# Properties

 Label 55.2.j.a.49.1 Level $55$ Weight $2$ Character 55.49 Analytic conductor $0.439$ Analytic rank $0$ Dimension $16$ CM no Inner twists $4$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$55 = 5 \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 55.j (of order $$10$$, degree $$4$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$0.439177211117$$ Analytic rank: $$0$$ Dimension: $$16$$ Relative dimension: $$4$$ over $$\Q(\zeta_{10})$$ Coefficient field: $$\mathbb{Q}[x]/(x^{16} - \cdots)$$ Defining polynomial: $$x^{16} - 7 x^{14} + 25 x^{12} - 57 x^{10} + 194 x^{8} - 303 x^{6} + 235 x^{4} - 33 x^{2} + 121$$ Coefficient ring: $$\Z[a_1, \ldots, a_{4}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

## Embedding invariants

 Embedding label 49.1 Root $$-0.972539 + 1.33858i$$ of defining polynomial Character $$\chi$$ $$=$$ 55.49 Dual form 55.2.j.a.9.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-1.57360 + 0.511294i) q^{2} +(1.16075 - 1.59764i) q^{3} +(0.596764 - 0.433574i) q^{4} +(1.09069 - 1.95203i) q^{5} +(-1.00970 + 3.10753i) q^{6} +(1.31845 + 1.81468i) q^{7} +(1.22769 - 1.68978i) q^{8} +(-0.278050 - 0.855749i) q^{9} +O(q^{10})$$ $$q+(-1.57360 + 0.511294i) q^{2} +(1.16075 - 1.59764i) q^{3} +(0.596764 - 0.433574i) q^{4} +(1.09069 - 1.95203i) q^{5} +(-1.00970 + 3.10753i) q^{6} +(1.31845 + 1.81468i) q^{7} +(1.22769 - 1.68978i) q^{8} +(-0.278050 - 0.855749i) q^{9} +(-0.718246 + 3.62937i) q^{10} +(-3.27115 + 0.547326i) q^{11} -1.45668i q^{12} +(-3.51868 + 1.14329i) q^{13} +(-3.00254 - 2.18148i) q^{14} +(-1.85261 - 4.00834i) q^{15} +(-1.52381 + 4.68982i) q^{16} +(-2.11573 - 0.687441i) q^{17} +(0.875078 + 1.20444i) q^{18} +(4.27714 + 3.10753i) q^{19} +(-0.195466 - 1.63779i) q^{20} +4.42960 q^{21} +(4.86764 - 2.53379i) q^{22} +3.85415i q^{23} +(-1.27460 - 3.92282i) q^{24} +(-2.62081 - 4.25810i) q^{25} +(4.95244 - 3.59816i) q^{26} +(3.94448 + 1.28164i) q^{27} +(1.57360 + 0.511294i) q^{28} +(0.152450 - 0.110762i) q^{29} +(4.96471 + 5.36029i) q^{30} +(0.212253 + 0.653249i) q^{31} -3.98166i q^{32} +(-2.92256 + 5.86142i) q^{33} +3.68079 q^{34} +(4.98032 - 0.594387i) q^{35} +(-0.536960 - 0.390125i) q^{36} +(-1.52422 - 2.09791i) q^{37} +(-8.31938 - 2.70313i) q^{38} +(-2.25775 + 6.94864i) q^{39} +(-1.95946 - 4.23950i) q^{40} +(-6.40421 - 4.65293i) q^{41} +(-6.97041 + 2.26482i) q^{42} -8.41368i q^{43} +(-1.71480 + 1.74491i) q^{44} +(-1.97371 - 0.390594i) q^{45} +(-1.97060 - 6.06490i) q^{46} +(-7.06117 + 9.71886i) q^{47} +(5.72386 + 7.87822i) q^{48} +(0.608337 - 1.87227i) q^{49} +(6.30124 + 5.36054i) q^{50} +(-3.55411 + 2.58222i) q^{51} +(-1.60412 + 2.20788i) q^{52} +(12.0371 - 3.91110i) q^{53} -6.86233 q^{54} +(-2.49941 + 6.98233i) q^{55} +4.68506 q^{56} +(9.92940 - 3.22626i) q^{57} +(-0.183264 + 0.252241i) q^{58} +(-0.278050 + 0.202015i) q^{59} +(-2.84348 - 1.58878i) q^{60} +(0.535643 - 1.64854i) q^{61} +(-0.668004 - 0.919429i) q^{62} +(1.18632 - 1.63283i) q^{63} +(-1.01183 - 3.11409i) q^{64} +(-1.60605 + 8.11552i) q^{65} +(1.60204 - 10.7178i) q^{66} +0.650461i q^{67} +(-1.56065 + 0.507084i) q^{68} +(6.15754 + 4.47371i) q^{69} +(-7.53313 + 3.48174i) q^{70} +(1.43619 - 4.42013i) q^{71} +(-1.78738 - 0.580756i) q^{72} +(-5.20684 - 7.16660i) q^{73} +(3.47116 + 2.52195i) q^{74} +(-9.84499 - 0.755493i) q^{75} +3.89979 q^{76} +(-5.30606 - 5.21449i) q^{77} -12.0888i q^{78} +(2.23551 + 6.88019i) q^{79} +(7.49264 + 8.08965i) q^{80} +(8.80999 - 6.40083i) q^{81} +(12.4567 + 4.04742i) q^{82} +(-3.02593 - 0.983185i) q^{83} +(2.64342 - 1.92056i) q^{84} +(-3.64950 + 3.38017i) q^{85} +(4.30186 + 13.2398i) q^{86} -0.372127i q^{87} +(-3.09111 + 6.19946i) q^{88} -9.92195 q^{89} +(3.30554 - 0.394506i) q^{90} +(-6.71389 - 4.87793i) q^{91} +(1.67106 + 2.30002i) q^{92} +(1.29003 + 0.419156i) q^{93} +(6.14226 - 18.9039i) q^{94} +(10.7310 - 4.95976i) q^{95} +(-6.36125 - 4.62172i) q^{96} +(-2.15710 + 0.700884i) q^{97} +3.25724i q^{98} +(1.37792 + 2.64710i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$16q - 4q^{4} - 2q^{5} - 18q^{6} + 2q^{9} + O(q^{10})$$ $$16q - 4q^{4} - 2q^{5} - 18q^{6} + 2q^{9} - 6q^{11} - 12q^{14} - 16q^{15} + 16q^{16} + 6q^{19} - 8q^{20} + 8q^{21} + 6q^{24} - 16q^{25} + 40q^{26} + 2q^{29} + 26q^{30} + 8q^{31} - 16q^{34} + 22q^{35} + 10q^{36} + 30q^{39} + 12q^{40} - 52q^{41} + 4q^{44} + 12q^{45} - 62q^{46} - 10q^{49} + 28q^{50} - 42q^{51} - 40q^{54} - 8q^{55} - 20q^{56} + 2q^{59} - 32q^{60} - 40q^{61} - 8q^{64} - 40q^{65} + 58q^{66} + 26q^{69} - 34q^{70} + 36q^{71} + 48q^{74} - 20q^{75} + 56q^{76} + 38q^{79} + 34q^{80} + 68q^{81} + 12q^{84} + 58q^{85} + 22q^{86} + 24q^{89} + 78q^{90} - 20q^{91} + 14q^{94} + 48q^{95} - 86q^{96} - 72q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/55\mathbb{Z}\right)^\times$$.

