.2461i 1.44235 0.468647i
\(479\) −6.43046 19.7909i −0.293815 0.904270i −0.983617 0.180272i \(-0.942302\pi\)
0.689802 0.723998i \(-0.257698\pi\)
\(480\) −11.9473 12.8993i −0.545318 0.588768i
\(481\) 7.76176 5.63925i 0.353906 0.257128i
\(482\) 44.7611 + 14.5437i 2.03881 + 0.662450i
\(483\) 17.0723i 0.776818i
\(484\) 4.65433 + 6.64642i 0.211560 + 0.302110i
\(485\) −0.984576 + 4.97516i −0.0447073 + 0.225910i
\(486\) 4.63361 14.2608i 0.210185 0.646882i
\(487\) −9.27489 12.7658i −0.420285 0.578473i 0.545404 0.838173i \(-0.316376\pi\)
−0.965689 + 0.259700i \(0.916376\pi\)
\(488\) 2.12806 2.92902i 0.0963326 0.132590i
\(489\) −2.21345 6.81230i −0.100096 0.308063i
\(490\) −7.23209 + 0.863129i −0.326713 + 0.0389922i
\(491\) −15.6386 11.3621i −0.705759 0.512764i 0.176044 0.984382i \(-0.443670\pi\)
−0.881803 + 0.471618i \(0.843670\pi\)
\(492\) 6.77784 + 9.32890i 0.305569 + 0.420579i
\(493\) 0.398685 + 0.129541i 0.0179559 + 0.00583422i
\(494\) 32.3637 1.45611
\(495\) 6.24252 + 2.35795i 0.280580 + 0.105982i
\(496\) −3.38705 −0.152083
\(497\) −9.91469 3.22148i −0.444734 0.144503i
\(498\) −6.11055 8.41045i −0.273820 0.376881i
\(499\) −33.5416 24.3694i −1.50153 1.09092i −0.969769 0.244026i \(-0.921532\pi\)
−0.531758 0.846896i \(-0.678468\pi\)
\(500\) 2.21535 7.94395i 0.0990734 0.355264i
\(501\) 2.33156 + 7.17579i 0.104166 + 0.320591i
\(502\) −23.1824 + 31.9078i −1.03468 + 1.42412i
\(503\) 19.1978 + 26.4236i 0.855990 + 1.17817i 0.982511 + 0.186205i \(0.0596188\pi\)
−0.126521 + 0.991964i \(0.540381\pi\)
\(504\) −1.30268 + 4.00923i −0.0580259 + 0.178585i
\(505\) 21.7090 + 4.29618i 0.966039 + 0.191178i
\(506\) 9.76563 18.7606i 0.434135 0.834012i
\(507\) 1.35905i 0.0603576i
\(508\) 1.70498 + 0.553981i 0.0756462 + 0.0245789i
\(509\) 13.4662 9.78379i 0.596881 0.433659i −0.247890 0.968788i \(-0.579737\pi\)
0.844770 + 0.535129i \(0.179737\pi\)
\(510\) 11.9245 11.0445i 0.528028 0.489060i
\(511\) 6.14019 + 18.8975i 0.271626 + 0.835978i
\(512\) 0.917749 0.298195i 0.0405592 0.0131785i
\(513\) −12.8884 + 17.7393i −0.569036 + 0.783211i
\(514\) −33.0313 + 23.9987i −1.45695 + 1.05854i
\(515\) −19.9909 11.1699i −0.880906 0.492203i
\(516\) −12.2561 −0.539543
\(517\) −17.7788 35.6566i −0.781909 1.56818i
\(518\) 9.62412i 0.422860i
\(519\) 1.28587 3.95750i 0.0564434 0.173715i
\(520\) 15.6851 7.24951i 0.687839 0.317912i
\(521\) −11.3717 8.26206i −0.498205 0.361967i 0.310126 0.950696i \(-0.399629\pi\)
−0.808331 + 0.588728i \(0.799629\pi\)
\(522\) −0.266812 + 0.0866924i −0.0116780 + 0.00379442i
\(523\) 14.9009 4.84159i 0.651570 0.211708i 0.0354635 0.999371i \(-0.488709\pi\)
0.616106 + 0.787663i \(0.288709\pi\)
\(524\) 0.947937 + 0.688717i 0.0414108 + 0.0300867i
\(525\) −21.5259 + 5.21235i −0.939467 + 0.227486i
