Properties

Label 55.2.j.a.4.4
Level $55$
Weight $2$
Character 55.4
Analytic conductor $0.439$
Analytic rank $0$
Dimension $16$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 55.j (of order \(10\), degree \(4\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(0.439177211117\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Defining polynomial: \(x^{16} - 7 x^{14} + 25 x^{12} - 57 x^{10} + 194 x^{8} - 303 x^{6} + 235 x^{4} - 33 x^{2} + 121\)
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 4.4
Root \(-1.92464 - 0.625353i\) of defining polynomial
Character \(\chi\) \(=\) 55.4
Dual form 55.2.j.a.14.4

$q$-expansion

\(f(q)\) \(=\) \(q+(1.18949 - 1.63719i) q^{2} +(-2.49233 - 0.809808i) q^{3} +(-0.647481 - 1.99274i) q^{4} +(1.54147 + 1.61983i) q^{5} +(-4.29042 + 3.11717i) q^{6} +(0.918552 - 0.298456i) q^{7} +(-0.183406 - 0.0595923i) q^{8} +(3.12889 + 2.27327i) q^{9} +O(q^{10})\) \(q+(1.18949 - 1.63719i) q^{2} +(-2.49233 - 0.809808i) q^{3} +(-0.647481 - 1.99274i) q^{4} +(1.54147 + 1.61983i) q^{5} +(-4.29042 + 3.11717i) q^{6} +(0.918552 - 0.298456i) q^{7} +(-0.183406 - 0.0595923i) q^{8} +(3.12889 + 2.27327i) q^{9} +(4.48555 - 0.596911i) q^{10} +(-3.31118 - 0.189896i) q^{11} +5.49092i q^{12} +(-2.65978 + 3.66088i) q^{13} +(0.603980 - 1.85886i) q^{14} +(-2.53011 - 5.28546i) q^{15} +(3.07453 - 2.23378i) q^{16} +(-1.96126 - 2.69944i) q^{17} +(7.44357 - 2.41856i) q^{18} +(-1.01283 + 3.11717i) q^{19} +(2.22984 - 4.12057i) q^{20} -2.53103 q^{21} +(-4.24952 + 5.19517i) q^{22} -3.36643i q^{23} +(0.408851 + 0.297048i) q^{24} +(-0.247725 + 4.99386i) q^{25} +(2.82978 + 8.70916i) q^{26} +(-1.33628 - 1.83923i) q^{27} +(-1.18949 - 1.63719i) q^{28} +(-1.51820 - 4.67254i) q^{29} +(-11.6629 - 2.14473i) q^{30} +(0.338464 + 0.245909i) q^{31} -8.07636i q^{32} +(8.09880 + 3.15471i) q^{33} -6.75241 q^{34} +(1.89937 + 1.02784i) q^{35} +(2.50415 - 7.70697i) q^{36} +(6.02737 - 1.95841i) q^{37} +(3.89867 + 5.36605i) q^{38} +(9.59368 - 6.97021i) q^{39} +(-0.186186 - 0.388948i) q^{40} +(1.78786 - 5.50247i) q^{41} +(-3.01064 + 4.14379i) q^{42} -2.26205i q^{43} +(1.76552 + 6.72129i) q^{44} +(1.14077 + 8.57246i) q^{45} +(-5.51149 - 4.00433i) q^{46} +(-4.11260 - 1.33626i) q^{47} +(-9.47169 + 3.07754i) q^{48} +(-4.90846 + 3.56620i) q^{49} +(7.88125 + 6.34573i) q^{50} +(2.70208 + 8.31615i) q^{51} +(9.01735 + 2.92991i) q^{52} +(-1.56392 + 2.15255i) q^{53} -4.60066 q^{54} +(-4.79650 - 5.65629i) q^{55} -0.186254 q^{56} +(5.04863 - 6.94884i) q^{57} +(-9.45574 - 3.07235i) q^{58} +(3.12889 + 9.62972i) q^{59} +(-8.89437 + 8.46410i) q^{60} +(1.99897 - 1.45233i) q^{61} +(0.805201 - 0.261626i) q^{62} +(3.55252 + 1.15428i) q^{63} +(-7.07350 - 5.13920i) q^{64} +(-10.0300 + 1.33473i) q^{65} +(14.7983 - 9.50680i) q^{66} +9.60059i q^{67} +(-4.10941 + 5.65612i) q^{68} +(-2.72616 + 8.39026i) q^{69} +(3.94206 - 1.88703i) q^{70} +(4.41166 - 3.20526i) q^{71} +(-0.438388 - 0.603390i) q^{72} +(-1.36528 + 0.443607i) q^{73} +(3.96321 - 12.1975i) q^{74} +(4.66148 - 12.2458i) q^{75} +6.86752 q^{76} +(-3.09817 + 0.813812i) q^{77} -23.9977i q^{78} +(0.812218 + 0.590111i) q^{79} +(8.35766 + 1.53692i) q^{80} +(-1.74436 - 5.36858i) q^{81} +(-6.88197 - 9.47221i) q^{82} +(-4.34692 - 5.98302i) q^{83} +(1.63880 + 5.04369i) q^{84} +(1.34942 - 7.33802i) q^{85} +(-3.70342 - 2.69069i) q^{86} +12.8750i q^{87} +(0.595976 + 0.232149i) q^{88} +12.1964 q^{89} +(15.3917 + 8.32920i) q^{90} +(-1.35054 + 4.15654i) q^{91} +(-6.70842 + 2.17970i) q^{92} +(-0.644427 - 0.886978i) q^{93} +(-7.07962 + 5.14365i) q^{94} +(-6.61056 + 3.16442i) q^{95} +(-6.54030 + 20.1290i) q^{96} +(1.77467 - 2.44262i) q^{97} +12.2781i q^{98} +(-9.92863 - 8.12138i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16q - 4q^{4} - 2q^{5} - 18q^{6} + 2q^{9} + O(q^{10}) \) \( 16q - 4q^{4} - 2q^{5} - 18q^{6} + 2q^{9} - 6q^{11} - 12q^{14} - 16q^{15} + 16q^{16} + 6q^{19} - 8q^{20} + 8q^{21} + 6q^{24} - 16q^{25} + 40q^{26} + 2q^{29} + 26q^{30} + 8q^{31} - 16q^{34} + 22q^{35} + 10q^{36} + 30q^{39} + 12q^{40} - 52q^{41} + 4q^{44} + 12q^{45} - 62q^{46} - 10q^{49} + 28q^{50} - 42q^{51} - 40q^{54} - 8q^{55} - 20q^{56} + 2q^{59} - 32q^{60} - 40q^{61} - 8q^{64} - 40q^{65} + 58q^{66} + 26q^{69} - 34q^{70} + 36q^{71} + 48q^{74} - 20q^{75} + 56q^{76} + 38q^{79} + 34q^{80} + 68q^{81} + 12q^{84} + 58q^{85} + 22q^{86} + 24q^{89} + 78q^{90} - 20q^{91} + 14q^{94} + 48q^{95} - 86q^{96} - 72q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/55\mathbb{Z}\right)^\times\).