 $$n$$ $$12$$ $$46$$ $$\chi(n)$$ $$-1$$ $$e\left(\frac{2}{5}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −1.57360 + 0.511294i −1.11270 + 0.361539i −0.806979 0.590581i $$-0.798899\pi$$
−0.305725 + 0.952120i $$0.598899\pi$$
$$3$$ 1.16075 1.59764i 0.670160 0.922396i −0.329604 0.944119i $$-0.606915\pi$$
0.999764 + 0.0217231i $$0.00691523\pi$$
$$4$$ 0.596764 0.433574i 0.298382 0.216787i
$$5$$ 1.09069 1.95203i 0.487770 0.872972i
$$6$$ −1.00970 + 3.10753i −0.412207 + 1.26864i
$$7$$ 1.31845 + 1.81468i 0.498326 + 0.685886i 0.981896 0.189419i $$-0.0606604\pi$$
−0.483571 + 0.875305i $$0.660660\pi$$
$$8$$ 1.22769 1.68978i 0.434055 0.597426i
$$9$$ −0.278050 0.855749i −0.0926832 0.285250i
$$10$$ −0.718246 + 3.62937i −0.227129 + 1.14771i
$$11$$ −3.27115 + 0.547326i −0.986289 + 0.165025i
$$12$$ 1.45668i 0.420508i
$$13$$ −3.51868 + 1.14329i −0.975906 + 0.317091i −0.753198 0.657794i $$-0.771490\pi$$
−0.222708 + 0.974885i $$0.571490\pi$$
$$14$$ −3.00254 2.18148i −0.802464 0.583024i
$$15$$ −1.85261 4.00834i −0.478342 1.03495i
$$16$$ −1.52381 + 4.68982i −0.380954 + 1.17245i
$$17$$ −2.11573 0.687441i −0.513139 0.166729i 0.0409903 0.999160i $$-0.486949\pi$$
−0.554129 + 0.832431i $$0.686949\pi$$
$$18$$ 0.875078 + 1.20444i 0.206258 + 0.283890i
$$19$$ 4.27714 + 3.10753i 0.981244 + 0.712916i 0.957986 0.286814i $$-0.0925961\pi$$
0.0232580 + 0.999729i $$0.492596\pi$$
$$20$$ −0.195466 1.63779i −0.0437074 0.366221i
$$21$$ 4.42960 0.966617
$$22$$ 4.86764 2.53379i 1.03778 0.540206i
$$23$$ 3.85415i 0.803647i 0.915717 + 0.401823i $$0.131623\pi$$
−0.915717 + 0.401823i $$0.868377\pi$$
$$24$$ −1.27460 3.92282i −0.260177 0.800742i
$$25$$ −2.62081 4.25810i −0.524161 0.851619i
$$26$$ 4.95244 3.59816i 0.971253 0.705657i
$$27$$ 3.94448 + 1.28164i 0.759116 + 0.246652i
$$28$$ 1.57360 + 0.511294i 0.297383 + 0.0966255i
$$29$$ 0.152450 0.110762i 0.0283093 0.0205679i −0.573541 0.819177i $$-0.694431\pi$$
0.601850 + 0.798609i $$0.294431\pi$$
$$30$$ 4.96471 + 5.36029i 0.906428 + 0.978651i
$$31$$ 0.212253 + 0.653249i 0.0381218 + 0.117327i 0.968306 0.249765i $$-0.0803534\pi$$
−0.930185 + 0.367092i $$0.880353\pi$$
$$32$$ 3.98166i 0.703866i
$$33$$ −2.92256 + 5.86142i −0.508753 + 1.02034i
$$34$$ 3.68079 0.631251
$$35$$ 4.98032 0.594387i 0.841828 0.100470i
$$36$$ −0.536960 0.390125i −0.0894934 0.0650208i
$$37$$ −1.52422 2.09791i −0.250580 0.344894i 0.665134 0.746724i $$-0.268374\pi$$
−0.915714 + 0.401830i $$0.868374\pi$$
$$38$$ −8.31938 2.70313i −1.34958 0.438506i
$$39$$ −2.25775 + 6.94864i −0.361529 + 1.11267i
$$40$$ −1.95946 4.23950i −0.309817 0.670324i
$$41$$ −6.40421 4.65293i −1.00017 0.726666i −0.0380448 0.999276i $$-0.512113\pi$$
−0.962124 + 0.272611i $$0.912113\pi$$
$$42$$ −6.97041 + 2.26482i −1.07556 + 0.349470i
$$43$$ 8.41368i 1.28307i −0.767092 0.641537i $$-0.778297\pi$$
0.767092 0.641537i $$-0.221703\pi$$
$$44$$ −1.71480 + 1.74491i −0.258515 + 0.263055i
$$45$$ −1.97371 0.390594i −0.294223 0.0582263i
$$46$$ −1.97060 6.06490i −0.290550 0.894220i
$$47$$ −7.06117 + 9.71886i −1.02998 + 1.41764i −0.125012 + 0.992155i $$0.539897\pi$$
−0.904965 + 0.425486i $$0.860103\pi$$
$$48$$ 5.72386 + 7.87822i 0.826168 + 1.13712i
$$49$$ 0.608337 1.87227i 0.0869053 0.267467i
$$50$$ 6.30124 + 5.36054i 0.891130 + 0.758095i
$$51$$ −3.55411 + 2.58222i −0.497676 + 0.361582i
$$52$$ −1.60412 + 2.20788i −0.222451 + 0.306178i
$$53$$ 12.0371 3.91110i 1.65343 0.537231i 0.673947 0.738779i $$-0.264597\pi$$
0.979479 + 0.201549i $$0.0645974\pi$$
$$54$$ −6.86233 −0.933845
$$55$$ −2.49941 + 6.98233i −0.337020 + 0.941498i
$$56$$ 4.68506 0.626067
$$57$$ 9.92940 3.22626i 1.31518 0.427328i
$$58$$ −0.183264 + 0.252241i −0.0240638 + 0.0331209i
$$59$$ −0.278050 + 0.202015i −0.0361990 + 0.0263001i −0.605738 0.795664i $$-0.707122\pi$$
0.569539 + 0.821965i $$0.307122\pi$$
$$60$$ −2.84348 1.58878i −0.367092 0.205111i
$$61$$ 0.535643 1.64854i 0.0685821 0.211074i −0.910892 0.412645i $$-0.864605\pi$$
0.979474 + 0.201572i $$0.0646049\pi$$
$$62$$ −0.668004 0.919429i −0.0848366 0.116768i
$$63$$ 1.18632 1.63283i 0.149462 0.205717i
$$64$$ −1.01183 3.11409i −0.126479 0.389261i
$$65$$ −1.60605 + 8.11552i −0.199206 + 1.00661i
$$66$$ 1.60204 10.7178i 0.197197 1.31927i
$$67$$ 0.650461i 0.0794664i 0.999210 + 0.0397332i $$0.0126508\pi$$
−0.999210 + 0.0397332i $$0.987349\pi$$
$$68$$ −1.56065 + 0.507084i −0.189256 + 0.0614930i
$$69$$ 6.15754 + 4.47371i 0.741281 + 0.538572i
$$70$$ −7.53313 + 3.48174i −0.900381 + 0.416147i
$$71$$ 1.43619 4.42013i 0.170444 0.524573i −0.828952 0.559320i $$-0.811062\pi$$
0.999396 + 0.0347464i $$0.0110624\pi$$
$$72$$ −1.78738 0.580756i −0.210645 0.0684427i
$$73$$ −5.20684 7.16660i −0.609415 0.838787i 0.387115 0.922032i $$-0.373472\pi$$
−0.996529 + 0.0832444i $$0.973472\pi$$
$$74$$ 3.47116 + 2.52195i 0.403515 + 0.293171i
$$75$$ −9.84499 0.755493i −1.13680 0.0872368i
$$76$$ 3.89979 0.447336
$$77$$ −5.30606 5.21449i −0.604682 0.594246i
$$78$$ 12.0888i 1.36878i
$$79$$ 2.23551 + 6.88019i 0.251514 + 0.774082i 0.994496 + 0.104770i $$0.0334108\pi$$
−0.742982 + 0.669311i $$0.766589\pi$$
$$80$$ 7.49264 + 8.08965i 0.837703 + 0.904450i
$$81$$ 8.80999 6.40083i 0.978888 0.711203i
$$82$$ 12.4567 + 4.04742i 1.37561 + 0.446963i
$$83$$ −3.02593 0.983185i −0.332139 0.107919i 0.138200 0.990404i $$-0.455868\pi$$
−0.470339 + 0.882486i $$0.655868\pi$$
$$84$$ 2.64342 1.92056i 0.288421 0.209550i
$$85$$ −3.64950 + 3.38017i −0.395844 + 0.366631i
$$86$$ 4.30186 + 13.2398i 0.463882 + 1.42768i
$$87$$ 0.372127i 0.0398962i
$$88$$ −3.09111 + 6.19946i −0.329514 + 0.660865i
$$89$$ −9.92195 −1.05172 −0.525862 0.850570i $$-0.676257\pi$$
−0.525862 + 0.850570i $$0.676257\pi$$
$$90$$ 3.30554 0.394506i 0.348434 0.0415846i
$$91$$ −6.71389 4.87793i −0.703807 0.511346i
$$92$$ 1.67106 + 2.30002i 0.174220 + 0.239793i
$$93$$ 1.29003 + 0.419156i 0.133770 + 0.0434644i
$$94$$ 6.14226 18.9039i 0.633526 1.94979i
$$95$$ 10.7310 4.95976i 1.10098 0.508860i
$$96$$ −6.36125 4.62172i −0.649243 0.471703i
$$97$$ −2.15710 + 0.700884i −0.219020 + 0.0711640i −0.416472 0.909149i $$-0.636734\pi$$
0.197451 + 0.980313i $$0.436734\pi$$
$$98$$ 3.25724i 0.329031i
$$99$$ 1.37792 + 2.64710i 0.138486 + 0.266044i
$$100$$ −3.41020 1.40476i −0.341020 0.140476i
$$101$$ 3.05830 + 9.41247i 0.304312 + 0.936576i 0.979933 + 0.199327i $$0.0638756\pi$$
−0.675621 + 0.737249i $$0.736124\pi$$
$$102$$ 4.27249 5.88057i 0.423039 0.582263i