\(526\) −2.78194 + 8.56194i −0.121298 + 0.373318i
\(527\) 1.52801i 0.0665611i
\(528\) 23.0356 22.6380i 1.00249 0.985193i
\(529\) 8.14550 0.354152
\(530\) 22.8404 40.8780i 0.992125 1.77563i
\(531\) 0.250186 0.181770i 0.0108571 0.00788817i
\(532\) −5.14166 + 7.07689i −0.222919 + 0.306822i
\(533\) −27.8540 + 9.05031i −1.20649 + 0.392012i
\(534\) 10.0182 + 30.8327i 0.433528 + 1.33426i
\(535\) 16.4819 15.2656i 0.712575 0.659988i
\(536\) 1.09913 0.798567i 0.0474753 0.0344928i
\(537\) −9.43570 3.06584i −0.407180 0.132301i
\(538\) 11.0949i 0.478336i
\(539\) −0.965221 6.45743i −0.0415750 0.278141i
\(540\) 1.32805 6.71075i 0.0571501 0.288785i
\(541\) −12.2489 + 37.6983i −0.526623 + 1.62078i 0.234461 + 0.972125i \(0.424667\pi\)
−0.761084 + 0.648653i \(0.775333\pi\)
\(542\) 4.92088 + 6.77301i 0.211370 + 0.290926i
\(543\) −18.1630 + 24.9992i −0.779448 + 1.07282i
\(544\) −2.73716 8.42412i −0.117355 0.361181i
\(545\) 2.33235 + 19.5426i 0.0999070 + 0.837113i
\(546\) 21.9373 + 15.9384i 0.938830 + 0.682100i
\(547\) −24.1970 33.3043i −1.03459 1.42399i −0.901445 0.432895i \(-0.857492\pi\)
−0.133145 0.991097i \(-0.542508\pi\)
\(548\) 13.1201 + 4.26297i 0.560462 + 0.182105i
\(549\) −1.55967 −0.0665651
\(550\) 26.6362 + 6.58532i 1.13577 + 0.280799i
\(551\) 0.996247 0.0424415
\(552\) −15.1191 4.91251i −0.643513 0.209090i
\(553\) 9.53798 + 13.1279i 0.405596 + 0.558255i
\(554\) 14.3144 + 10.4000i 0.608161 + 0.441855i
\(555\) −1.35699 11.3701i −0.0576009 0.482633i
\(556\) 2.65039 + 8.15705i 0.112401 + 0.345936i
\(557\) 17.5606 24.1702i 0.744069 1.02412i −0.254306 0.967124i \(-0.581847\pi\)
0.998374 0.0569987i \(-0.0181531\pi\)
\(558\) 0.601062 + 0.827291i 0.0254450 + 0.0350220i
\(559\) 9.61926 29.6050i 0.406851 1.25216i
\(560\) −4.80152 + 24.2625i −0.202901 + 1.02528i
\(561\) 10.2127 + 10.3921i 0.431182 + 0.438754i
\(562\) 22.7004i 0.957558i
\(563\) −2.05218 0.666795i −0.0864892 0.0281021i 0.265453 0.964124i \(-0.414479\pi\)
−0.351942 + 0.936022i \(0.614479\pi\)
\(564\) 14.1573 10.2859i 0.596130 0.433114i
\(565\) −0.379536 + 0.351527i −0.0159672 + 0.0147889i
\(566\) 11.2328 + 34.5709i 0.472148 + 1.45312i
\(567\) −23.2310 + 7.54820i −0.975610 + 0.316995i
\(568\) 5.70583 7.85341i 0.239411 0.329522i
\(569\) 0.580298 0.421611i 0.0243274 0.0176749i −0.575555 0.817763i \(-0.695214\pi\)
0.599882 + 0.800088i \(0.295214\pi\)
\(570\) 18.8410 33.7202i 0.789164 1.41238i
\(571\) −21.6311 −0.905235 −0.452617 0.891705i \(-0.649510\pi\)
−0.452617 + 0.891705i \(0.649510\pi\)
\(572\) −4.03888 8.10029i −0.168874 0.338690i
\(573\) 6.15315i 0.257051i
\(574\) 9.07866 27.9413i 0.378936 1.16625i
\(575\) −4.53522 18.7295i −0.189132 0.781074i
\(576\) −2.38354 1.73174i −0.0993141 0.0721559i
\(577\) −22.2810 + 7.23952i −0.927568 + 0.301385i −0.733568 0.679616i \(-0.762146\pi\)