\(n\) \(12\) \(46\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.18949 1.63719i 0.841097 1.15767i −0.144657 0.989482i \(-0.546208\pi\)
0.985755 0.168189i \(-0.0537920\pi\)
\(3\) −2.49233 0.809808i −1.43895 0.467543i −0.517380 0.855756i \(-0.673093\pi\)
−0.921570 + 0.388213i \(0.873093\pi\)
\(4\) −0.647481 1.99274i −0.323741 0.996371i
\(5\) 1.54147 + 1.61983i 0.689367 + 0.724412i
\(6\) −4.29042 + 3.11717i −1.75156 + 1.27258i
\(7\) 0.918552 0.298456i 0.347180 0.112806i −0.130236 0.991483i \(-0.541573\pi\)
0.477416 + 0.878677i \(0.341573\pi\)
\(8\) −0.183406 0.0595923i −0.0648439 0.0210691i
\(9\) 3.12889 + 2.27327i 1.04296 + 0.757756i
\(10\) 4.48555 0.596911i 1.41846 0.188760i
\(11\) −3.31118 0.189896i −0.998360 0.0572559i
\(12\) 5.49092i 1.58509i
\(13\) −2.65978 + 3.66088i −0.737691 + 1.01534i 0.261057 + 0.965323i \(0.415929\pi\)
−0.998748 + 0.0500213i \(0.984071\pi\)
\(14\) 0.603980 1.85886i 0.161420 0.496801i
\(15\) −2.53011 5.28546i −0.653271 1.36470i
\(16\) 3.07453 2.23378i 0.768633 0.558445i
\(17\) −1.96126 2.69944i −0.475675 0.654710i 0.501992 0.864872i \(-0.332601\pi\)
−0.977667 + 0.210162i \(0.932601\pi\)
\(18\) 7.44357 2.41856i 1.75447 0.570060i
\(19\) −1.01283 + 3.11717i −0.232359 + 0.715129i 0.765101 + 0.643910i \(0.222689\pi\)
−0.997461 + 0.0712189i \(0.977311\pi\)
\(20\) 2.22984 4.12057i 0.498607 0.921388i
\(21\) −2.53103 −0.552316
\(22\) −4.24952 + 5.19517i −0.906001 + 1.10761i
\(23\) 3.36643i 0.701948i −0.936385 0.350974i \(-0.885851\pi\)
0.936385 0.350974i \(-0.114149\pi\)
\(24\) 0.408851 + 0.297048i 0.0834565 + 0.0606347i
\(25\) −0.247725 + 4.99386i −0.0495450 + 0.998772i
\(26\) 2.82978 + 8.70916i 0.554965 + 1.70801i
\(27\) −1.33628 1.83923i −0.257167 0.353959i
\(28\) −1.18949 1.63719i −0.224793 0.309401i
\(29\) −1.51820 4.67254i −0.281923 0.867668i −0.987304 0.158841i \(-0.949224\pi\)
0.705382 0.708828i \(-0.250776\pi\)
\(30\) −11.6629 2.14473i −2.12934 0.391573i
\(31\) 0.338464 + 0.245909i 0.0607900 + 0.0441665i 0.617765 0.786363i \(-0.288038\pi\)
−0.556975 + 0.830529i \(0.688038\pi\)
\(32\) 8.07636i 1.42771i
\(33\) 8.09880 + 3.15471i 1.40982 + 0.549164i
\(34\) −6.75241 −1.15803
\(35\) 1.89937 + 1.02784i 0.321052 + 0.173737i
\(36\) 2.50415 7.70697i 0.417358 1.28449i
\(37\) 6.02737 1.95841i 0.990894 0.321961i 0.231673 0.972794i \(-0.425580\pi\)
0.759221 + 0.650833i \(0.225580\pi\)
\(38\) 3.89867 + 5.36605i 0.632447 + 0.870489i
\(39\) 9.59368 6.97021i 1.53622 1.11613i
\(40\) −0.186186 0.388948i −0.0294386 0.0614980i
\(41\) 1.78786 5.50247i 0.279217 0.859341i −0.708856 0.705353i \(-0.750788\pi\)
0.988073 0.153988i \(-0.0492117\pi\)
\(42\) −3.01064 + 4.14379i −0.464552 + 0.639401i
\(43\) 2.26205i 0.344960i −0.985013 0.172480i \(-0.944822\pi\)
0.985013 0.172480i \(-0.0551780\pi\)
\(44\) 1.76552 + 6.72129i 0.266161 + 1.01327i
\(45\) 1.14077 + 8.57246i 0.170057 + 1.27791i
\(46\) −5.51149 4.00433i −0.812625 0.590407i
\(47\) −4.11260 1.33626i −0.599884 0.194914i −0.00669531 0.999978i \(-0.502131\pi\)
−0.593189 + 0.805063i \(0.702131\pi\)
\(48\) −9.47169 + 3.07754i −1.36712 + 0.444205i
\(49\) −4.90846 + 3.56620i −0.701208 + 0.509457i
\(50\) 7.88125 + 6.34573i 1.11458 + 0.897421i
\(51\) 2.70208 + 8.31615i 0.378367 + 1.16449i
\(52\) 9.01735 + 2.92991i 1.25048 + 0.406306i
\(53\) −1.56392 + 2.15255i −0.214821 + 0.295676i −0.902805 0.430050i \(-0.858496\pi\)
0.687984 + 0.725726i \(0.258496\pi\)
\(54\) −4.60066 −0.626071
\(55\) −4.79650 5.65629i −0.646760 0.762694i
\(56\) −0.186254 −0.0248892
\(57\) 5.04863 6.94884i 0.668707 0.920396i
\(58\) −9.45574 3.07235i −1.24160 0.403420i
\(59\) 3.12889 + 9.62972i 0.407346 + 1.25368i 0.918920 + 0.394444i \(0.129063\pi\)
−0.511574 + 0.859239i \(0.670937\pi\)
\(60\) −8.89437 + 8.46410i −1.14826 + 1.09271i
\(61\) 1.99897 1.45233i 0.255941 0.185952i −0.452414 0.891808i \(-0.649437\pi\)
0.708356 + 0.705856i \(0.249437\pi\)
\(62\) 0.805201 0.261626i 0.102261 0.0332265i
\(63\) 3.55252 + 1.15428i 0.447575 + 0.145426i
\(64\) −7.07350 5.13920i −0.884187 0.642400i
\(65\) −10.0300 + 1.33473i −1.24407 + 0.165553i
\(66\) 14.7983 9.50680i 1.82155 1.17021i
\(67\) 9.60059i 1.17290i 0.809986 + 0.586449i \(0.199475\pi\)
−0.809986 + 0.586449i \(0.800525\pi\)
\(68\) −4.10941 + 5.65612i −0.498339 + 0.685905i
\(69\) −2.72616 + 8.39026i −0.328191 + 1.01007i
\(70\) 3.94206 1.88703i 0.471166 0.225544i
\(71\) 4.41166 3.20526i 0.523567 0.380394i −0.294379 0.955689i \(-0.595113\pi\)
0.817946 + 0.575295i \(0.195113\pi\)
\(72\) −0.438388 0.603390i −0.0516646 0.0711102i
\(73\) −1.36528 + 0.443607i −0.159794 + 0.0519203i −0.387822 0.921734i \(-0.626772\pi\)
0.228028 + 0.973655i \(0.426772\pi\)
\(74\) 3.96321 12.1975i 0.460713 1.41793i
\(75\) 4.66148 12.2458i 0.538262 1.41402i
\(76\) 6.86752 0.787758
\(77\) −3.09817 + 0.813812i −0.353069 + 0.0927425i
\(78\) 23.9977i 2.71721i
\(79\) 0.812218 + 0.590111i 0.0913817 + 0.0663927i 0.632538 0.774529i \(-0.282013\pi\)
−0.541156 + 0.840922i \(0.682013\pi\)
\(80\) 8.35766 + 1.53692i 0.934415 + 0.171833i
\(81\) −1.74436 5.36858i −0.193818 0.596509i
\(82\) −6.88197 9.47221i −0.759986 1.04603i
\(83\) −4.34692 5.98302i −0.477136 0.656721i 0.500815 0.865554i \(-0.333034\pi\)
−0.977951 + 0.208833i \(0.933034\pi\)
\(84\) 1.63880 + 5.04369i 0.178807 + 0.550312i
\(85\) 1.34942 7.33802i 0.146365 0.795920i
\(86\) −3.70342 2.69069i −0.399350 0.290145i
\(87\) 12.8750i 1.38034i
\(88\) 0.595976 + 0.232149i 0.0635312 + 0.0247472i
\(89\) 12.1964 1.29282 0.646410 0.762991i \(-0.276270\pi\)
0.646410 + 0.762991i \(0.276270\pi\)
\(90\) 15.3917 + 8.32920i 1.62243 + 0.877974i
\(91\) −1.35054 + 4.15654i −0.141575 + 0.435723i
\(92\) −6.70842 + 2.17970i −0.699401 + 0.227249i
\(93\) −0.644427 0.886978i −0.0668240 0.0919754i
\(94\) −7.07962 + 5.14365i −0.730207 + 0.530527i
\(95\) −6.61056 + 3.16442i −0.678229 + 0.324663i
\(96\) −6.54030 + 20.1290i −0.667517 + 2.05440i