$$103$$ 6.01958 + 8.28525i 0.593127 + 0.816370i 0.995057 0.0993007i $$-0.0316606\pi$$
−0.401930 + 0.915670i $$0.631661\pi$$
$$104$$ −2.38796 + 7.34938i −0.234159 + 0.720666i
$$105$$ 4.83130 8.64668i 0.471487 0.843830i
$$106$$ −16.9419 + 12.3090i −1.64554 + 1.19556i
$$107$$ 5.90536 8.12803i 0.570893 0.785767i −0.421767 0.906704i $$-0.638590\pi$$
0.992660 + 0.120937i $$0.0385900\pi$$
$$108$$ 2.90961 0.945389i 0.279977 0.0909701i
$$109$$ 8.80173 0.843053 0.421527 0.906816i $$-0.361494\pi$$
0.421527 + 0.906816i $$0.361494\pi$$
$$110$$ 0.363043 12.2653i 0.0346148 1.16945i
$$111$$ −5.12094 −0.486058
$$112$$ −10.5196 + 3.41803i −0.994010 + 0.322973i
$$113$$ −0.135985 + 0.187168i −0.0127924 + 0.0176073i −0.815365 0.578947i $$-0.803464\pi$$
0.802573 + 0.596554i $$0.203464\pi$$
$$114$$ −13.9753 + 10.1537i −1.30891 + 0.950980i
$$115$$ 7.52341 + 4.20367i 0.701561 + 0.391995i
$$116$$ 0.0429534 0.132197i 0.00398812 0.0122742i
$$117$$ 1.95673 + 2.69321i 0.180900 + 0.248988i
$$118$$ 0.334250 0.460056i 0.0307702 0.0423516i
$$119$$ −1.54198 4.74573i −0.141353 0.435040i
$$120$$ −9.04763 1.79051i −0.825932 0.163451i
$$121$$ 10.4009 3.58078i 0.945533 0.325525i
$$122$$ 2.86801i 0.259658i
$$123$$ −14.8674 + 4.83071i −1.34055 + 0.435570i
$$124$$ 0.409897 + 0.297808i 0.0368098 + 0.0267439i
$$125$$ −11.1704 + 0.471632i −0.999110 + 0.0421840i
$$126$$ −1.03194 + 3.17598i −0.0919324 + 0.282939i
$$127$$ −2.31140 0.751018i −0.205103 0.0666421i 0.204664 0.978832i $$-0.434390\pi$$
−0.409767 + 0.912190i $$0.634390\pi$$
$$128$$ 7.86516 + 10.8255i 0.695188 + 0.956844i
$$129$$ −13.4420 9.76619i −1.18350 0.859865i
$$130$$ −1.62214 13.5917i −0.142271 1.19207i
$$131$$ 1.58846 0.138785 0.0693924 0.997589i $$-0.477894\pi$$
0.0693924 + 0.997589i $$0.477894\pi$$
$$132$$ 0.797281 + 4.76503i 0.0693944 + 0.414743i
$$133$$ 11.8588i 1.02829i
$$134$$ −0.332577 1.02357i −0.0287302 0.0884226i
$$135$$ 6.80399 6.30186i 0.585594 0.542378i
$$136$$ −3.75909 + 2.73114i −0.322339 + 0.234193i
$$137$$ −17.7866 5.77920i −1.51961 0.493750i −0.573943 0.818895i $$-0.694587\pi$$
−0.945664 + 0.325145i $$0.894587\pi$$
$$138$$ −11.9769 3.89153i −1.01954 0.331269i
$$139$$ 9.40675 6.83441i 0.797870 0.579687i −0.112418 0.993661i $$-0.535860\pi$$
0.910289 + 0.413974i $$0.135860\pi$$
$$140$$ 2.71436 2.51405i 0.229406 0.212476i
$$141$$ 7.33095 + 22.5624i 0.617378 + 1.90009i
$$142$$ 7.68984i 0.645317i
$$143$$ 10.8844 5.66573i 0.910197 0.473792i
$$144$$ 4.43700 0.369750
$$145$$ −0.0499340 0.418393i −0.00414679 0.0347457i
$$146$$ 11.8577 + 8.61514i 0.981352 + 0.712994i
$$147$$ −2.28508 3.14514i −0.188470 0.259407i
$$148$$ −1.81920 0.591094i −0.149537 0.0485876i
$$149$$ −1.82800 + 5.62600i −0.149755 + 0.460900i −0.997592 0.0693580i $$-0.977905\pi$$
0.847836 + 0.530258i $$0.177905\pi$$
$$150$$ 15.8784 3.84484i 1.29646 0.313930i
$$151$$ −10.3375 7.51064i −0.841254 0.611207i 0.0814664 0.996676i $$-0.474040\pi$$
−0.922721 + 0.385469i $$0.874040\pi$$
$$152$$ 10.5020 3.41232i 0.851828 0.276776i
$$153$$ 2.00167i 0.161826i
$$154$$ 11.0158 + 5.49257i 0.887675 + 0.442604i
$$155$$ 1.50666 + 0.298166i 0.121018 + 0.0239492i
$$156$$ 1.66541 + 5.12560i 0.133339 + 0.410376i
$$157$$ 8.43394 11.6083i 0.673102 0.926445i −0.326724 0.945120i $$-0.605945\pi$$
0.999826 + 0.0186749i $$0.00594475\pi$$
$$158$$ −7.03560 9.68367i −0.559722 0.770391i
$$159$$ 7.72359 23.7708i 0.612520 1.88514i
$$160$$ −7.77231 4.34275i −0.614455 0.343324i
$$161$$ −6.99407 + 5.08149i −0.551210 + 0.400478i
$$162$$ −10.5907 + 14.5768i −0.832084 + 1.14527i
$$163$$ −3.44963 + 1.12085i −0.270196 + 0.0877921i −0.440982 0.897516i $$-0.645370\pi$$
0.170785 + 0.985308i $$0.445370\pi$$
$$164$$ −5.83919 −0.455964
$$165$$ 8.25404 + 12.0979i 0.642576 + 0.941820i
$$166$$ 5.26430 0.408589
$$167$$ 3.63370 1.18066i 0.281184 0.0913623i −0.165030 0.986289i $$-0.552772\pi$$
0.446214 + 0.894926i $$0.352772\pi$$
$$168$$ 5.43819 7.48502i 0.419565 0.577482i
$$169$$ 0.556767 0.404515i 0.0428282 0.0311165i
$$170$$ 4.01459 7.18500i 0.307905 0.551065i
$$171$$ 1.47000 4.52421i 0.112414 0.345975i
$$172$$ −3.64795 5.02098i −0.278154 0.382846i
$$173$$ −1.23855 + 1.70472i −0.0941651 + 0.129607i −0.853500 0.521093i $$-0.825524\pi$$
0.759335 + 0.650700i $$0.225524\pi$$
$$174$$ 0.190266 + 0.585579i 0.0144240 + 0.0443926i
$$175$$ 4.27171 10.3700i 0.322911 0.783899i
$$176$$ 2.41777 16.1751i 0.182246 1.21925i
$$177$$ 0.678711i 0.0510151i
$$178$$ 15.6132 5.07303i 1.17026 0.380240i
$$179$$ 4.06448 + 2.95302i 0.303793 + 0.220719i 0.729229 0.684270i $$-0.239879\pi$$
−0.425435 + 0.904989i $$0.639879\pi$$
$$180$$ −1.34719 + 0.622657i −0.100413 + 0.0464101i
$$181$$ −4.83538 + 14.8818i −0.359411 + 1.10615i 0.593997 + 0.804467i $$0.297549\pi$$
−0.953408 + 0.301685i $$0.902451\pi$$
$$182$$ 13.0590 + 4.24314i 0.968000 + 0.314522i
$$183$$ −2.01202 2.76931i −0.148733 0.204713i
$$184$$ 6.51265 + 4.73172i 0.480119 + 0.348827i
$$185$$ −5.75762 + 0.687156i −0.423309 + 0.0505207i
$$186$$ −2.24430 −0.164560
$$187$$ 7.29712 + 1.09073i 0.533618 + 0.0797622i
$$188$$ 8.86140i 0.646284i
$$189$$ 2.87481 + 8.84777i 0.209112 + 0.643580i
$$190$$ −14.3504 + 13.2914i −1.04109 + 0.964257i
$$191$$ −2.52078 + 1.83145i −0.182397 + 0.132519i −0.675237 0.737601i $$-0.735959\pi$$
0.492840 + 0.870120i $$0.335959\pi$$
$$192$$ −6.14966 1.99815i −0.443814 0.144204i
$$193$$ 9.16474 + 2.97780i 0.659692 + 0.214347i 0.619683 0.784852i $$-0.287261\pi$$
0.0400095 + 0.999199i $$0.487261\pi$$
$$194$$ 3.03606 2.20582i 0.217976 0.158369i
$$195$$ 11.1014 + 11.9860i 0.794990 + 0.858334i
$$196$$ −0.448734 1.38106i −0.0320524 0.0986472i
$$197$$ 14.3974i 1.02577i 0.858457 + 0.512885i $$0.171423\pi$$
−0.858457 + 0.512885i $$0.828577\pi$$
$$198$$ −3.52174 3.46096i −0.250279 0.245960i
$$199$$ −14.7978 −1.04899 −0.524493 0.851415i $$-0.675745\pi$$
−0.524493 + 0.851415i $$0.675745\pi$$
$$200$$ −10.4128 0.799064i −0.736294 0.0565023i
$$201$$ 1.03920 + 0.755023i 0.0732995 + 0.0532552i
$$202$$ −9.62508 13.2478i −0.677218 0.932111i
$$203$$ 0.401995 + 0.130616i 0.0282145 + 0.00916745i
$$204$$ −1.00138 + 3.08194i −0.0701109 + 0.215779i
$$205$$ −16.0676 + 7.42629i −1.12221 + 0.518675i
$$206$$ −13.7086 9.95989i −0.955125 0.693939i
$$207$$ 3.29819 1.07165i 0.229240 0.0744845i
$$208$$ 18.2441i 1.26500i
$$209$$ −15.6920 7.82420i −1.08544 0.541211i
$$210$$ −3.18154 + 16.0766i −0.219547 + 1.10939i
$$211$$ −2.09250 6.44005i −0.144054 0.443352i 0.852834 0.522181i $$-0.174882\pi$$