−0.194000 + 0.981001i \(0.562146\pi\)
\(578\) −18.9637 + 6.16167i −0.788784 + 0.256291i
\(579\) 15.3954 + 11.1854i 0.639812 + 0.464851i
\(580\) −0.282136 + 0.130401i −0.0117151 + 0.00541459i
\(581\) −2.20536 + 6.78739i −0.0914936 + 0.281588i
\(582\) 7.41093i 0.307193i
\(583\) 37.2346 + 19.3820i 1.54210 + 0.802722i
\(584\) −18.5023 −0.765633
\(585\) −6.49828 3.63089i −0.268671 0.150119i
\(586\) 18.7911 13.6525i 0.776253 0.563981i
\(587\) −1.32095 + 1.81814i −0.0545216 + 0.0750425i −0.835407 0.549632i \(-0.814768\pi\)
0.780886 + 0.624674i \(0.214768\pi\)
\(588\) 2.72730 0.886154i 0.112472 0.0365444i
\(589\) −1.12215 3.45362i −0.0462374 0.142304i
\(590\) 0.932895 0.864048i 0.0384067 0.0355723i
\(591\) 23.0018 16.7118i 0.946167 0.687431i
\(592\) −12.1615 3.95149i −0.499833 0.162405i
\(593\) 25.4034i 1.04319i −0.853193 0.521596i \(-0.825337\pi\)
0.853193 0.521596i \(-0.174663\pi\)
\(594\) 22.4477 + 3.75594i 0.921042 + 0.154108i
\(595\) −10.9456 2.16612i −0.448726 0.0888022i
\(596\) 1.34841 4.14996i 0.0552328 0.169989i
\(597\) 17.1765 + 23.6415i 0.702988 + 0.967580i
\(598\) −13.8678 + 19.0875i −0.567098 + 0.780544i
\(599\) 5.63194 + 17.3333i 0.230115 + 0.708220i 0.997732 + 0.0673118i \(0.0214422\pi\)
−0.767617 + 0.640909i \(0.778558\pi\)
\(600\) 1.57798 20.5630i 0.0644208 0.839482i
\(601\) 28.0242 + 20.3608i 1.14313 + 0.830533i 0.987552 0.157290i \(-0.0502758\pi\)
0.155579 + 0.987824i \(0.450276\pi\)
\(602\) 18.3542 + 25.2625i 0.748063 + 1.02962i
\(603\) −0.556631 0.180860i −0.0226678 0.00736520i
\(604\) −9.42547 −0.383517
\(605\) −5.19433 + 24.0420i −0.211180 + 0.977447i
\(606\) −32.3375 −1.31362
\(607\) 24.2027 + 7.86394i 0.982358 + 0.319187i 0.755794 0.654809i \(-0.227251\pi\)
0.226564 + 0.973996i \(0.427251\pi\)
\(608\) −12.3731 17.0302i −0.501797 0.690664i
\(609\) 0.675293 + 0.490629i 0.0273643 + 0.0198813i
\(610\) −6.36788 + 0.759989i −0.257828 + 0.0307710i
\(611\) 13.7345 + 42.2705i 0.555639 + 1.71008i
\(612\) −0.867874 + 1.19453i −0.0350817 + 0.0482858i
\(613\) −21.7843 29.9835i −0.879859 1.21102i −0.976460 0.215698i \(-0.930797\pi\)
0.0966016 0.995323i \(-0.469203\pi\)
\(614\) −3.51234 + 10.8099i −0.141746 + 0.436251i
\(615\) −6.78600 + 34.2903i −0.273638 + 1.38272i
\(616\) −15.3255 2.56426i −0.617483 0.103317i
\(617\) 27.5937i 1.11088i −0.831557 0.555439i \(-0.812550\pi\)
0.831557 0.555439i \(-0.187450\pi\)
\(618\) 31.8246 + 10.3404i 1.28017 + 0.415953i
\(619\) 16.5391 12.0164i 0.664764 0.482979i −0.203504 0.979074i \(-0.565233\pi\)
0.868268 + 0.496095i \(0.165233\pi\)
\(620\) 0.769843 + 0.831183i 0.0309176 + 0.0333811i
\(621\) −4.93964 15.2026i −0.198221 0.610061i
\(622\) 8.65728 2.81292i 0.347125 0.112788i
\(623\) 13.0816 18.0052i 0.524101 0.721364i
\(624\) −29.1475 + 21.1769i −1.16683 + 0.847754i