\(97\) 1.77467 2.44262i 0.180190 0.248010i −0.709362 0.704844i \(-0.751017\pi\)
0.889552 + 0.456834i \(0.151017\pi\)
\(98\) 12.2781i 1.24027i
\(99\) −9.92863 8.12138i −0.997865 0.816229i
\(100\) 10.1119 2.73978i 1.01119 0.273978i
\(101\) −12.2940 8.93210i −1.22330 0.888777i −0.226928 0.973912i \(-0.572868\pi\)
−0.996369 + 0.0851342i \(0.972868\pi\)
\(102\) 16.8292 + 5.46815i 1.66634 + 0.541428i
\(103\) 9.26987 3.01196i 0.913387 0.296778i 0.185636 0.982619i \(-0.440565\pi\)
0.727751 + 0.685841i \(0.240565\pi\)
\(104\) 0.705981 0.512925i 0.0692272 0.0502965i
\(105\) −3.90151 4.09985i −0.380749 0.400104i
\(106\) 1.66387 + 5.12088i 0.161610 + 0.497384i
\(107\) −7.26778 2.36144i −0.702602 0.228289i −0.0641384 0.997941i \(-0.520430\pi\)
−0.638464 + 0.769652i \(0.720430\pi\)
\(108\) −2.79989 + 3.85372i −0.269420 + 0.370825i
\(109\) 9.85576 0.944010 0.472005 0.881596i \(-0.343530\pi\)
0.472005 + 0.881596i \(0.343530\pi\)
\(110\) −14.9658 + 1.12469i −1.42694 + 0.107235i
\(111\) −16.6082 −1.57638
\(112\) 2.15743 2.96945i 0.203858 0.280587i
\(113\) 4.77298 + 1.55084i 0.449004 + 0.145890i 0.524786 0.851234i \(-0.324145\pi\)
−0.0757819 + 0.997124i \(0.524145\pi\)
\(114\) −5.37130 16.5312i −0.503068 1.54829i
\(115\) 5.45305 5.18925i 0.508500 0.483900i
\(116\) −8.32816 + 6.05076i −0.773250 + 0.561799i
\(117\) −16.6443 + 5.40807i −1.53877 + 0.499976i
\(118\) 19.4875 + 6.33188i 1.79397 + 0.582896i
\(119\) −2.60718 1.89423i −0.239000 0.173644i
\(120\) 0.149065 + 1.12016i 0.0136077 + 0.102256i
\(121\) 10.9279 + 1.25756i 0.993444 + 0.114324i
\(122\) 5.00023i 0.452700i
\(123\) −8.91189 + 12.2662i −0.803558 + 1.10600i
\(124\) 0.270884 0.833694i 0.0243261 0.0748679i
\(125\) −8.47108 + 7.29662i −0.757677 + 0.652630i
\(126\) 6.11547 4.44315i 0.544810 0.395827i
\(127\) 4.16764 + 5.73626i 0.369818 + 0.509011i 0.952851 0.303438i \(-0.0981344\pi\)
−0.583033 + 0.812448i \(0.698134\pi\)
\(128\) −1.46559 + 0.476198i −0.129541 + 0.0420903i
\(129\) −1.83183 + 5.63779i −0.161284 + 0.496380i
\(130\) −9.74537 + 18.0087i −0.854726 + 1.57947i
\(131\) 7.21704 0.630556 0.315278 0.948999i \(-0.397902\pi\)
0.315278 + 0.948999i \(0.397902\pi\)
\(132\) 1.04271 18.1814i 0.0907559 1.58249i
\(133\) 3.16557i 0.274490i
\(134\) 15.7180 + 11.4198i 1.35783 + 0.986521i
\(135\) 0.919409 4.99967i 0.0791301 0.430303i
\(136\) 0.198841 + 0.611970i 0.0170505 + 0.0524760i
\(137\) 4.99076 + 6.86920i 0.426390 + 0.586875i 0.967120 0.254321i \(-0.0818520\pi\)
−0.540730 + 0.841196i \(0.681852\pi\)
\(138\) 10.4937 + 14.4434i 0.893286 + 1.22950i
\(139\) −2.39184 7.36133i −0.202873 0.624380i −0.999794 0.0202958i \(-0.993539\pi\)
0.796921 0.604084i \(-0.206461\pi\)
\(140\) 0.818415 4.45047i 0.0691687 0.376133i
\(141\) 9.16785 + 6.66083i 0.772072 + 0.560943i
\(142\) 11.0354i 0.926067i
\(143\) 9.50222 11.6168i 0.794615 0.971442i
\(144\) 14.6978 1.22482
\(145\) 5.22847 9.66182i 0.434201 0.802370i
\(146\) −0.897720 + 2.76290i −0.0742958 + 0.228659i
\(147\) 15.1215 4.91326i 1.24720 0.405239i
\(148\) −7.80522 10.7430i −0.641585 0.883067i
\(149\) −13.6589 + 9.92376i −1.11898 + 0.812986i −0.984054 0.177870i \(-0.943079\pi\)
−0.134925 + 0.990856i \(0.543079\pi\)
\(150\) −14.5039 22.1980i −1.18424 1.81246i
\(151\) −3.79555 + 11.6815i −0.308877 + 0.950626i 0.669325 + 0.742970i \(0.266584\pi\)
−0.978202 + 0.207656i \(0.933416\pi\)
\(152\) 0.371519 0.511353i 0.0301342 0.0414762i
\(153\) 12.9047i 1.04328i
\(154\) −2.35288 + 6.04033i −0.189600 + 0.486744i
\(155\) 0.123402 + 0.927318i 0.00991190 + 0.0744840i
\(156\) −20.1016 14.6046i −1.60941 1.16931i
\(157\) −4.00368 1.30087i −0.319528 0.103821i 0.144862 0.989452i \(-0.453726\pi\)
−0.464390 + 0.885631i \(0.653726\pi\)
\(158\) 1.93225 0.627827i 0.153722 0.0499472i
\(159\) 5.64096 4.09840i 0.447357 0.325024i
\(160\) 13.0824 12.4495i 1.03425 0.984218i
\(161\) −1.00473 3.09224i −0.0791837 0.243702i
\(162\) −10.8643 3.53003i −0.853581 0.277345i
\(163\) −9.74169 + 13.4083i −0.763028 + 1.05022i 0.233928 + 0.972254i \(0.424842\pi\)
−0.996956 + 0.0779643i \(0.975158\pi\)
\(164\) −12.1226 −0.946617
\(165\) 7.37397 + 17.9816i 0.574062 + 1.39987i
\(166\) −14.9660 −1.16159
\(167\) −5.38810 + 7.41608i −0.416944 + 0.573874i −0.964895 0.262637i \(-0.915408\pi\)
0.547951 + 0.836510i \(0.315408\pi\)
\(168\) 0.464207 + 0.150830i 0.0358144 + 0.0116368i
\(169\) −2.31036 7.11055i −0.177720 0.546965i
\(170\) −10.4086 10.9378i −0.798307 0.838889i
\(171\) −10.2552 + 7.45085i −0.784236 + 0.569781i
\(172\) −4.50769 + 1.46464i −0.343708 + 0.111678i
\(173\) −3.90853 1.26996i −0.297160 0.0965531i 0.156643 0.987655i \(-0.449933\pi\)
−0.453803 + 0.891102i \(0.649933\pi\)
\(174\) 21.0788 + 15.3147i 1.59798 + 1.16100i
\(175\) 1.26290 + 4.66106i 0.0954661 + 0.352343i
\(176\) −10.6045 + 6.81261i −0.799346 + 0.513520i
\(177\) 26.5343i 1.99444i
\(178\) 14.5075 19.9679i 1.08739 1.49666i
\(179\) 5.03576 15.4985i 0.376390 1.15841i −0.566145 0.824305i \(-0.691566\pi\)
0.942536 0.334105i \(-0.108434\pi\)
\(180\) 16.3441 7.82378i 1.21822 0.583150i
\(181\) 4.48753 3.26038i 0.333555 0.242342i −0.408382 0.912811i \(-0.633907\pi\)
0.741938 + 0.670469i \(0.233907\pi\)
\(182\) 5.19860 + 7.15526i 0.385346 + 0.530383i
\(183\) −6.15820 + 2.00092i −0.455227 + 0.147912i
\(184\) −0.200613 + 0.617424i −0.0147894 + 0.0455171i
\(185\) 12.4633 + 6.74451i 0.916322 + 0.495866i
\(186\) −2.21870 −0.162683
\(187\) 5.98147 + 9.31078i 0.437408 + 0.680871i
\(188\) 9.06056i 0.660809i
\(189\) −1.77637 1.29061i −0.129212 0.0938779i
\(190\) −2.68243 + 14.5868i −0.194604 + 1.05824i
\(191\) 6.74155 + 20.7484i 0.487802 + 1.50130i 0.827882 + 0.560903i \(0.189546\pi\)
−0.340080 + 0.940396i \(0.610454\pi\)
\(192\) 13.4678 + 18.5368i 0.971951 + 1.33778i
\(193\) −13.2128 18.1858i −0.951076 1.30904i −0.951048 0.309044i \(-0.899991\pi\)
−2.83481e−5 1.00000i \(-0.500009\pi\)