−0.996888 + 0.0788298i $$0.974882\pi$$
$$212$$ 5.48756 7.55299i 0.376888 0.518741i
$$213$$ −5.39471 7.42518i −0.369640 0.508765i
$$214$$ −5.13687 + 15.8097i −0.351149 + 1.08073i
$$215$$ −16.4237 9.17669i −1.12009 0.625845i
$$216$$ 7.00830 5.09183i 0.476854 0.346455i
$$217$$ −0.905596 + 1.24645i −0.0614759 + 0.0846143i
$$218$$ −13.8504 + 4.50027i −0.938069 + 0.304797i
$$219$$ −17.4935 −1.18210
$$220$$ 1.53580 + 5.25048i 0.103544 + 0.353987i
$$221$$ 8.23051 0.553644
$$222$$ 8.05832 2.61831i 0.540839 0.175729i
$$223$$ −5.12388 + 7.05242i −0.343121 + 0.472265i −0.945350 0.326058i $$-0.894279\pi$$
0.602229 + 0.798323i $$0.294279\pi$$
$$224$$ 7.22547 5.24961i 0.482772 0.350754i
$$225$$ −2.91515 + 3.42671i −0.194343 + 0.228448i
$$226$$ 0.118289 0.364056i 0.00786846 0.0242166i
$$227$$ 2.23795 + 3.08028i 0.148538 + 0.204445i 0.876802 0.480852i $$-0.159672\pi$$
−0.728264 + 0.685297i $$0.759672\pi$$
$$228$$ 4.52668 6.23044i 0.299787 0.412621i
$$229$$ 0.838570 + 2.58085i 0.0554142 + 0.170547i 0.974933 0.222499i $$-0.0714213\pi$$
−0.919519 + 0.393046i $$0.871421\pi$$
$$230$$ −13.9881 2.76823i −0.922351 0.182532i
$$231$$ −14.4899 + 2.42443i −0.953364 + 0.159516i
$$232$$ 0.393588i 0.0258403i
$$233$$ 9.99634 3.24801i 0.654882 0.212784i 0.0373166 0.999303i $$-0.488119\pi$$
0.617566 + 0.786519i $$0.288119\pi$$
$$234$$ −4.45614 3.23758i −0.291307 0.211647i
$$235$$ 11.2699 + 24.3838i 0.735170 + 1.59062i
$$236$$ −0.0783415 + 0.241110i −0.00509959 + 0.0156949i
$$237$$ 13.5869 + 4.41466i 0.882565 + 0.286763i
$$238$$ 4.85293 + 6.67948i 0.314569 + 0.432966i
$$239$$ 16.2124 + 11.7790i 1.04869 + 0.761919i 0.971963 0.235133i $$-0.0755524\pi$$
0.0767288 + 0.997052i $$0.475552\pi$$
$$240$$ 21.6214 2.58045i 1.39566 0.166568i
$$241$$ 28.4450 1.83230 0.916152 0.400832i $$-0.131279\pi$$
0.916152 + 0.400832i $$0.131279\pi$$
$$242$$ −14.5360 + 10.9526i −0.934408 + 0.704060i
$$243$$ 9.06251i 0.581361i
$$244$$ −0.395112 1.21603i −0.0252944 0.0778483i
$$245$$ −2.99121 3.22955i −0.191101 0.206328i
$$246$$ 20.9254 15.2032i 1.33416 0.969321i
$$247$$ −18.6027 6.04438i −1.18366 0.384595i
$$248$$ 1.36443 + 0.443329i 0.0866411 + 0.0281514i
$$249$$ −5.08313 + 3.69311i −0.322130 + 0.234041i
$$250$$ 17.3366 6.45351i 1.09646 0.408156i
$$251$$ −7.36604 22.6703i −0.464940 1.43094i −0.859058 0.511879i $$-0.828950\pi$$
0.394117 0.919060i $$-0.371050\pi$$
$$252$$ 1.48877i 0.0937838i
$$253$$ −2.10948 12.6075i −0.132622 0.792628i
$$254$$ 4.02120 0.252313
$$255$$ 1.16412 + 9.75411i 0.0729003 + 0.610826i
$$256$$ −12.6136 9.16432i −0.788350 0.572770i
$$257$$ 14.5044 + 19.9636i 0.904758 + 1.24529i 0.968925 + 0.247354i $$0.0795609\pi$$
−0.0641671 + 0.997939i $$0.520439\pi$$
$$258$$ 26.1458 + 8.49527i 1.62776 + 0.528892i
$$259$$ 1.79744 5.53196i 0.111688 0.343739i
$$260$$ 2.56025 + 5.53939i 0.158780 + 0.343538i
$$261$$ −0.137173 0.0996619i −0.00849079 0.00616892i
$$262$$ −2.49961 + 0.812172i −0.154426 + 0.0501761i
$$263$$ 5.44098i 0.335505i 0.985829 + 0.167753i $$0.0536510\pi$$
−0.985829 + 0.167753i $$0.946349\pi$$
$$264$$ 6.31647 + 12.1345i 0.388752 + 0.746827i
$$265$$ 5.49416 27.7625i 0.337504 1.70544i
$$266$$ −6.06332 18.6610i −0.371766 1.14418i
$$267$$ −11.5169 + 15.8517i −0.704824 + 0.970107i
$$268$$ 0.282023 + 0.388171i 0.0172273 + 0.0237113i
$$269$$ 2.07213 6.37738i 0.126340 0.388835i −0.867803 0.496909i $$-0.834468\pi$$
0.994143 + 0.108074i $$0.0344682\pi$$
$$270$$ −7.48466 + 13.3955i −0.455502 + 0.815221i
$$271$$ 4.09349 2.97409i 0.248662 0.180663i −0.456472 0.889738i $$-0.650887\pi$$
0.705134 + 0.709075i $$0.250887\pi$$
$$272$$ 6.44795 8.87484i 0.390964 0.538116i
$$273$$ −15.5863 + 5.06430i −0.943327 + 0.306505i
$$274$$ 30.9438 1.86938
$$275$$ 10.9036 + 12.4944i 0.657513 + 0.753443i
$$276$$ 5.61428 0.337940
$$277$$ −10.1703 + 3.30453i −0.611074 + 0.198550i −0.598173 0.801367i $$-0.704107\pi$$
−0.0129009 + 0.999917i $$0.504107\pi$$
$$278$$ −11.3081 + 15.5642i −0.678214 + 0.933481i
$$279$$ 0.500000 0.363271i 0.0299342 0.0217485i
$$280$$ 5.10993 9.14535i 0.305377 0.546539i
$$281$$ −4.23963 + 13.0482i −0.252915 + 0.778392i 0.741319 + 0.671153i $$0.234201\pi$$
−0.994233 + 0.107238i $$0.965799\pi$$
$$282$$ −23.0720 31.7559i −1.37392 1.89103i
$$283$$ −12.9132 + 17.7735i −0.767611 + 1.05653i 0.228932 + 0.973442i $$0.426477\pi$$
−0.996543 + 0.0830832i $$0.973523\pi$$
$$284$$ −1.05939 3.26047i −0.0628633 0.193473i
$$285$$ 4.53213 22.9013i 0.268460 1.35655i
$$286$$ −14.2308 + 14.4807i −0.841485 + 0.856263i
$$287$$ 17.7563i 1.04812i
$$288$$ −3.40730 + 1.10710i −0.200777 + 0.0652365i
$$289$$ −9.74956 7.08347i −0.573504 0.416675i
$$290$$ 0.292498 + 0.632853i 0.0171761 + 0.0371624i
$$291$$ −1.38410 + 4.25981i −0.0811372 + 0.249715i
$$292$$ −6.21450 2.01922i −0.363676 0.118166i
$$293$$ −8.25135 11.3570i −0.482049 0.663483i 0.496848 0.867837i $$-0.334491\pi$$
−0.978897 + 0.204354i $$0.934491\pi$$
$$294$$ 5.20389 + 3.78085i 0.303497 + 0.220504i
$$295$$ 0.0910732 + 0.763095i 0.00530249 + 0.0444291i
$$296$$ −5.41627 −0.314815
$$297$$ −13.6045 2.03352i −0.789412 0.117997i
$$298$$ 9.78772i 0.566988i
$$299$$ −4.40641 13.5615i −0.254829 0.784283i
$$300$$ −6.20270 + 3.81768i −0.358113 + 0.220414i
$$301$$ 15.2682 11.0930i 0.880043 0.639389i
$$302$$ 20.1073 + 6.53324i 1.15704 + 0.375946i
$$303$$ 18.5876 + 6.03949i 1.06783 + 0.346960i
$$304$$ −21.0913 + 15.3237i −1.20967 + 0.878877i
$$305$$ −2.63377 2.84363i −0.150809 0.162826i
$$306$$ −1.02344 3.14983i −0.0585064 0.180064i
$$307$$ 6.86951i 0.392064i 0.980598 + 0.196032i $$0.0628056\pi$$
−0.980598 + 0.196032i $$0.937194\pi$$
$$308$$ −5.42733 0.811246i −0.309251 0.0462251i
$$309$$ 20.2241 1.15051
$$310$$ −2.52333 + 0.301152i −0.143316 + 0.0171043i
$$311$$ 4.45087 + 3.23374i 0.252385 + 0.183369i 0.706783 0.707430i $$-0.250146\pi$$
−0.454398 + 0.890799i $$0.650146\pi$$
$$312$$ 8.96982 + 12.3459i 0.507816 + 0.698949i
$$313$$ 13.5354 + 4.39793i 0.765068 + 0.248586i 0.665452 0.746440i $$-0.268239\pi$$
0.0996156 + 0.995026i $$0.468239\pi$$
$$314$$ −7.33639 + 22.5791i −0.414016 + 1.27421i
$$315$$ −1.89342 4.09664i −0.106682 0.230819i
$$316$$ 4.31714 + 3.13659i 0.242858 + 0.176447i
$$317$$ 17.7718 5.77442i 0.998166 0.324324i 0.236033 0.971745i $$-0.424153\pi$$
0.762132 + 0.647421i $$0.224153\pi$$
$$318$$ 41.3547i 2.31906i
$$319$$ −0.438065 + 0.445758i −0.0245269 + 0.0249577i
$$320$$ −7.18237 1.42138i −0.401506 0.0794575i