\(625\) 22.2307 11.4366i 0.889228 0.457464i
\(626\) −23.5480 −0.941167
\(627\) 30.7148 + 15.9882i 1.22663 + 0.638507i
\(628\) 10.5842i 0.422354i
\(629\) 1.78265 5.48642i 0.0710787 0.218758i
\(630\) 6.77822 3.13282i 0.270051 0.124815i
\(631\) −0.614155 0.446210i −0.0244491 0.0177633i 0.575494 0.817806i \(-0.304810\pi\)
−0.599943 + 0.800043i \(0.704810\pi\)
\(632\) −14.3705 + 4.66926i −0.571627 + 0.185733i
\(633\) 12.7177 4.13224i 0.505485 0.164242i
\(634\) −25.0133 18.1733i −0.993407 0.721752i
\(635\) 2.27998 + 4.93301i 0.0904784 + 0.195760i
\(636\) −5.69723 + 17.5343i −0.225910 + 0.695279i
\(637\) 7.28342i 0.288579i
\(638\) −0.461426 0.925425i −0.0182680 0.0366379i
\(639\) −4.18186 −0.165432
\(640\) −26.1201 14.5945i −1.03249 0.576897i
\(641\) 12.0584 8.76094i 0.476278 0.346037i −0.323605 0.946192i \(-0.604895\pi\)
0.799883 + 0.600156i \(0.204895\pi\)
\(642\) −19.2955 + 26.5579i −0.761531 + 1.04816i
\(643\) 26.2820 8.53955i 1.03646 0.336767i 0.259120 0.965845i \(-0.416568\pi\)
0.777342 + 0.629078i \(0.216568\pi\)
\(644\) −1.97060 6.06490i −0.0776527 0.238990i
\(645\) −25.2460 27.2575i −0.994059 1.07326i
\(646\) 15.7433 11.4382i 0.619411 0.450029i
\(647\) 23.7560 + 7.71879i 0.933945 + 0.303457i 0.736175 0.676791i \(-0.236630\pi\)
0.197770 + 0.980248i \(0.436630\pi\)
\(648\) 22.7452i 0.893514i
\(649\) 0.798974 + 0.813005i 0.0313625 + 0.0319132i
\(650\) −28.3007 11.6579i −1.11004 0.457260i
\(651\) 0.940197 2.89363i 0.0368492 0.113410i
\(652\) 1.57264 + 2.16456i 0.0615895 + 0.0847706i
\(653\) −16.3187 + 22.4607i −0.638599 + 0.878956i −0.998540 0.0540191i \(-0.982797\pi\)
0.359941 + 0.932975i \(0.382797\pi\)
\(654\) −8.88708 27.3516i −0.347513 1.06953i
\(655\) 0.420923 + 3.52688i 0.0164468 + 0.137807i
\(656\) 31.5802 + 22.9444i 1.23300 + 0.895827i
\(657\) 4.68505 + 6.44842i 0.182781 + 0.251577i
\(658\) −42.4029 13.7775i −1.65304 0.537105i
\(659\) 21.5863 0.840883 0.420442 0.907320i \(-0.361875\pi\)
0.420442 + 0.907320i \(0.361875\pi\)
\(660\) −10.7911 0.507537i −0.420044 0.0197559i
\(661\) −16.0174 −0.623003 −0.311502 0.950246i \(-0.600832\pi\)
−0.311502 + 0.950246i \(0.600832\pi\)
\(662\) 0.736837 + 0.239413i 0.0286380 + 0.00930504i
\(663\) −9.55357 13.1494i −0.371030 0.510679i
\(664\) −5.37628 3.90609i −0.208640 0.151586i
\(665\) −26.3302 + 3.14243i −1.02104 + 0.121858i
\(666\) 1.19300 + 3.67167i 0.0462277 + 0.142274i
\(667\) −0.426892 + 0.587567i −0.0165293 + 0.0227507i
\(668\) −1.65656 2.28005i −0.0640941 0.0882180i
\(669\) 5.31966 16.3722i 0.205670 0.632986i
\(670\) −2.36076 0.467191i −0.0912042 0.0180492i
\(671\) −0.849880 5.68579i −0.0328093 0.219498i
\(672\) 17.6372i 0.680368i
\(673\) −29.8127 9.68673i −1.14920 0.373396i −0.328355 0.944554i \(-0.606494\pi\)