\(194\) −1.88809 5.81094i −0.135557 0.417201i
\(195\) 26.0790 + 4.79577i 1.86755 + 0.343432i
\(196\) 10.2847 + 7.47224i 0.734619 + 0.533732i
\(197\) 25.7479i 1.83446i 0.398358 + 0.917230i \(0.369580\pi\)
−0.398358 + 0.917230i \(0.630420\pi\)
\(198\) −25.1063 + 6.59480i −1.78423 + 0.468672i
\(199\) −16.9671 −1.20277 −0.601385 0.798960i \(-0.705384\pi\)
−0.601385 + 0.798960i \(0.705384\pi\)
\(200\) 0.343030 0.901143i 0.0242559 0.0637204i
\(201\) 7.77463 23.9279i 0.548380 1.68774i
\(202\) −29.2472 + 9.50298i −2.05782 + 0.668627i
\(203\) −2.78909 3.83886i −0.195756 0.269435i
\(204\) 14.8224 10.7691i 1.03778 0.753988i
\(205\) 11.6690 5.58587i 0.815000 0.390134i
\(206\) 6.09526 18.7593i 0.424677 1.30702i
\(207\) 7.65279 10.5332i 0.531906 0.732106i
\(208\) 17.1969i 1.19239i
\(209\) 3.94561 10.1292i 0.272924 0.700652i
\(210\) −11.3531 + 1.51080i −0.783436 + 0.104255i
\(211\) 4.71363 + 3.42465i 0.324500 + 0.235763i 0.738093 0.674699i \(-0.235726\pi\)
−0.413593 + 0.910462i \(0.635726\pi\)
\(212\) 5.30209 + 1.72275i 0.364149 + 0.118319i
\(213\) −13.5910 + 4.41597i −0.931238 + 0.302577i
\(214\) −12.5111 + 9.08984i −0.855241 + 0.621369i
\(215\) 3.66415 3.48689i 0.249893 0.237804i
\(216\) 0.135478 + 0.416958i 0.00921810 + 0.0283704i
\(217\) 0.384290 + 0.124863i 0.0260873 + 0.00847628i
\(218\) 11.7233 16.1358i 0.794005 1.09285i
\(219\) 3.76197 0.254211
\(220\) −8.16589 + 13.2205i −0.550544 + 0.891328i
\(221\) 15.0988 1.01566
\(222\) −19.7553 + 27.1908i −1.32589 + 1.82493i
\(223\) 18.0913 + 5.87820i 1.21148 + 0.393634i 0.843972 0.536387i \(-0.180211\pi\)
0.367508 + 0.930020i \(0.380211\pi\)
\(224\) −2.41043 7.41856i −0.161054 0.495673i
\(225\) −12.1275 + 15.0621i −0.808499 + 1.00414i
\(226\) 8.21644 5.96959i 0.546549 0.397091i
\(227\) 27.0727 8.79646i 1.79688 0.583841i 0.797079 0.603874i \(-0.206377\pi\)
0.999799 + 0.0200332i \(0.00637719\pi\)
\(228\) −17.1161 5.56137i −1.13354 0.368311i
\(229\) −20.5420 14.9247i −1.35746 0.986250i −0.998602 0.0528558i \(-0.983168\pi\)
−0.358854 0.933394i \(-0.616832\pi\)
\(230\) −2.00946 15.1003i −0.132500 0.995682i
\(231\) 8.38071 + 0.480634i 0.551410 + 0.0316234i
\(232\) 0.947446i 0.0622029i
\(233\) 7.35755 10.1268i 0.482009 0.663429i −0.496880 0.867819i \(-0.665521\pi\)
0.978890 + 0.204390i \(0.0655211\pi\)
\(234\) −10.9442 + 33.6828i −0.715446 + 2.20192i
\(235\) −4.17493 8.72154i −0.272342 0.568931i
\(236\) 17.1637 12.4701i 1.11726 0.811737i
\(237\) −1.54644 2.12849i −0.100452 0.138261i
\(238\) −6.20244 + 2.01529i −0.402044 + 0.130632i
\(239\) −6.30011 + 19.3897i −0.407520 + 1.25422i 0.511252 + 0.859431i \(0.329182\pi\)
−0.918773 + 0.394787i \(0.870818\pi\)
\(240\) −19.5855 10.5986i −1.26424 0.684139i
\(241\) −22.7935 −1.46826 −0.734129 0.679010i \(-0.762409\pi\)
−0.734129 + 0.679010i \(0.762409\pi\)
\(242\) 15.0575 16.3952i 0.967932 1.05392i
\(243\) 21.6131i 1.38648i
\(244\) −4.18842 3.04307i −0.268136 0.194812i
\(245\) −13.3429 2.45368i −0.852447 0.156760i
\(246\) 9.48148 + 29.1810i 0.604517 + 1.86051i
\(247\) −8.71768 11.9989i −0.554693 0.763469i
\(248\) −0.0474222 0.0652711i −0.00301132 0.00414472i
\(249\) 5.98887 + 18.4318i 0.379529 + 1.16807i
\(250\) 1.86971 + 22.5481i 0.118251 + 1.42607i
\(251\) −13.7151 9.96460i −0.865689 0.628960i 0.0637374 0.997967i \(-0.479698\pi\)
−0.929427 + 0.369007i \(0.879698\pi\)
\(252\) 7.82663i 0.493031i
\(253\) −0.639272 + 11.1469i −0.0401907 + 0.700797i
\(254\) 14.3487 0.900320
\(255\) −9.30560 + 17.1960i −0.582739 + 1.07686i
\(256\) 4.44000 13.6649i 0.277500 0.854057i
\(257\) 4.50405 1.46346i 0.280955 0.0912879i −0.165150 0.986268i \(-0.552811\pi\)
0.446105 + 0.894981i \(0.352811\pi\)
\(258\) 7.05121 + 9.70516i 0.438989 + 0.604217i
\(259\) 4.95196 3.59781i 0.307700 0.223557i
\(260\) 9.15402 + 19.1230i 0.567708 + 1.18596i
\(261\) 5.87166 18.0711i 0.363447 1.11857i
\(262\) 8.58461 11.8157i 0.530359 0.729976i
\(263\) 18.1037i 1.11632i −0.829732 0.558162i \(-0.811507\pi\)
0.829732 0.558162i \(-0.188493\pi\)
\(264\) −1.29737 1.06122i −0.0798479 0.0653136i
\(265\) −5.89751 + 0.784807i −0.362281 + 0.0482103i
\(266\) 5.18266 + 3.76542i 0.317769 + 0.230873i
\(267\) −30.3976 9.87677i −1.86030 0.604449i
\(268\) 19.1315 6.21620i 1.16864 0.379715i
\(269\) −1.85914 + 1.35074i −0.113354 + 0.0823562i −0.643018 0.765851i \(-0.722318\pi\)
0.529664 + 0.848207i \(0.322318\pi\)
\(270\) −7.09179 7.45231i −0.431593 0.453533i
\(271\) 0.248971 + 0.766255i 0.0151239 + 0.0465467i 0.958334 0.285651i \(-0.0922098\pi\)
−0.943210 + 0.332198i \(0.892210\pi\)
\(272\) −12.0599 3.91850i −0.731239 0.237594i
\(273\) 6.73199 9.26579i 0.407439 0.560791i
\(274\) 17.1827 1.03804
\(275\) 1.76858 16.4885i 0.106649 0.994297i
\(276\) 18.4848 1.11265
\(277\) 6.95521 9.57302i 0.417898 0.575187i −0.547225 0.836986i \(-0.684316\pi\)
0.965122 + 0.261799i \(0.0843157\pi\)
\(278\) −14.8970 4.84033i −0.893462 0.290304i
\(279\) 0.500000 + 1.53884i 0.0299342 + 0.0921280i
\(280\) −0.287105 0.301701i −0.0171578 0.0180301i
\(281\) −5.03960 + 3.66148i −0.300637 + 0.218426i −0.727869 0.685717i \(-0.759489\pi\)
0.427231 + 0.904142i \(0.359489\pi\)
\(282\) 21.8101 7.08655i 1.29878 0.421998i
\(283\) −8.22250 2.67165i −0.488777 0.158813i 0.0542519 0.998527i \(-0.482723\pi\)
−0.543029 + 0.839714i \(0.682723\pi\)
\(284\) −9.24372 6.71596i −0.548514 0.398519i
\(285\) 19.0383 2.53351i 1.12773 0.150072i
\(286\) −7.71608 29.3750i −0.456261 1.73698i
\(287\) 5.58790i 0.329843i
\(288\) 18.3597 25.2700i 1.08186 1.48905i
\(289\) 1.81285 5.57937i 0.106638 0.328198i
\(290\) −9.59905 20.0527i −0.563676 1.17753i
\(291\) −6.40111 + 4.65068i −0.375240 + 0.272628i
\(292\) 1.76799 + 2.43343i 0.103464 + 0.142406i
\(293\) −5.52610 + 1.79554i −0.322838 + 0.104896i −0.465953 0.884810i \(-0.654288\pi\)
0.143115 + 0.989706i \(0.454288\pi\)
\(294\) 9.94288 30.6010i 0.579880 1.78469i
\(295\) −10.7755 + 19.9122i −0.627372 + 1.15933i