$$321$$ −6.13099 18.8693i −0.342199 1.05318i
$$322$$ 8.40774 11.5723i 0.468545 0.644897i
$$323$$ −6.91303 9.51497i −0.384651 0.529427i
$$324$$ 2.48225 7.63957i 0.137903 0.424420i
$$325$$ 14.0900 + 11.9865i 0.781573 + 0.664893i
$$326$$ 4.85526 3.52755i 0.268908 0.195373i
$$327$$ 10.2166 14.0620i 0.564981 0.777629i
$$328$$ −15.7248 + 5.10930i −0.868257 + 0.282114i
$$329$$ −26.9464 −1.48560
$$330$$ −19.1741 14.8170i −1.05550 0.815650i
$$331$$ 0.468249 0.0257373 0.0128686 0.999917i $$-0.495904\pi$$
0.0128686 + 0.999917i $$0.495904\pi$$
$$332$$ −2.23205 + 0.725237i −0.122500 + 0.0398025i
$$333$$ −1.37148 + 1.88767i −0.0751564 + 0.103444i
$$334$$ −5.11433 + 3.71578i −0.279844 + 0.203318i
$$335$$ 1.26972 + 0.709449i 0.0693720 + 0.0387613i
$$336$$ −6.74988 + 20.7740i −0.368236 + 1.13331i
$$337$$ 20.0360 + 27.5771i 1.09143 + 1.50222i 0.846282 + 0.532735i $$0.178836\pi$$
0.245146 + 0.969486i $$0.421164\pi$$
$$338$$ −0.669303 + 0.921216i −0.0364053 + 0.0501075i
$$339$$ 0.141181 + 0.434511i 0.00766790 + 0.0235994i
$$340$$ −0.712333 + 3.59949i −0.0386317 + 0.195210i
$$341$$ −1.05185 2.02070i −0.0569611 0.109427i
$$342$$ 7.87090i 0.425610i
$$343$$ 19.1327 6.21658i 1.03307 0.335664i
$$344$$ −14.2172 10.3294i −0.766542 0.556925i
$$345$$ 15.4487 7.14025i 0.831733 0.384418i
$$346$$ 1.07737 3.31580i 0.0579198 0.178259i
$$347$$ −3.41707 1.11027i −0.183438 0.0596026i 0.215858 0.976425i $$-0.430745\pi$$
−0.399296 + 0.916822i $$0.630745\pi$$
$$348$$ −0.161345 0.222072i −0.00864898 0.0119043i
$$349$$ −5.15433 3.74484i −0.275905 0.200457i 0.441224 0.897397i $$-0.354544\pi$$
−0.717129 + 0.696940i $$0.754544\pi$$
$$350$$ −1.41985 + 18.5023i −0.0758941 + 0.988992i
$$351$$ −15.3446 −0.819037
$$352$$ 2.17927 + 13.0246i 0.116156 + 0.694215i
$$353$$ 12.1971i 0.649186i −0.945854 0.324593i $$-0.894773\pi$$
0.945854 0.324593i $$-0.105227\pi$$
$$354$$ −0.347021 1.06802i −0.0184440 0.0567647i
$$355$$ −7.06178 7.62446i −0.374800 0.404664i
$$356$$ −5.92106 + 4.30190i −0.313815 + 0.228000i
$$357$$ −9.37181 3.04509i −0.496009 0.161163i
$$358$$ −7.90573 2.56873i −0.417831 0.135761i
$$359$$ 19.5093 14.1744i 1.02966 0.748094i 0.0614222 0.998112i $$-0.480436\pi$$
0.968241 + 0.250018i $$0.0804364\pi$$
$$360$$ −3.08312 + 2.85559i −0.162495 + 0.150503i
$$361$$ 2.76592 + 8.51262i 0.145575 + 0.448032i
$$362$$ 25.8902i 1.36076i
$$363$$ 6.35204 20.7732i 0.333396 1.09031i
$$364$$ −6.12155 −0.320856
$$365$$ −19.6684 + 2.34737i −1.02949 + 0.122867i
$$366$$ 4.58205 + 3.32905i 0.239507 + 0.174012i
$$367$$ −11.9849 16.4958i −0.625606 0.861073i 0.372140 0.928177i $$-0.378624\pi$$
−0.997746 + 0.0671034i $$0.978624\pi$$
$$368$$ −18.0753 5.87302i −0.942239 0.306152i
$$369$$ −2.20105 + 6.77414i −0.114582 + 0.352648i
$$370$$ 8.70886 4.02515i 0.452752 0.209257i
$$371$$ 22.9677 + 16.6870i 1.19242 + 0.866347i
$$372$$ 0.951577 0.309186i 0.0493370 0.0160305i
$$373$$ 7.51997i 0.389369i 0.980866 + 0.194685i $$0.0623684\pi$$
−0.980866 + 0.194685i $$0.937632\pi$$
$$374$$ −12.0404 + 2.01460i −0.622596 + 0.104172i
$$375$$ −12.2125 + 18.3937i −0.630653 + 0.949845i
$$376$$ 7.75374 + 23.8636i 0.399869 + 1.23067i
$$377$$ −0.409791 + 0.564029i −0.0211053 + 0.0290490i
$$378$$ −9.04762 12.4530i −0.465359 0.640512i
$$379$$ −7.16649 + 22.0562i −0.368118 + 1.13295i 0.579888 + 0.814696i $$0.303096\pi$$
−0.948006 + 0.318254i $$0.896904\pi$$
$$380$$ 4.25345 7.61248i 0.218197 0.390512i
$$381$$ −3.88281 + 2.82103i −0.198922 + 0.144526i
$$382$$ 3.03029 4.17083i 0.155043 0.213398i
$$383$$ −2.32095 + 0.754123i −0.118595 + 0.0385339i −0.367713 0.929939i $$-0.619859\pi$$
0.249118 + 0.968473i $$0.419859\pi$$
$$384$$ 26.4246 1.34848
$$385$$ −15.9661 + 4.67019i −0.813706 + 0.238015i
$$386$$ −15.9442 −0.811537
$$387$$ −7.20000 + 2.33942i −0.365997 + 0.118919i
$$388$$ −0.983393 + 1.35352i −0.0499242 + 0.0687148i
$$389$$ 27.4849 19.9689i 1.39354 1.01246i 0.398071 0.917355i $$-0.369680\pi$$
0.995467 0.0951096i $$-0.0303201\pi$$
$$390$$ −23.5976 13.1851i −1.19491 0.667651i
$$391$$ 2.64950 8.15434i 0.133991 0.412383i
$$392$$ −2.41686 3.32653i −0.122070 0.168015i
$$393$$ 1.84381 2.53779i 0.0930080 0.128015i
$$394$$ −7.36129 22.6557i −0.370856 1.14138i
$$395$$ 15.8685 + 3.14036i 0.798433 + 0.158009i
$$396$$ 1.97000 + 0.982264i 0.0989964 + 0.0493606i
$$397$$ 27.4961i 1.37999i 0.723814 + 0.689995i $$0.242387\pi$$
−0.723814 + 0.689995i $$0.757613\pi$$
$$398$$ 23.2858 7.56601i 1.16721 0.379250i
$$399$$ 18.9460 + 13.7651i 0.948487 + 0.689116i
$$400$$ 23.9633 5.80256i 1.19817 0.290128i
$$401$$ −0.583247 + 1.79505i −0.0291259 + 0.0896404i −0.964563 0.263853i $$-0.915006\pi$$
0.935437 + 0.353494i $$0.115006\pi$$
$$402$$ −2.02132 0.656768i −0.100815 0.0327566i
$$403$$ −1.49370 2.05591i −0.0744067 0.102412i
$$404$$ 5.90608 + 4.29102i 0.293839 + 0.213486i
$$405$$ −2.88565 24.1786i −0.143389 1.20145i
$$406$$ −0.699363 −0.0347088
$$407$$ 6.13420 + 6.02834i 0.304061 + 0.298814i
$$408$$ 9.17582i 0.454271i
$$409$$ −4.18949 12.8939i −0.207157 0.637563i −0.999618 0.0276408i $$-0.991201\pi$$
0.792461 0.609923i $$-0.208799\pi$$
$$410$$ 21.4870 19.9013i 1.06117 0.982855i
$$411$$ −29.8788 + 21.7082i −1.47381 + 1.07079i
$$412$$ 7.18454 + 2.33440i 0.353957 + 0.115008i
$$413$$ −0.733187 0.238227i −0.0360778 0.0117224i
$$414$$ −4.64210 + 3.37269i −0.228147 + 0.165758i
$$415$$ −5.21954 + 4.83435i −0.256217 + 0.237309i
$$416$$ 4.55219 + 14.0102i 0.223189 + 0.686906i
$$417$$ 22.9616i 1.12444i
$$418$$ 28.6934 + 4.28893i 1.40344 + 0.209779i
$$419$$ 22.1368 1.08145 0.540727 0.841198i $$-0.318149\pi$$
0.540727 + 0.841198i $$0.318149\pi$$
$$420$$ −0.865834 7.25475i −0.0422484 0.353996i
$$421$$ −14.4835 10.5229i −0.705881 0.512853i 0.175961 0.984397i $$-0.443697\pi$$
−0.881842 + 0.471544i $$0.843697\pi$$
$$422$$ 6.58552 + 9.06419i 0.320578 + 0.441238i
$$423$$ 10.2803 + 3.34026i 0.499843 + 0.162409i
$$424$$ 8.16902 25.1417i 0.396723 1.22099i
$$425$$ 2.61772 + 10.8106i 0.126978 + 0.524392i
$$426$$ 12.2856 + 8.92599i 0.595238 + 0.432466i
$$427$$ 3.69780 1.20149i 0.178949 0.0581440i
$$428$$ 7.41093i 0.358221i
$$429$$ 3.58227 23.9658i 0.172954 1.15708i
$$430$$ 30.5364 + 6.04310i 1.47259 + 0.291424i
$$431$$ 10.3353 + 31.8087i 0.497833 + 1.53217i 0.812495 + 0.582968i $$0.198109\pi$$
−0.314662 + 0.949204i $$0.601891\pi$$
$$432$$ −12.0213 + 16.5459i −0.578376 + 0.796066i
$$433$$ −18.5102 25.4771i −0.889543 1.22435i −0.973685 0.227897i $$-0.926815\pi$$