−0.820840 + 0.571158i \(0.806494\pi\)
\(674\) −45.6286 + 33.1511i −1.75755 + 1.27693i
\(675\) 17.6603 10.8697i 0.679747 0.418376i
\(676\) 0.156871 + 0.482799i 0.00603350 + 0.0185692i
\(677\) 29.1654 9.47642i 1.12092 0.364209i 0.310801 0.950475i \(-0.399403\pi\)
0.810118 + 0.586267i \(0.199403\pi\)
\(678\) 0.444325 0.611561i 0.0170642 0.0234869i
\(679\) −4.11590 + 2.99038i −0.157954 + 0.114760i
\(680\) 5.06786 9.07006i 0.194344 0.347821i
\(681\) 7.51888 0.288124
\(682\) −2.68837 + 2.64198i −0.102943 + 0.101166i
\(683\) 3.27236i 0.125213i 0.998038 + 0.0626066i \(0.0199414\pi\)
−0.998038 + 0.0626066i \(0.980059\pi\)
\(684\) −1.08433 + 3.33724i −0.0414606 + 0.127602i
\(685\) 17.5448 + 37.9603i 0.670354 + 1.45039i
\(686\) −26.9287 19.5648i −1.02814 0.746989i
\(687\) −5.09664 + 1.65600i −0.194449 + 0.0631802i
\(688\) −39.4586 + 12.8209i −1.50435 + 0.488792i
\(689\) −37.8832 27.5238i −1.44324 1.04857i
\(690\) 11.8141 + 25.5612i 0.449756 + 0.973099i
\(691\) −11.2774 + 34.7084i −0.429014 + 1.32037i 0.470083 + 0.882622i \(0.344224\pi\)
−0.899098 + 0.437748i \(0.855776\pi\)
\(692\) 1.55431i 0.0590862i
\(693\) 2.98694 + 5.99054i 0.113465 + 0.227562i
\(694\) 5.94478 0.225661
\(695\) −12.6818 + 22.6970i −0.481049 + 0.860944i
\(696\) −0.628811 + 0.456858i −0.0238350 + 0.0173172i
\(697\) −10.3509 + 14.2468i −0.392070 + 0.539638i
\(698\) −10.0256 + 3.25750i −0.379473 + 0.123298i
\(699\) 6.41413 + 19.7407i 0.242605 + 0.746660i
\(700\) 7.04537 4.33634i 0.266290 0.163898i
\(701\) −37.6684 + 27.3677i −1.42272 + 1.03366i −0.431399 + 0.902161i \(0.641980\pi\)
−0.991316 + 0.131502i \(0.958020\pi\)
\(702\) −24.1463 7.84562i −0.911345 0.296114i
\(703\) 13.7096i 0.517068i
\(704\) 5.01427 9.63285i 0.188982 0.363052i
\(705\) 52.0381 + 10.2983i 1.95987 + 0.387855i
\(706\) 6.23630 19.1933i 0.234706 0.722351i
\(707\) 13.0485 + 17.9597i 0.490738 + 0.675443i
\(708\) −0.294272 + 0.405030i −0.0110594 + 0.0152220i
\(709\) 11.0000 + 33.8544i 0.413112 + 1.27143i 0.913929 + 0.405874i \(0.133033\pi\)
−0.500817 + 0.865553i \(0.666967\pi\)
\(710\) −17.0738 + 2.03771i −0.640770 + 0.0764740i
\(711\) 5.26613 + 3.82607i 0.197495 + 0.143489i
\(712\) 12.1811 + 16.7659i 0.456507 + 0.628327i
\(713\) 2.51772 + 0.818057i 0.0942894 + 0.0306365i
\(714\) 16.3044 0.610178
\(715\) 9.69546 25.6681i 0.362590 0.959931i
\(716\) 3.70588 0.138495
\(717\) −37.6371 12.2290i −1.40558 0.456702i
\(718\) 23.4526 + 32.2798i 0.875245 + 1.20467i
\(719\) 17.8722 + 12.9849i 0.666522 + 0.484256i 0.868859 0.495060i \(-0.164854\pi\)
−0.202337 + 0.979316i \(0.564854\pi\)
\(720\) 1.17575 + 9.85153i 0.0438177 + 0.367145i
\(721\) −7.09862 21.8473i −0.264366 0.813636i
\(722\) 8.70490 11.9813i 0.323963 0.445896i
\(723\) −33.0176 45.4448i −1.22794 1.69011i
\(724\) 3.56677 10.9774i 0.132558 0.407971i