\(296\) −1.22216 −0.0710369
\(297\) 4.07540 + 6.34377i 0.236478 + 0.368103i
\(298\) 34.1665i 1.97921i
\(299\) 12.3241 + 8.95396i 0.712719 + 0.517821i
\(300\) −27.4209 1.36024i −1.58314 0.0785333i
\(301\) −0.675123 2.07781i −0.0389134 0.119763i
\(302\) 14.6101 + 20.1091i 0.840717 + 1.15715i
\(303\) 23.4074 + 32.2176i 1.34472 + 1.85085i
\(304\) 3.84909 + 11.8463i 0.220761 + 0.679432i
\(305\) 5.43389 + 0.999260i 0.311144 + 0.0572175i
\(306\) −21.1275 15.3500i −1.20778 0.877503i
\(307\) 18.4721i 1.05426i −0.849785 0.527130i \(-0.823268\pi\)
0.849785 0.527130i \(-0.176732\pi\)
\(308\) 3.62773 + 5.64693i 0.206709 + 0.321764i
\(309\) −25.5427 −1.45307
\(310\) 1.66499 + 0.901003i 0.0945648 + 0.0511735i
\(311\) −3.50158 + 10.7768i −0.198557 + 0.611094i 0.801360 + 0.598182i \(0.204110\pi\)
−0.999917 + 0.0129120i \(0.995890\pi\)
\(312\) −2.17491 + 0.706672i −0.123130 + 0.0400074i
\(313\) 3.00651 + 4.13811i 0.169938 + 0.233900i 0.885488 0.464661i \(-0.153824\pi\)
−0.715550 + 0.698561i \(0.753824\pi\)
\(314\) −6.89212 + 5.00742i −0.388945 + 0.282585i
\(315\) 3.60636 + 7.53378i 0.203195 + 0.424481i
\(316\) 0.650043 2.00063i 0.0365678 0.112544i
\(317\) −6.94368 + 9.55715i −0.389996 + 0.536783i −0.958198 0.286106i \(-0.907639\pi\)
0.568202 + 0.822889i \(0.307639\pi\)
\(318\) 14.1104i 0.791270i
\(319\) 4.13974 + 15.7599i 0.231781 + 0.882387i
\(320\) −2.57896 19.3798i −0.144168 1.08337i
\(321\) 16.2014 + 11.7710i 0.904274 + 0.656994i
\(322\) −6.25771 2.03325i −0.348729 0.113309i
\(323\) 10.4010 3.37951i 0.578730 0.188041i
\(324\) −9.56877 + 6.95212i −0.531598 + 0.386229i
\(325\) −17.6230 14.1895i −0.977549 0.787090i
\(326\) 10.3643 + 31.8981i 0.574026 + 1.76667i
\(327\) −24.5638 7.98127i −1.35838 0.441365i
\(328\) −0.655810 + 0.902645i −0.0362110 + 0.0498402i
\(329\) −4.17645 −0.230255
\(330\) 38.2106 + 9.31635i 2.10343 + 0.512848i
\(331\) 29.2692 1.60878 0.804391 0.594100i \(-0.202492\pi\)
0.804391 + 0.594100i \(0.202492\pi\)
\(332\) −9.10807 + 12.5362i −0.499870 + 0.688012i
\(333\) 23.3110 + 7.57419i 1.27743 + 0.415063i
\(334\) 5.73247 + 17.6427i 0.313667 + 0.965367i
\(335\) −15.5514 + 14.7990i −0.849661 + 0.808558i
\(336\) −7.78174 + 5.65376i −0.424529 + 0.308438i
\(337\) −25.3400 + 8.23348i −1.38036 + 0.448506i −0.902788 0.430087i \(-0.858483\pi\)
−0.477572 + 0.878593i \(0.658483\pi\)
\(338\) −14.3895 4.67543i −0.782685 0.254310i
\(339\) −10.6400 7.73040i −0.577885 0.419858i
\(340\) −15.4965 + 2.06219i −0.840417 + 0.111838i
\(341\) −1.07402 0.878523i −0.0581615 0.0475747i
\(342\) 25.6525i 1.38713i
\(343\) −7.41820 + 10.2103i −0.400545 + 0.551303i
\(344\) −0.134801 + 0.414875i −0.00726798 + 0.0223686i
\(345\) −17.7931 + 8.51742i −0.957949 + 0.458563i
\(346\) −6.72833 + 4.88842i −0.361717 + 0.262803i
\(347\) 2.53411 + 3.48790i 0.136038 + 0.187240i 0.871601 0.490216i \(-0.163082\pi\)
−0.735563 + 0.677457i \(0.763082\pi\)
\(348\) 25.6565 8.33631i 1.37533 0.446873i
\(349\) 4.06960 12.5249i 0.217841 0.670444i −0.781099 0.624407i \(-0.785341\pi\)
0.998940 0.0460373i \(-0.0146593\pi\)
\(350\) 9.13326 + 3.47668i 0.488193 + 0.185836i
\(351\) 10.2874 0.549100
\(352\) −1.53367 + 26.7423i −0.0817449 + 1.42537i
\(353\) 25.4904i 1.35672i 0.734732 + 0.678358i \(0.237308\pi\)
−0.734732 + 0.678358i \(0.762692\pi\)
\(354\) −43.4418 31.5623i −2.30890 1.67752i
\(355\) 11.9924 + 2.20534i 0.636492 + 0.117047i
\(356\) −7.89696 24.3044i −0.418538 1.28813i
\(357\) 4.96400 + 6.83237i 0.262723 + 0.361607i
\(358\) −19.3840 26.6798i −1.02448 1.41007i
\(359\) −8.11915 24.9882i −0.428512 1.31883i −0.899591 0.436734i \(-0.856135\pi\)
0.471078 0.882091i \(-0.343865\pi\)
\(360\) 0.301628 1.64022i 0.0158972 0.0864474i
\(361\) 6.68037 + 4.85358i 0.351599 + 0.255451i
\(362\) 11.2252i 0.589981i
\(363\) −26.2175 11.9838i −1.37606 0.628984i
\(364\) 9.15736 0.479976
\(365\) −2.82311 1.52772i −0.147769 0.0799646i
\(366\) −4.04923 + 12.4622i −0.211657 + 0.651412i
\(367\) 1.91993 0.623823i 0.100220 0.0325633i −0.258478 0.966017i \(-0.583221\pi\)
0.358698 + 0.933454i \(0.383221\pi\)
\(368\) −7.51985 10.3502i −0.391999 0.539541i
\(369\) 18.1026 13.1523i 0.942384 0.684682i
\(370\) 25.8671 12.3824i 1.34477 0.643729i
\(371\) −0.794101 + 2.44399i −0.0412277 + 0.126886i
\(372\) −1.35026 + 1.85848i −0.0700080 + 0.0963577i
\(373\) 8.87153i 0.459351i −0.973267 0.229675i \(-0.926234\pi\)
0.973267 0.229675i \(-0.0737664\pi\)
\(374\) 22.3585 + 1.28226i 1.15613 + 0.0663040i
\(375\) 27.0216 11.3257i 1.39539 0.584855i
\(376\) 0.674645 + 0.490159i 0.0347922 + 0.0252780i
\(377\) 21.1437 + 6.86999i 1.08895 + 0.353823i
\(378\) −4.22595 + 1.37309i −0.217359 + 0.0706243i
\(379\) 17.0412 12.3812i 0.875348 0.635978i −0.0566685 0.998393i \(-0.518048\pi\)
0.932017 + 0.362415i \(0.118048\pi\)
\(380\) 10.5861 + 11.1242i 0.543055 + 0.570661i
\(381\) −5.74187 17.6717i −0.294165 0.905346i
\(382\) 41.9881 + 13.6428i 2.14830 + 0.698025i
\(383\) 15.2704 21.0179i 0.780281 1.07396i −0.214970 0.976621i \(-0.568965\pi\)
0.995251 0.0973436i \(-0.0310346\pi\)
\(384\) 4.03836 0.206082
\(385\) −6.09399 3.76405i −0.310578 0.191834i
\(386\) −45.4902 −2.31539
\(387\) 5.14225 7.07771i 0.261396 0.359780i
\(388\) −6.01657 1.95490i −0.305445 0.0992451i
\(389\) 0.507965 + 1.56335i 0.0257548 + 0.0792652i 0.963108 0.269116i \(-0.0867315\pi\)
−0.937353 + 0.348381i \(0.886731\pi\)
\(390\) 38.8723 36.9918i 1.96838 1.87315i
\(391\) −9.08746 + 6.60243i −0.459573 + 0.333899i
\(392\) 1.11276 0.361558i 0.0562029 0.0182614i
\(393\) −17.9873 5.84442i −0.907338 0.294812i
\(394\) 42.1543 + 30.6269i 2.12370 + 1.54296i
\(395\) 0.296130 + 2.22530i 0.0148999 + 0.111967i
\(396\) −9.75521 + 25.0437i −0.490218 + 1.25849i
\(397\) 16.7088i 0.838588i −0.907850 0.419294i \(-0.862278\pi\)
0.907850 0.419294i \(-0.137722\pi\)
\(398\) −20.1823 + 27.7785i −1.01165 + 1.39241i
\(399\) 2.56351 7.88966i 0.128336 0.394977i