0.0841428 0.996454i $$-0.473185\pi$$
$$434$$ 0.787747 2.42443i 0.0378130 0.116377i
$$435$$ −0.726401 0.405874i −0.0348283 0.0194602i
$$436$$ 5.25255 3.81620i 0.251552 0.182763i
$$437$$ −11.9769 + 16.4848i −0.572932 + 0.788574i
$$438$$ 27.5277 8.94431i 1.31533 0.427375i
$$439$$ −35.6208 −1.70009 −0.850045 0.526710i $$-0.823425\pi$$
−0.850045 + 0.526710i $$0.823425\pi$$
$$440$$ 8.73007 + 12.7956i 0.416190 + 0.610006i
$$441$$ −1.77134 −0.0843495
$$442$$ −12.9515 + 4.20821i −0.616041 + 0.200164i
$$443$$ 13.8056 19.0018i 0.655926 0.902805i −0.343412 0.939185i $$-0.611583\pi$$
0.999338 + 0.0363802i $$0.0115827\pi$$
$$444$$ −3.05599 + 2.22031i −0.145031 + 0.105371i
$$445$$ −10.8217 + 19.3679i −0.513000 + 0.918126i
$$446$$ 4.45709 13.7175i 0.211049 0.649543i
$$447$$ 6.86646 + 9.45086i 0.324772 + 0.447011i
$$448$$ 4.31705 5.94191i 0.203961 0.280729i
$$449$$ 9.70066 + 29.8555i 0.457802 + 1.40897i 0.867814 + 0.496890i $$0.165525\pi$$
−0.410011 + 0.912080i $$0.634475\pi$$
$$450$$ 2.83522 6.88277i 0.133653 0.324457i
$$451$$ 23.4958 + 11.7152i 1.10637 + 0.551649i
$$452$$ 0.170655i 0.00802692i
$$453$$ −23.9985 + 7.79760i −1.12755 + 0.366363i
$$454$$ −5.09658 3.70288i −0.239194 0.173785i
$$455$$ −16.8446 + 7.78540i −0.789687 + 0.364985i
$$456$$ 6.73861 20.7393i 0.315564 0.971207i
$$457$$ −37.1964 12.0859i −1.73998 0.565352i −0.745145 0.666903i $$-0.767620\pi$$
−0.994830 + 0.101550i $$0.967620\pi$$
$$458$$ −2.63915 3.63247i −0.123319 0.169734i
$$459$$ −7.46440 5.42320i −0.348408 0.253133i
$$460$$ 6.31230 0.753355i 0.294312 0.0351253i
$$461$$ −8.88399 −0.413769 −0.206884 0.978365i $$-0.566332\pi$$
−0.206884 + 0.978365i $$0.566332\pi$$
$$462$$ 21.5617 11.2237i 1.00314 0.522173i
$$463$$ 4.21081i 0.195693i 0.995202 + 0.0978464i $$0.0311954\pi$$
−0.995202 + 0.0978464i $$0.968805\pi$$
$$464$$ 0.287146 + 0.883744i 0.0133304 + 0.0410268i
$$465$$ 2.22522 2.06100i 0.103192 0.0955766i
$$466$$ −14.0696 + 10.2221i −0.651760 + 0.473531i
$$467$$ 6.39912 + 2.07920i 0.296116 + 0.0962139i 0.453307 0.891354i $$-0.350244\pi$$
−0.157191 + 0.987568i $$0.550244\pi$$
$$468$$ 2.33542 + 0.758822i 0.107955 + 0.0350766i
$$469$$ −1.18038 + 0.857597i −0.0545049 + 0.0396002i
$$470$$ −30.2017 32.6081i −1.39310 1.50410i
$$471$$ −8.75618 26.9487i −0.403463 1.24173i
$$472$$ 0.717854i 0.0330419i
$$473$$ 4.60503 + 27.5224i 0.211740 + 1.26548i
$$474$$ −23.6376 −1.08571
$$475$$ 2.02258 26.3567i 0.0928025 1.20933i
$$476$$ −2.97782 2.16352i −0.136488 0.0991646i
$$477$$ −6.69383 9.21327i −0.306490 0.421847i
$$478$$ −31.5343 10.2461i −1.44235 0.468647i
$$479$$ −6.43046 + 19.7909i −0.293815 + 0.904270i 0.689802 + 0.723998i $$0.257698\pi$$
−0.983617 + 0.180272i $$0.942302\pi$$
$$480$$ −15.9599 + 7.37648i −0.728464 + 0.336689i
$$481$$ 7.76176 + 5.63925i 0.353906 + 0.257128i
$$482$$ −44.7611 + 14.5437i −2.03881 + 0.662450i
$$483$$ 17.0723i 0.776818i
$$484$$ 4.65433 6.64642i 0.211560 0.302110i
$$485$$ −0.984576 + 4.97516i −0.0447073 + 0.225910i
$$486$$ 4.63361 + 14.2608i 0.210185 + 0.646882i
$$487$$ 9.27489 12.7658i 0.420285 0.578473i −0.545404 0.838173i $$-0.683624\pi$$
0.965689 + 0.259700i $$0.0836237\pi$$
$$488$$ −2.12806 2.92902i −0.0963326 0.132590i
$$489$$ −2.21345 + 6.81230i −0.100096 + 0.308063i
$$490$$ 6.35822 + 3.55263i 0.287235 + 0.160491i
$$491$$ −15.6386 + 11.3621i −0.705759 + 0.512764i −0.881803 0.471618i $$-0.843670\pi$$
0.176044 + 0.984382i $$0.443670\pi$$
$$492$$ −6.77784 + 9.32890i −0.305569 + 0.420579i
$$493$$ −0.398685 + 0.129541i −0.0179559 + 0.00583422i
$$494$$ 32.3637 1.45611
$$495$$ 6.67008 + 0.197429i 0.299798 + 0.00887376i
$$496$$ −3.38705 −0.152083
$$497$$ 9.91469 3.22148i 0.444734 0.144503i
$$498$$ 6.11055 8.41045i 0.273820 0.376881i
$$499$$ −33.5416 + 24.3694i −1.50153 + 1.09092i −0.531758 + 0.846896i $$0.678468\pi$$
−0.969769 + 0.244026i $$0.921532\pi$$
$$500$$ −6.46159 + 5.12464i −0.288971 + 0.229181i
$$501$$ 2.33156 7.17579i 0.104166 0.320591i
$$502$$ 23.1824 + 31.9078i 1.03468 + 1.42412i
$$503$$ −19.1978 + 26.4236i −0.855990 + 1.17817i 0.126521 + 0.991964i $$0.459619\pi$$
−0.982511 + 0.186205i $$0.940381\pi$$
$$504$$ −1.30268 4.00923i −0.0580259 0.178585i
$$505$$ 21.7090 + 4.29618i 0.966039 + 0.191178i
$$506$$ 9.76563 + 18.7606i 0.434135 + 0.834012i
$$507$$ 1.35905i 0.0603576i
$$508$$ −1.70498 + 0.553981i −0.0756462 + 0.0245789i
$$509$$ 13.4662 + 9.78379i 0.596881 + 0.433659i 0.844770 0.535129i $$-0.179737\pi$$
−0.247890 + 0.968788i $$0.579737\pi$$
$$510$$ −6.81908 14.7539i −0.301954 0.653312i
$$511$$ 6.14019 18.8975i 0.271626 0.835978i
$$512$$ −0.917749 0.298195i −0.0405592 0.0131785i
$$513$$ 12.8884 + 17.7393i 0.569036 + 0.783211i
$$514$$ −33.0313 23.9987i −1.45695 1.05854i
$$515$$ 22.7385 2.71377i 1.00198 0.119583i
$$516$$ −12.2561 −0.539543
$$517$$ 17.7788 35.6566i 0.781909 1.56818i
$$518$$ 9.62412i 0.422860i
$$519$$ 1.28587 + 3.95750i 0.0564434 + 0.173715i
$$520$$ 11.7417 + 12.6772i 0.514906 + 0.555933i
$$521$$ −11.3717 + 8.26206i −0.498205 + 0.361967i −0.808331 0.588728i $$-0.799629\pi$$
0.310126 + 0.950696i $$0.399629\pi$$
$$522$$ 0.266812 + 0.0866924i 0.0116780 + 0.00379442i
$$523$$ −14.9009 4.84159i −0.651570 0.211708i −0.0354635 0.999371i $$-0.511291\pi$$
−0.616106 + 0.787663i $$0.711291\pi$$
$$524$$ 0.947937 0.688717i 0.0414108 0.0300867i
$$525$$ −11.6091 18.8616i −0.506663 0.823189i
$$526$$ −2.78194 8.56194i −0.121298 0.373318i
$$527$$ 1.52801i 0.0665611i
$$528$$ −23.0356 22.6380i −1.00249 0.985193i
$$529$$ 8.14550 0.354152
$$530$$ 5.54920 + 46.4963i 0.241042 + 2.01967i
$$531$$ 0.250186 + 0.181770i 0.0108571 + 0.00788817i
$$532$$ 5.14166 + 7.07689i 0.222919 + 0.306822i
$$533$$ 27.8540 + 9.05031i 1.20649 + 0.392012i
$$534$$ 10.0182 30.8327i 0.433528 1.33426i
$$535$$ −9.42523 20.3926i −0.407488 0.881647i
$$536$$ 1.09913 + 0.798567i 0.0474753 + 0.0344928i
$$537$$ 9.43570 3.06584i 0.407180 0.132301i
$$538$$ 11.0949i 0.478336i
$$539$$ −0.965221 + 6.45743i −0.0415750 + 0.278141i
$$540$$ 1.32805 6.71075i 0.0571501 0.288785i
$$541$$ −12.2489 37.6983i −0.526623 1.62078i −0.761084 0.648653i $$-0.775333\pi$$
0.234461 0.972125i $$-0.424667\pi$$
$$542$$ −4.92088 + 6.77301i −0.211370 + 0.290926i
$$543$$ 18.1630 + 24.9992i 0.779448 + 1.07282i
$$544$$ −2.73716 + 8.42412i −0.117355 + 0.361181i
$$545$$ 9.59993 17.1812i 0.411216 0.735962i
$$546$$ 21.9373 15.9384i 0.938830 0.682100i
$$547$$ 24.1970 33.3043i 1.03459 1.42399i 0.133145 0.991097i $$-0.457492\pi$$