\(725\) −0.871176 0.358863i −0.0323547 0.0133278i
\(726\) 0.625636 35.9365i 0.0232195 1.33373i
\(727\) 45.5415i 1.68904i 0.535522 + 0.844521i \(0.320115\pi\)
−0.535522 + 0.844521i \(0.679885\pi\)
\(728\) 16.4852 + 5.35637i 0.610982 + 0.198520i
\(729\) 11.9514 8.68317i 0.442643 0.321599i
\(730\) 22.2704 + 24.0449i 0.824266 + 0.889943i
\(731\) −5.78391 17.8011i −0.213926 0.658396i
\(732\) 2.40140 0.780262i 0.0887583 0.0288393i
\(733\) −6.68835 + 9.20572i −0.247040 + 0.340021i −0.914472 0.404650i \(-0.867393\pi\)
0.667432 + 0.744671i \(0.267393\pi\)
\(734\) 27.2936 19.8300i 1.00743 0.731938i
\(735\) 7.58871 + 4.24016i 0.279914 + 0.156401i
\(736\) 15.3459 0.565659
\(737\) 0.356014 2.12776i 0.0131140 0.0783769i
\(738\) 11.7852i 0.433818i
\(739\) 1.34045 4.12547i 0.0493091 0.151758i −0.923370 0.383911i \(-0.874577\pi\)
0.972679 + 0.232153i \(0.0745770\pi\)
\(740\) 1.79448 + 3.88256i 0.0659663 + 0.142726i
\(741\) −31.2498 22.7043i −1.14799 0.834064i
\(742\) 44.6740 14.5154i 1.64003 0.532879i
\(743\) 16.4480 5.34429i 0.603420 0.196063i 0.00865478 0.999963i \(-0.497245\pi\)
0.594765 + 0.803900i \(0.297245\pi\)
\(744\) 2.29204 + 1.66526i 0.0840302 + 0.0610515i
\(745\) 12.0071 5.54955i 0.439905 0.203320i
\(746\) −3.84491 + 11.8334i −0.140772 + 0.433253i
\(747\) 2.86281i 0.104745i
\(748\) −4.82757 2.51293i −0.176513 0.0918819i
\(749\) 22.5357 0.823437
\(750\) −28.6222 + 22.7001i −1.04514 + 0.828890i
\(751\) 25.4946 18.5229i 0.930310 0.675910i −0.0157586 0.999876i \(-0.505016\pi\)
0.946069 + 0.323966i \(0.105016\pi\)
\(752\) 34.8198 47.9253i 1.26975 1.74766i
\(753\) 44.7691 14.5464i 1.63148 0.530099i
\(754\) 0.356463 + 1.09708i 0.0129816 + 0.0399533i
\(755\) −19.4153 20.9623i −0.706594 0.762895i
\(756\) 5.55175 4.03358i 0.201915 0.146700i
\(757\) 8.82332 + 2.86687i 0.320689 + 0.104198i 0.464938 0.885343i \(-0.346077\pi\)
−0.144249 + 0.989541i \(0.546077\pi\)
\(758\) 38.3718i 1.39373i
\(759\) −22.5908 + 11.2640i −0.819995 + 0.408858i
\(760\) 4.79350 24.2220i 0.173879 0.878626i
\(761\) −1.28492 + 3.95459i −0.0465784 + 0.143354i −0.971641 0.236461i \(-0.924012\pi\)
0.925062 + 0.379815i \(0.124012\pi\)
\(762\) −4.66762 6.42442i −0.169090 0.232732i
\(763\) −11.6046 + 15.9724i −0.420115 + 0.578239i
\(764\) −0.710238 2.18589i −0.0256955 0.0790827i
\(765\) −4.44434 + 0.530419i −0.160685 + 0.0191773i
\(766\) 3.26667 + 2.37338i 0.118030 + 0.0857536i
\(767\) −0.747406 1.02872i −0.0269873 0.0371448i
\(768\) 29.2825 + 9.51446i 1.05664 + 0.343324i
\(769\) −16.8800 −0.608709 −0.304355 0.952559i \(-0.598441\pi\)
−0.304355 + 0.952559i \(0.598441\pi\)
\(770\) 15.1142 + 23.0029i 0.544680 + 0.828969i
\(771\) 48.7305 1.75499
\(772\) −6.76028 2.19655i −0.243308 0.0790555i
\(773\) −4.98301 6.85852i −0.179226