\(400\) 10.3935 + 15.9071i 0.519677 + 0.795357i
\(401\) −22.4842 + 16.3357i −1.12281 + 0.815766i −0.984632 0.174641i \(-0.944123\pi\)
−0.138174 + 0.990408i \(0.544123\pi\)
\(402\) −29.9267 41.1906i −1.49261 2.05440i
\(403\) −1.80048 + 0.585013i −0.0896885 + 0.0291416i
\(404\) −9.83926 + 30.2821i −0.489521 + 1.50659i
\(405\) 6.00733 11.1011i 0.298507 0.551618i
\(406\) −9.60255 −0.476567
\(407\) −20.3296 + 5.34009i −1.00770 + 0.264698i
\(408\) 1.68626i 0.0834822i
\(409\) 31.9019 + 23.1781i 1.57745 + 1.14608i 0.919547 + 0.392980i \(0.128556\pi\)
0.657902 + 0.753104i \(0.271444\pi\)
\(410\) 4.73505 25.7488i 0.233848 1.27164i
\(411\) −6.87591 21.1619i −0.339164 1.04384i
\(412\) −12.0041 16.5223i −0.591401 0.813994i
\(413\) 5.74809 + 7.91157i 0.282845 + 0.389303i
\(414\) −8.14191 25.0582i −0.400153 1.23154i
\(415\) 2.99084 16.2639i 0.146815 0.798365i
\(416\) 29.5665 + 21.4814i 1.44962 + 1.05321i
\(417\) 20.2838i 0.993303i
\(418\) −11.8902 18.5083i −0.581569 0.905272i
\(419\) −14.7812 −0.722111 −0.361055 0.932544i \(-0.617583\pi\)
−0.361055 + 0.932544i \(0.617583\pi\)
\(420\) −5.64379 + 10.4293i −0.275389 + 0.508897i
\(421\) −3.33036 + 10.2498i −0.162312 + 0.499545i −0.998828 0.0483974i \(-0.984589\pi\)
0.836516 + 0.547942i \(0.184589\pi\)
\(422\) 11.2136 3.64354i 0.545872 0.177365i
\(423\) −9.83016 13.5301i −0.477959 0.657854i
\(424\) 0.415108 0.301594i 0.0201594 0.0146467i
\(425\) 13.9665 9.12553i 0.677474 0.442653i
\(426\) −8.93653 + 27.5038i −0.432976 + 1.33256i
\(427\) 1.40270 1.93065i 0.0678813 0.0934306i
\(428\) 16.0118i 0.773960i
\(429\) −33.0900 + 21.2579i −1.59760 + 1.02634i
\(430\) −1.35025 10.1466i −0.0651146 0.489310i
\(431\) −26.0435 18.9217i −1.25447 0.911428i −0.256000 0.966677i \(-0.582405\pi\)
−0.998473 + 0.0552489i \(0.982405\pi\)
\(432\) −8.21685 2.66982i −0.395334 0.128452i
\(433\) −0.363904 + 0.118240i −0.0174881 + 0.00568223i −0.317748 0.948175i \(-0.602927\pi\)
0.300260 + 0.953857i \(0.402927\pi\)
\(434\) 0.661536 0.480634i 0.0317547 0.0230712i
\(435\) −20.8553 + 19.8464i −0.999936 + 0.951563i
\(436\) −6.38142 19.6400i −0.305615 0.940585i
\(437\) 10.4937 + 3.40962i 0.501983 + 0.163104i
\(438\) 4.47484 6.15908i 0.213816 0.294292i
\(439\) −26.5331 −1.26635 −0.633177 0.774007i \(-0.718249\pi\)
−0.633177 + 0.774007i \(0.718249\pi\)
\(440\) 0.542637 + 1.32323i 0.0258692 + 0.0630827i
\(441\) −23.4649 −1.11738
\(442\) 17.9599 24.7197i 0.854267 1.17580i
\(443\) −13.7913 4.48106i −0.655243 0.212901i −0.0375185 0.999296i \(-0.511945\pi\)
−0.617725 + 0.786395i \(0.711945\pi\)
\(444\) 10.7535 + 33.0958i 0.510337 + 1.57066i
\(445\) 18.8005 + 19.7562i 0.891228 + 0.936534i
\(446\) 31.1432 22.6268i 1.47467 1.07141i
\(447\) 42.0788 13.6722i 1.99026 0.646675i
\(448\) −8.03120 2.60950i −0.379439 0.123287i
\(449\) 8.18240 + 5.94486i 0.386151 + 0.280555i 0.763876 0.645362i \(-0.223294\pi\)
−0.377725 + 0.925918i \(0.623294\pi\)
\(450\) 10.2340 + 37.7713i 0.482435 + 1.78055i
\(451\) −6.96483 + 17.8802i −0.327961 + 0.841945i
\(452\) 10.5155i 0.494606i
\(453\) 18.9195 26.0405i 0.888917 1.22349i
\(454\) 17.8012 54.7866i 0.835454 2.57126i
\(455\) −8.81472 + 4.21953i −0.413240 + 0.197815i
\(456\) −1.34005 + 0.973602i −0.0627535 + 0.0455931i
\(457\) 22.9758 + 31.6235i 1.07476 + 1.47928i 0.865160 + 0.501496i \(0.167217\pi\)
0.209602 + 0.977787i \(0.432783\pi\)
\(458\) −48.8691 + 15.8785i −2.28351 + 0.741956i
\(459\) −2.34410 + 7.21440i −0.109413 + 0.336739i
\(460\) −13.8716 7.50658i −0.646766 0.349996i
\(461\) 39.1322 1.82257 0.911285 0.411776i \(-0.135092\pi\)
0.911285 + 0.411776i \(0.135092\pi\)
\(462\) 10.7557 13.1491i 0.500399 0.611753i
\(463\) 12.9189i 0.600392i −0.953878 0.300196i \(-0.902948\pi\)
0.953878 0.300196i \(-0.0970521\pi\)
\(464\) −15.1052 10.9745i −0.701240 0.509481i
\(465\) 0.443390 2.41112i 0.0205617 0.111813i
\(466\) −7.82780 24.0915i −0.362616 1.11602i
\(467\) −6.61206 9.10071i −0.305969 0.421131i 0.628150 0.778093i \(-0.283813\pi\)
−0.934119 + 0.356962i \(0.883813\pi\)
\(468\) 21.5538 + 29.6662i 0.996324 + 1.37132i
\(469\) 2.86535 + 8.81864i 0.132310 + 0.407207i
\(470\) −19.2449 3.53902i −0.887701 0.163243i
\(471\) 8.92504 + 6.48442i 0.411244 + 0.298786i
\(472\) 1.95261i 0.0898762i
\(473\) −0.429556 + 7.49007i −0.0197510 + 0.344394i
\(474\) −5.32424 −0.244550
\(475\) −15.3158 5.83014i −0.702738 0.267505i
\(476\) −2.08661 + 6.42192i −0.0956395 + 0.294348i
\(477\) −9.78665 + 3.17988i −0.448100 + 0.145597i
\(478\) 24.2508 + 33.3784i 1.10921 + 1.52669i
\(479\) 16.9621 12.3237i 0.775017 0.563083i −0.128462 0.991714i \(-0.541004\pi\)
0.903479 + 0.428632i \(0.141004\pi\)
\(480\) −42.6873 + 20.4341i −1.94840 + 0.932683i
\(481\) −8.86200 + 27.2744i −0.404072 + 1.24361i
\(482\) −27.1126 + 37.3174i −1.23495 + 1.69976i
\(483\) 8.52053i 0.387697i
\(484\) −4.56960 22.5907i −0.207709 1.02685i
\(485\) 6.69223 0.890564i 0.303879 0.0404384i
\(486\) 35.3849 + 25.7086i 1.60509 + 1.16617i
\(487\) −21.4645 6.97424i −0.972649 0.316033i −0.220764 0.975327i \(-0.570855\pi\)
−0.751885 + 0.659294i \(0.770855\pi\)
\(488\) −0.453171 + 0.147244i −0.0205141 + 0.00666543i
\(489\) 35.1377 25.5290i 1.58898 1.15446i
\(490\) −19.8884 + 18.9263i −0.898467 + 0.855003i
\(491\) −6.20389 19.0936i −0.279977 0.861682i −0.987859 0.155351i \(-0.950349\pi\)
0.707882 0.706331i \(-0.249651\pi\)
\(492\) 30.2136 + 9.81699i 1.36213 + 0.442584i
\(493\) −9.63565 + 13.2623i −0.433968 + 0.597306i
\(494\) −30.0141 −1.35040
\(495\) −2.14943 28.6016i −0.0966098 1.28555i
\(496\) 1.58993 0.0713898
\(497\) 3.09571 4.26088i 0.138862 0.191127i
\(498\) 37.3002 + 12.1196i 1.67146 + 0.543091i
\(499\) −1.43750 4.42417i −0.0643513 0.198053i 0.913711 0.406364i \(-0.133203\pi\)
−0.978063 + 0.208311i \(0.933203\pi\)
\(500\) 20.0252 + 12.1563i 0.895553 + 0.543645i
\(501\) 19.4346 14.1200i 0.868272 0.630836i
\(502\) −32.6280 + 10.6015i −1.45626 + 0.473167i