0.901445 0.432895i $$-0.142508\pi$$
$$548$$ −13.1201 + 4.26297i −0.560462 + 0.182105i
$$549$$ −1.55967 −0.0665651
$$550$$ −23.5463 14.0863i −1.00402 0.600642i
$$551$$ 0.996247 0.0424415
$$552$$ 15.1191 4.91251i 0.643513 0.209090i
$$553$$ −9.53798 + 13.1279i −0.405596 + 0.558255i
$$554$$ 14.3144 10.4000i 0.608161 0.441855i
$$555$$ −5.58534 + 9.99621i −0.237085 + 0.424315i
$$556$$ 2.65039 8.15705i 0.112401 0.345936i
$$557$$ −17.5606 24.1702i −0.744069 1.02412i −0.998374 0.0569987i $$-0.981847\pi$$
0.254306 0.967124i $$-0.418153\pi$$
$$558$$ −0.601062 + 0.827291i −0.0254450 + 0.0350220i
$$559$$ 9.61926 + 29.6050i 0.406851 + 1.25216i
$$560$$ −4.80152 + 24.2625i −0.202901 + 1.02528i
$$561$$ 10.2127 10.3921i 0.431182 0.438754i
$$562$$ 22.7004i 0.957558i
$$563$$ 2.05218 0.666795i 0.0864892 0.0281021i −0.265453 0.964124i $$-0.585521\pi$$
0.351942 + 0.936022i $$0.385521\pi$$
$$564$$ 14.1573 + 10.2859i 0.596130 + 0.433114i
$$565$$ 0.217039 + 0.469588i 0.00913090 + 0.0197557i
$$566$$ 11.2328 34.5709i 0.472148 1.45312i
$$567$$ 23.2310 + 7.54820i 0.975610 + 0.316995i
$$568$$ −5.70583 7.85341i −0.239411 0.329522i
$$569$$ 0.580298 + 0.421611i 0.0243274 + 0.0176749i 0.599882 0.800088i $$-0.295214\pi$$
−0.575555 + 0.817763i $$0.695214\pi$$
$$570$$ 4.57753 + 38.3547i 0.191731 + 1.60650i
$$571$$ −21.6311 −0.905235 −0.452617 0.891705i $$-0.649510\pi$$
−0.452617 + 0.891705i $$0.649510\pi$$
$$572$$ 4.03888 8.10029i 0.168874 0.338690i
$$573$$ 6.15315i 0.257051i
$$574$$ 9.07866 + 27.9413i 0.378936 + 1.16625i
$$575$$ 16.4114 10.1010i 0.684401 0.421240i
$$576$$ −2.38354 + 1.73174i −0.0993141 + 0.0721559i
$$577$$ 22.2810 + 7.23952i 0.927568 + 0.301385i 0.733568 0.679616i $$-0.237854\pi$$
0.194000 + 0.981001i $$0.437854\pi$$
$$578$$ 18.9637 + 6.16167i 0.788784 + 0.256291i
$$579$$ 15.3954 11.1854i 0.639812 0.464851i
$$580$$ −0.211203 0.228032i −0.00876973 0.00946850i
$$581$$ −2.20536 6.78739i −0.0914936 0.281588i
$$582$$ 7.41093i 0.307193i
$$583$$ −37.2346 + 19.3820i −1.54210 + 0.802722i
$$584$$ −18.5023 −0.765633
$$585$$ 7.39140 0.882143i 0.305597 0.0364721i
$$586$$ 18.7911 + 13.6525i 0.776253 + 0.563981i
$$587$$ 1.32095 + 1.81814i 0.0545216 + 0.0750425i 0.835407 0.549632i $$-0.185232\pi$$
−0.780886 + 0.624674i $$0.785232\pi$$
$$588$$ −2.72730 0.886154i −0.112472 0.0365444i
$$589$$ −1.12215 + 3.45362i −0.0462374 + 0.142304i
$$590$$ −0.533479 1.15424i −0.0219630 0.0475194i
$$591$$ 23.0018 + 16.7118i 0.946167 + 0.687431i
$$592$$ 12.1615 3.95149i 0.499833 0.162405i
$$593$$ 25.4034i 1.04319i −0.853193 0.521596i $$-0.825337\pi$$
0.853193 0.521596i $$-0.174663\pi$$
$$594$$ 22.4477 3.75594i 0.921042 0.154108i
$$595$$ −10.9456 2.16612i −0.448726 0.0888022i
$$596$$ 1.34841 + 4.14996i 0.0552328 + 0.169989i
$$597$$ −17.1765 + 23.6415i −0.702988 + 0.967580i
$$598$$ 13.8678 + 19.0875i 0.567098 + 0.780544i
$$599$$ 5.63194 17.3333i 0.230115 0.708220i −0.767617 0.640909i $$-0.778558\pi$$
0.997732 0.0673118i $$-0.0214422\pi$$
$$600$$ −13.3633 + 15.7083i −0.545552 + 0.641289i
$$601$$ 28.0242 20.3608i 1.14313 0.830533i 0.155579 0.987824i $$-0.450276\pi$$
0.987552 + 0.157290i $$0.0502758\pi$$
$$602$$ −18.3542 + 25.2625i −0.748063 + 1.02962i
$$603$$ 0.556631 0.180860i 0.0226678 0.00736520i
$$604$$ −9.42547 −0.383517
$$605$$ 4.35432 24.2083i 0.177028 0.984206i
$$606$$ −32.3375 −1.31362
$$607$$ −24.2027 + 7.86394i −0.982358 + 0.319187i −0.755794 0.654809i $$-0.772749\pi$$
−0.226564 + 0.973996i $$0.572749\pi$$
$$608$$ 12.3731 17.0302i 0.501797 0.690664i
$$609$$ 0.675293 0.490629i 0.0273643 0.0198813i
$$610$$ 5.59844 + 3.12810i 0.226674 + 0.126653i
$$611$$ 13.7345 42.2705i 0.555639 1.71008i
$$612$$ 0.867874 + 1.19453i 0.0350817 + 0.0482858i
$$613$$ 21.7843 29.9835i 0.879859 1.21102i −0.0966016 0.995323i $$-0.530797\pi$$
0.976460 0.215698i $$-0.0692027\pi$$
$$614$$ −3.51234 10.8099i −0.141746 0.436251i
$$615$$ −6.78600 + 34.2903i −0.273638 + 1.38272i
$$616$$ −15.3255 + 2.56426i −0.617483 + 0.103317i
$$617$$ 27.5937i 1.11088i −0.831557 0.555439i $$-0.812550\pi$$
0.831557 0.555439i $$-0.187450\pi$$
$$618$$ −31.8246 + 10.3404i −1.28017 + 0.415953i
$$619$$ 16.5391 + 12.0164i 0.664764 + 0.482979i 0.868268 0.496095i $$-0.165233\pi$$
−0.203504 + 0.979074i $$0.565233\pi$$
$$620$$ 1.02840 0.475315i 0.0413014 0.0190891i
$$621$$ −4.93964 + 15.2026i −0.198221 + 0.610061i
$$622$$ −8.65728 2.81292i −0.347125 0.112788i
$$623$$ −13.0816 18.0052i −0.524101 0.721364i
$$624$$ −29.1475 21.1769i −1.16683 0.847754i
$$625$$ −11.2628 + 22.3193i −0.450510 + 0.892771i
$$626$$ −23.5480 −0.941167
$$627$$ −30.7148 + 15.9882i −1.22663 + 0.638507i
$$628$$ 10.5842i 0.422354i
$$629$$ 1.78265 + 5.48642i 0.0710787 + 0.218758i
$$630$$ 5.07408 + 5.47837i 0.202156 + 0.218264i
$$631$$ −0.614155 + 0.446210i −0.0244491 + 0.0177633i −0.599943 0.800043i $$-0.704810\pi$$
0.575494 + 0.817806i $$0.304810\pi$$
$$632$$ 14.3705 + 4.66926i 0.571627 + 0.185733i
$$633$$ −12.7177 4.13224i −0.505485 0.164242i
$$634$$ −25.0133 + 18.1733i −0.993407 + 0.721752i
$$635$$ −3.98701 + 3.69278i −0.158220 + 0.146543i
$$636$$ −5.69723 17.5343i −0.225910 0.695279i
$$637$$ 7.28342i 0.288579i
$$638$$ 0.461426 0.925425i 0.0182680 0.0366379i
$$639$$ −4.18186 −0.165432
$$640$$ 29.7100 3.54580i 1.17439 0.140160i
$$641$$ 12.0584 + 8.76094i 0.476278 + 0.346037i 0.799883 0.600156i $$-0.204895\pi$$
−0.323605 + 0.946192i $$0.604895\pi$$
$$642$$ 19.2955 + 26.5579i 0.761531 + 1.04816i
$$643$$ −26.2820 8.53955i −1.03646 0.336767i −0.259120 0.965845i $$-0.583432\pi$$
−0.777342 + 0.629078i $$0.783432\pi$$
$$644$$ −1.97060 + 6.06490i −0.0776527 + 0.238990i
$$645$$ −33.7249 + 15.5873i −1.32792 + 0.613749i
$$646$$ 15.7433 + 11.4382i 0.619411 + 0.450029i
$$647$$ −23.7560 + 7.71879i −0.933945 + 0.303457i −0.736175 0.676791i $$-0.763370\pi$$
−0.197770 + 0.980248i $$0.563370\pi$$
$$648$$ 22.7452i 0.893514i
$$649$$ 0.798974 0.813005i 0.0313625 0.0319132i
$$650$$ −28.3007 11.6579i −1.11004 0.457260i
$$651$$ 0.940197 + 2.89363i 0.0368492 + 0.113410i
$$652$$ −1.57264 + 2.16456i −0.0615895 + 0.0847706i
$$653$$ 16.3187 + 22.4607i 0.638599 + 0.878956i 0.998540 0.0540191i $$-0.0172032\pi$$
−0.359941 + 0.932975i $$0.617203\pi$$
$$654$$ −8.88708 + 27.3516i −0.347513 + 1.06953i
$$655$$ 1.73252 3.10072i 0.0676950 0.121155i
$$656$$ 31.5802 22.9444i 1.23300 0.895827i
$$657$$ −4.68505 + 6.44842i −0.182781 + 0.251577i
$$658$$ 42.4029 13.7775i 1.65304 0.537105i
$$659$$ 21.5863 0.840883 0.420442 0.907320i $$-0.361875\pi$$
0.420442 + 0.907320i $$0.361875\pi$$
$$660$$ 10.1710 + 3.64084i 0.395907 + 0.141720i
$$661$$ −16.0174 −0.623003 −0.311502 0.950246i $$-0.600832\pi$$
−0.311502 + 0.950246i $$0.600832\pi$$
$$662$$ −0.736837 + 0.239413i −0.0286380 + 0.00930504i
$$663$$ 9.55357 13.1494i 0.371030 0.510679i
$$664$$ −5.37628 + 3.90609i −0.208640 + 0.151586i
$$665$$ 23.1486 + 12.9342i 0.897665 + 0.501567i
$$666$$ 1.19300 3.67167i 0.0462277 0.142274i
$$667$$ 0.426892 + 0.587567i 0.0165293 + 0.0227507i
$$668$$ 1.65656 2.28005i 0.0640941 0.0882180i
$$669$$ 5.31966 + 16.3722i 0.205670 + 0.632986i
$$670$$ −2.36076 0.467191i −0.0912042 0.0180492i
$$671$$ −0.849880 + 5.68579i −0.0328093 + 0.219498i
$$672$$ 17.6372i 0.680368i
$$673$$ 29.8127 9.68673i 1.14920 0.373396i 0.328355 0.944554i $$-0.393506\pi$$
0.820840 + 0.571158i $$0.193506\pi$$
$$674$$ −45.6286 33.1511i −1.75755 1.27693i
$$675$$ −4.88038 20.1549i −0.187846 0.775763i
$$676$$ 0.156871 0.482799i 0.00603350 0.0185692i
$$677$$ −29.1654 9.47642i −1.12092 0.364209i −0.310801 0.950475i $$-0.600597\pi$$
−0.810118 + 0.586267i $$0.800597\pi$$
$$678$$ −0.444325 0.611561i −0.0170642 0.0234869i
$$679$$ −4.11590 2.99038i −0.157954 0.114760i
$$680$$ 1.23126 + 10.3166i 0.0472167 + 0.395625i
$$681$$ 7.51888 0.288124
$$682$$ 2.68837 + 2.64198i 0.102943 + 0.101166i
$$683$$ 3.27236i 0.125213i 0.998038 + 0.0626066i $$0.0199414\pi$$
−0.998038 + 0.0626066i $$0.980059\pi$$
$$684$$ −1.08433 3.33724i −0.0414606 0.127602i
$$685$$ −30.6807 + 28.4165i −1.17225 + 1.08574i
$$686$$ −26.9287 + 19.5648i −1.02814 + 0.746989i
$$687$$ 5.09664 + 1.65600i 0.194449 + 0.0631802i
$$688$$ 39.4586 + 12.8209i 1.50435 + 0.488792i
$$689$$ −37.8832 + 27.5238i −1.44324 + 1.04857i
$$690$$ −20.6594 + 19.1348i −0.786490 + 0.728448i
$$691$$ −11.2774 34.7084i −0.429014 1.32037i −0.899098 0.437748i $$-0.855776\pi$$
0.470083 0.882622i $$-0.344224\pi$$
$$692$$ 1.55431i 0.0590862i
$$693$$ −2.98694 + 5.99054i −0.113465 + 0.227562i
$$694$$ 5.94478 0.225661
$$695$$ −3.08111 25.8164i −0.116873 0.979272i
$$696$$ −0.628811 0.456858i −0.0238350 0.0173172i
$$697$$ 10.3509 + 14.2468i 0.392070 + 0.539638i
$$698$$ 10.0256 + 3.25750i 0.379473 + 0.123298i
$$699$$ 6.41413 19.7407i 0.242605 0.746660i
$$700$$ −1.94696 8.04054i −0.0735883 0.303904i
$$701$$ −37.6684 27.3677i −1.42272 1.03366i −0.991316 0.131502i $$-0.958020\pi$$
−0.431399 0.902161i $$-0.641980\pi$$
$$702$$ 24.1463 7.84562i 0.911345 0.296114i
$$703$$ 13.7096i 0.517068i
$$704$$ 5.01427 + 9.63285i 0.188982 + 0.363052i
$$705$$ 52.0381 + 10.2983i 1.95987 + 0.387855i
$$706$$ 6.23630 + 19.1933i 0.234706 + 0.722351i
$$707$$ −13.0485 + 17.9597i −0.490738 + 0.675443i
$$708$$ 0.294272 + 0.405030i 0.0110594 + 0.0152220i
$$709$$ 11.0000 33.8544i 0.413112 1.27143i −0.500817 0.865553i $$-0.666967\pi$$
0.913929 0.405874i $$-0.133033\pi$$
$$710$$ 15.0108 + 8.38721i 0.563344 + 0.314766i
$$711$$ 5.26613 3.82607i 0.197495 0.143489i
$$712$$ −12.1811 + 16.7659i −0.456507 + 0.628327i
$$713$$ −2.51772 + 0.818057i −0.0942894 + 0.0306365i
$$714$$ 16.3044 0.610178
$$715$$ 0.811789 27.4261i 0.0303592 1.02568i
$$716$$ 3.70588 0.138495
$$717$$ 37.6371 12.2290i 1.40558 0.456702i
$$718$$ −23.4526 + 32.2798i −0.875245 + 1.20467i
$$719$$ 17.8722 12.9849i 0.666522 0.484256i −0.202337 0.979316i $$-0.564854\pi$$
0.868859 + 0.495060i $$0.164854\pi$$
$$720$$ 4.83938 8.66114i 0.180353 0.322782i
$$721$$ −7.09862 + 21.8473i −0.264366 + 0.813636i
$$722$$ −8.70490 11.9813i −0.323963 0.445896i
$$723$$ 33.0176 45.4448i 1.22794 1.69011i
$$724$$ 3.56677 + 10.9774i 0.132558 + 0.407971i
$$725$$ −0.871176 0.358863i −0.0323547 0.0133278i
$$726$$ 0.625636 + 35.9365i 0.0232195 + 1.33373i
$$727$$ 45.5415i 1.68904i 0.535522 + 0.844521i $$0.320115\pi$$
−0.535522 + 0.844521i $$0.679885\pi$$
$$728$$ −16.4852 + 5.35637i −0.610982 + 0.198520i
$$729$$ 11.9514 + 8.68317i 0.442643 + 0.321599i
$$730$$ 29.7500 13.7502i 1.10110 0.508916i
$$731$$ −5.78391 + 17.8011i −0.213926 + 0.658396i
$$732$$ −2.40140 0.780262i −0.0887583 0.0288393i
$$733$$ 6.68835 + 9.20572i 0.247040 + 0.340021i 0.914472 0.404650i $$-0.132607\pi$$
−0.667432 + 0.744671i $$0.732607\pi$$
$$734$$ 27.2936 + 19.8300i 1.00743 + 0.731938i
$$735$$ −8.63170 + 1.03017i −0.318385 + 0.0379983i
$$736$$ 15.3459 0.565659
$$737$$ −0.356014 2.12776i −0.0131140 0.0783769i
$$738$$ 11.7852i 0.433818i
$$739$$ 1.34045 + 4.12547i 0.0493091 + 0.151758i 0.972679 0.232153i $$-0.0745770\pi$$
−0.923370 + 0.383911i $$0.874577\pi$$
$$740$$ −3.13801 + 2.90643i −0.115355 + 0.106842i
$$741$$ −31.2498 + 22.7043i −1.14799 + 0.834064i
$$742$$ −44.6740 14.5154i −1.64003 0.532879i
$$743$$ −16.4480 5.34429i −0.603420 0.196063i −0.00865478 0.999963i $$-0.502755\pi$$
−0.594765 + 0.803900i $$0.702755\pi$$
$$744$$ 2.29204 1.66526i 0.0840302 0.0610515i
$$745$$ 8.98832 + 9.70450i 0.329307 + 0.355545i
$$746$$ −3.84491 11.8334i −0.140772 0.433253i
$$747$$ 2.86281i 0.104745i
$$748$$ 4.82757 2.51293i 0.176513 0.0918819i
$$749$$ 22.5357 0.823437
$$750$$ 9.81310 35.1885i 0.358324 1.28490i
$$751$$ 25.4946 + 18.5229i 0.930310 + 0.675910i 0.946069 0.323966i $$-0.105016\pi$$
−0.0157586 + 0.999876i $$0.505016\pi$$
$$752$$ −34.8198 47.9253i −1.26975 1.74766i
$$753$$ −44.7691 14.5464i −1.63148 0.530099i
$$754$$ 0.356463 1.09708i 0.0129816 0.0399533i
$$755$$ −25.9359 + 11.9873i −0.943905 + 0.436263i
$$756$$ 5.55175 + 4.03358i 0.201915 + 0.146700i
$$757$$ −8.82332 + 2.86687i −0.320689 + 0.104198i −0.464938 0.885343i $$-0.653923\pi$$
0.144249 + 0.989541i $$0.453923\pi$$
$$758$$ 38.3718i 1.39373i
$$759$$ −22.5908 11.2640i −0.819995 0.408858i
$$760$$ 4.79350 24.2220i 0.173879 0.878626i
$$761$$ −1.28492 3.95459i −0.0465784 0.143354i 0.925062 0.379815i $$-0.124012\pi$$
−0.971641 + 0.236461i $$0.924012\pi$$
$$762$$ 4.66762 6.42442i 0.169090 0.232732i
$$763$$ 11.6046 + 15.9724i 0.420115 + 0.578239i
$$764$$ −0.710238 + 2.18589i −0.0256955 + 0.0790827i
$$765$$ 3.90732 + 2.18320i 0.141269 + 0.0789337i
$$766$$ 3.26667 2.37338i 0.118030 0.0857536i
$$767$$ 0.747406 1.02872i 0.0269873 0.0371448i
$$768$$ −29.2825 + 9.51446i −1.05664 + 0.343324i
$$769$$ −16.8800 −0.608709 −0.304355 0.952559i $$-0.598441\pi$$
−0.304355 + 0.952559i $$0.598441\pi$$
$$770$$ 22.7364 15.5124i 0.819362 0.559027i
$$771$$ 48.7305 1.75499
$$772$$ 6.76028 2.19655i 0.243308 0.0790555i
$$773$$ 4.98