\(503\) 12.3611 + 4.01636i 0.551154 + 0.179081i 0.571337 0.820716i \(-0.306425\pi\)
−0.0201833 + 0.999796i \(0.506425\pi\)
\(504\) −0.582768 0.423406i −0.0259585 0.0188600i
\(505\) −4.48232 33.6828i −0.199460 1.49887i
\(506\) 17.4892 + 14.3057i 0.777488 + 0.635966i
\(507\) 19.5928i 0.870147i
\(508\) 8.73242 12.0191i 0.387439 0.533263i
\(509\) −9.12976 + 28.0985i −0.404669 + 1.24544i 0.516501 + 0.856286i \(0.327234\pi\)
−0.921171 + 0.389158i \(0.872766\pi\)
\(510\) 17.0843 + 35.6896i 0.756506 + 1.58036i
\(511\) −1.12169 + 0.814952i −0.0496205 + 0.0360514i
\(512\) −18.9023 26.0168i −0.835373 1.14979i
\(513\) 7.08662 2.30258i 0.312882 0.101661i
\(514\) 2.96157 9.11478i 0.130629 0.402036i
\(515\) 19.1681 + 10.3728i 0.844649 + 0.457080i
\(516\) 12.4207 0.546793
\(517\) 13.3638 + 5.20558i 0.587740 + 0.228941i
\(518\) 12.3869i 0.544248i
\(519\) 8.71293 + 6.33032i 0.382455 + 0.277870i
\(520\) 1.91910 + 0.352912i 0.0841583 + 0.0154762i
\(521\) −9.71896 29.9119i −0.425796 1.31046i −0.902230 0.431254i \(-0.858071\pi\)
0.476435 0.879210i \(-0.341929\pi\)
\(522\) −22.6016 31.1085i −0.989247 1.36158i
\(523\) −5.30194 7.29750i −0.231838 0.319097i 0.677210 0.735790i \(-0.263189\pi\)
−0.909047 + 0.416693i \(0.863189\pi\)
\(524\) −4.67290 14.3817i −0.204137 0.628268i
\(525\) 0.626999 12.6396i 0.0273645 0.551638i
\(526\) −29.6393 21.5342i −1.29234 0.938937i
\(527\) 1.39595i 0.0608088i
\(528\) 31.9469 8.39166i 1.39031 0.365200i
\(529\) 11.6672 0.507269
\(530\) −5.73016 + 10.5889i −0.248902 + 0.459952i
\(531\) −12.1010 + 37.2431i −0.525140 + 1.61621i
\(532\) 6.30817 2.04965i 0.273494 0.0888636i
\(533\) 15.3885 + 21.1805i 0.666552 + 0.917430i
\(534\) −52.3279 + 38.0184i −2.26445 + 1.64522i
\(535\) −7.37793 15.4127i −0.318976 0.666349i
\(536\) 0.572121 1.76081i 0.0247119 0.0760553i
\(537\) −25.1016 + 34.5494i −1.08321 + 1.49092i
\(538\) 4.65046i 0.200496i
\(539\) 16.9300 10.8763i 0.729227 0.468473i
\(540\) −10.5583 + 1.40504i −0.454359 + 0.0604635i
\(541\) 6.91720 + 5.02564i 0.297394 + 0.216069i 0.726468 0.687200i \(-0.241160\pi\)
−0.429075 + 0.903269i \(0.641160\pi\)
\(542\) 1.55066 + 0.503839i 0.0666064 + 0.0216417i
\(543\) −13.8247 + 4.49192i −0.593275 + 0.192767i
\(544\) −21.8016 + 15.8398i −0.934737 + 0.679126i
\(545\) 15.1924 + 15.9647i 0.650770 + 0.683852i
\(546\) −7.16226 22.0432i −0.306516 0.943360i
\(547\) 32.2693 + 10.4849i 1.37974 + 0.448304i 0.902583 0.430516i \(-0.141668\pi\)
0.477154 + 0.878820i \(0.341668\pi\)
\(548\) 10.4571 14.3930i 0.446706 0.614838i
\(549\) 9.55608 0.407844
\(550\) −24.8912 22.5085i −1.06137 0.959765i
\(551\) 16.1028 0.686002
\(552\) 0.999990 1.37637i 0.0425624 0.0585821i
\(553\) 0.922187 + 0.299637i 0.0392154 + 0.0127418i
\(554\) −7.39974 22.7740i −0.314385 0.967577i
\(555\) −25.6010 26.9025i −1.08670 1.14195i
\(556\) −13.1206 + 9.53265i −0.556436 + 0.404274i
\(557\) −21.8178 + 7.08904i −0.924451 + 0.300372i −0.732291 0.680991i \(-0.761549\pi\)
−0.192160 + 0.981364i \(0.561549\pi\)
\(558\) 3.11413 + 1.01184i 0.131832 + 0.0428347i
\(559\) 8.28110 + 6.01657i 0.350253 + 0.254474i
\(560\) 8.13565 1.08265i 0.343794 0.0457501i
\(561\) −7.36788 28.0494i −0.311072 1.18425i
\(562\) 12.6061i 0.531757i
\(563\) 5.45619 7.50980i 0.229951 0.316500i −0.678413 0.734681i \(-0.737332\pi\)
0.908364 + 0.418180i \(0.137332\pi\)
\(564\) 7.33731 22.5819i 0.308957 0.950871i
\(565\) 4.84532 + 10.1220i 0.203844 + 0.425836i
\(566\) −14.1546 + 10.2839i −0.594962 + 0.432266i
\(567\) −3.20457 4.41071i −0.134579 0.185232i
\(568\) −1.00013 + 0.324963i −0.0419647 + 0.0136352i
\(569\) −9.55701 + 29.4135i −0.400651 + 1.23308i 0.523822 + 0.851828i \(0.324506\pi\)
−0.924473 + 0.381248i \(0.875494\pi\)
\(570\) 18.4980 34.1830i 0.774797 1.43177i
\(571\) −2.63736 −0.110370 −0.0551851 0.998476i \(-0.517575\pi\)
−0.0551851 + 0.998476i \(0.517575\pi\)
\(572\) −29.3017 11.4138i −1.22517 0.477237i
\(573\) 57.1712i 2.38836i
\(574\) −9.14848 6.64676i −0.381850 0.277430i
\(575\) 16.8115 + 0.833947i 0.701086 + 0.0347780i
\(576\) −10.4494 32.1599i −0.435391 1.34000i
\(577\) −21.5309 29.6347i −0.896342 1.23371i −0.971620 0.236546i \(-0.923985\pi\)
0.0752785 0.997163i \(-0.476015\pi\)
\(578\) −6.97814 9.60459i −0.290252 0.399498i
\(579\) 18.2036 + 56.0249i 0.756516 + 2.32832i
\(580\) −22.6389 4.16315i −0.940028 0.172866i
\(581\) −5.77854 4.19835i −0.239734 0.174177i
\(582\) 16.0118i 0.663710i
\(583\) 5.58719 6.83051i 0.231398 0.282891i
\(584\) 0.276837 0.0114556
\(585\) −34.4169 18.6247i −1.42297 0.770035i
\(586\) −3.63360 + 11.1831i −0.150103 + 0.461968i
\(587\) 13.0793 4.24973i 0.539842 0.175405i −0.0263892 0.999652i \(-0.508401\pi\)
0.566231 + 0.824246i \(0.308401\pi\)
\(588\) −19.5817 26.9519i −0.807536 1.11148i
\(589\) −1.10935 + 0.805989i −0.0457099 + 0.0332102i
\(590\) 19.7829 + 41.3269i 0.814448 + 1.70140i
\(591\) 20.8508 64.1723i 0.857689 2.63970i
\(592\) 14.1567 19.4850i 0.581837 0.800829i
\(593\) 20.1550i 0.827668i 0.910352 + 0.413834i \(0.135811\pi\)
−0.910352 + 0.413834i \(0.864189\pi\)
\(594\) 15.2336 + 0.873649i 0.625044 + 0.0358463i
\(595\) −0.950563 7.14310i −0.0389693 0.292839i
\(596\) 28.6194 + 20.7932i 1.17230 + 0.851722i
\(597\) 42.2878 + 13.7401i 1.73072 + 0.562346i
\(598\) 29.3187 9.52624i 1.19893 0.389557i
\(599\) 3.49753 2.54110i 0.142905 0.103827i −0.514036 0.857769i \(-0.671850\pi\)
0.656941 + 0.753942i \(0.271850\pi\)
\(600\) −1.58470 + 1.96816i −0.0646950 + 0.0803498i
\(601\) 11.1214 + 34.2281i 0.453650 + 1.39619i 0.872713 + 0.488234i \(0.162359\pi\)
−0.419063 + 0.907957i \(0.637641\pi\)
\(602\) −4.20484 1.36623i −0.171376 0.0556836i
\(603\) −21.8247 + 30.0391i −0.888771 + 1.22329i
\(604\) 25.7358 1.04717
\(605\) 14.8080 + 19.6399i 0.602030 + 0.798473i
\(606\) 80.5893 3.27372
\(607\) −23.3056 + 32.0774i −0.945945 + 1.30198i 0.00736018 + 0.999973i \(0.497657\pi\)
−0.953305 + 0.302009i \(0.902343\pi\)
\(608\) 25.1754 + 8.17999i 1.02100 + 0.331742i
\(609\) 3.84261 + 11.8263i 0.155710 + 0.479227i
\(610\) 8.09955 7.70772i 0.327941 0.312077i
\(611\) 15.8305 11.5015i 0.640434 0.465303i
\(612\) −25.7158 + 8.35556i −1.03950 + 0.337753i
\(613\) −3.62818 1.17887i −0.146541 0.0476139i 0.234828 0.972037i \(-0.424547\pi\)
−0.381369 + 0.924423i \(0.624547\pi\)
\(614\) −30.2424 21.9724i −1.22049 0.886735i
\(615\) −33.6066 + 4.47217i −1.35515 + 0.180335i
\(616\) 0.616721 + 0.0353690i 0.0248484 + 0.00142506i
\(617\) 28.4055i 1.14356i −0.820407 0.571781i \(-0.806253\pi\)
0.820407 0.571781i \(-0.193747\pi\)
\(618\) −30.3828 + 41.8184i −1.22218 + 1.68218i
\(619\) −7.43830 + 22.8927i −0.298971 + 0.920137i 0.682888 + 0.730523i \(0.260724\pi\)
−0.981859 + 0.189614i \(0.939276\pi\)
\(620\) 1.76801 0.846330i 0.0710048 0.0339894i
\(621\) −6.19162 + 4.49848i −0.248461 + 0.180518i
\(622\) 13.4786 + 18.5516i 0.540441 + 0.743853i
\(623\) 11.2031 3.64010i 0.448841 0.145837i
\(624\) 13.9262 42.8603i 0.557492 1.71579i
\(625\) −24.8773 2.47421i −0.995091 0.0989682i
\(626\) 10.3511 0.413714
\(627\) −18.0365 + 22.0502i −0.720308 + 0.880599i
\(628\) 8.82059i 0.351980i
\(629\) −17.1078 12.4296i −0.682135 0.495600i
\(630\) 16.6240 + 3.05706i 0.662316 + 0.121796i
\(631\) 5.90889 + 18.1857i 0.235229 + 0.723961i 0.997091 + 0.0762213i \(0.0242855\pi\)
−0.761862 + 0.647740i \(0.775714\pi\)
\(632\) −0.113800 0.156632i −0.00452672 0.00623049i
\(633\) −8.97463 12.3525i −0.356710 0.490969i
\(634\) 7.38747 + 22.7363i 0.293394 + 0.902974i
\(635\) −2.86749 + 15.5932i −0.113793 + 0.618796i
\(636\) −11.8195 8.58735i −0.468673 0.340511i
\(637\) 27.4546i 1.08779i
\(638\) 30.7263 + 11.9687i 1.21646 + 0.473847i
\(639\) 21.0900 0.834307
\(640\) −3.03052 1.63996i −0.119792 0.0648251i
\(641\) 3.70172 11.3927i 0.146209 0.449985i −0.850955 0.525238i \(-0.823976\pi\)
0.997165 + 0.0752526i \(0.0239763\pi\)
\(642\) 38.5429 12.5233i 1.52117 0.494257i
\(643\) −15.1301 20.8248i −0.596672 0.821248i 0.398727 0.917070i \(-0.369452\pi\)
−0.995399 + 0.0958216i \(0.969452\pi\)
\(644\) −5.51149 + 4.00433i −0.217183 + 0.157793i
\(645\) −11.9560 + 5.72324i −0.470767 + 0.225352i
\(646\) 6.83905 21.0484i 0.269079 0.828139i
\(647\) 5.46774 7.52570i 0.214959 0.295866i −0.687897 0.725808i \(-0.741466\pi\)
0.902856 + 0.429942i \(0.141466\pi\)
\(648\) 1.08858i 0.0427636i
\(649\) −8.53167 32.4800i −0.334897 1.27495i
\(650\) −44.1933 + 11.9740i −1.73341 + 0.469661i
\(651\) −0.856664 0.622403i −0.0335753 0.0243939i
\(652\) 33.0268 + 10.7311i 1.29343 + 0.420261i
\(653\) −35.6177 + 11.5729i −1.39383 + 0.452882i −0.907189 0.420723i \(-0.861777\pi\)
−0.486637 + 0.873604i \(0.661777\pi\)
\(654\) −42.2854 + 30.7221i −1.65349 + 1.20133i
\(655\) 11.1249 + 11.6904i 0.434685 + 0.456782i
\(656\) −6.79446 20.9112i −0.265279 0.816445i
\(657\) −5.28025 1.71566i −0.206002 0.0669342i
\(658\) −4.96785 + 6.83766i −0.193667 + 0.266560i
\(659\) 4.93753 0.192339 0.0961693 0.995365i \(-0.469341\pi\)
0.0961693 + 0.995365i \(0.469341\pi\)
\(660\) 31.0582 26.3372i 1.20894 1.02517i
\(661\) −4.82155 −0.187537 −0.0937683 0.995594i \(-0.529891\pi\)
−0.0937683 + 0.995594i \(0.529891\pi\)
\(662\) 34.8155 47.9194i 1.35314 1.86244i
\(663\) −37.6313 12.2272i −1.46148 0.474864i
\(664\) 0.440710 + 1.35637i 0.0171029 + 0.0526372i
\(665\) −5.12770 + 4.87964i −0.198844 + 0.189224i
\(666\) 40.1286 29.1551i 1.55495 1.12974i
\(667\) −15.7297 + 5.11091i −0.609058 + 0.197895i
\(668\) 18.2670 + 5.93532i 0.706773 + 0.229645i
\(669\) −40.3292 29.3009i −1.55922 1.13284i
\(670\) 5.73070 + 43.0639i 0.221396 + 1.66370i
\(671\) −6.89474 + 4.42935i −0.266168 + 0.170993i
\(672\) 20.4415i 0.788548i
\(673\) −19.3464 + 26.6280i −0.745749 + 1.02644i 0.252518 + 0.967592i \(0.418741\pi\)
−0.998267 + 0.0588431i \(0.981259\pi\)
\(674\) −16.6619 + 51.2802i −0.641794 + 1.97524i
\(675\) 9.51587 6.21756i 0.366266 0.239314i
\(676\) −12.6736 + 9.20789i −0.487445 + 0.354150i
\(677\) −10.0761 13.8686i −0.387258 0.533014i 0.570231 0.821484i \(-0.306854\pi\)
−0.957489 + 0.288470i \(0.906854\pi\)
\(678\) −25.3123 + 8.22448i −0.972114 + 0.315859i
\(679\) 0.901110 2.77333i 0.0345814 0.106431i
\(680\) −0.684782 + 1.26543i −0.0262602 + 0.0485268i
\(681\) −74.5977 −2.85859
\(682\) −2.71585 + 0.713386i −0.103995 + 0.0273170i
\(683\) 19.3586i 0.740737i −0.928885 0.370368i \(-0.879231\pi\)
0.928885 0.370368i \(-0.120769\pi\)
\(684\) 21.4877 + 15.6117i 0.821602 + 0.596929i
\(685\) −3.43383 + 18.6729i −0.131200 + 0.713454i
\(686\) 7.89232 + 24.2901i 0.301330 + 0.927399i
\(687\) 39.1115 + 53.8324i 1.49220 + 2.05383i
\(688\) −5.05292 6.95475i −0.192641 0.265148i
\(689\) −3.72054 11.4506i −0.141741 0.436234i
\(690\) −7.22009 + 39.2622i −0.274864 + 1.49469i
\(691\) 7.39559 + 5.37321i 0.281342 + 0.204407i 0.719502 0.694490i \(-0.244370\pi\)
−0.438161 + 0.898897i \(0.644370\pi\)
\(692\) 8.61097i 0.327340i
\(693\) −11.5438 4.49665i −0.438514 0.170814i
\(694\) 8.72467 0.331184
\(695\) 8.23717 15.2217i 0.312454 0.577391i
\(696\) 0.767250 2.36135i 0.0290825 0.0895068i
\(697\) −18.3600 + 5.96554i −0.695436 + 0.225961i
\(698\) −15.6650 21.5610i −0.592929 0.816096i
\(699\) −26.5383 + 19.2812i −1.00377 + 0.729281i
\(700\) 8.47058 5.53458i 0.320158 0.209187i
\(701\) −4.72594 + 14.5450i −0.178496 + 0.549355i −0.999776 0.0211707i \(-0.993261\pi\)
0.821279 + 0.570526i \(0.193261\pi\)
\(702\) 12.2368 16.8425i 0.461847 0.635678i
\(703\) 20.7719i 0.783428i
\(704\) 22.4457 + 18.3601i 0.845956 + 0.691971i
\(705\) 3.34254 + 25.1179i 0.125887 + 0.945994i
\(706\) 41.7327 + 30.3206i 1.57063 + 1.14113i
\(707\) −13.9585 4.53539i −0.524964 0.170571i
\(708\) −52.8760 + 17.1805i −1.98720 + 0.645681i
\(709\) 34.7172 25.2235i 1.30383 0.947290i 0.303848 0.952721i \(-0.401729\pi\)
0.999985 + 0.00543044i \(0.00172857\pi\)
\(710\) 17.8755 17.0107i 0.670854 0.638401i
\(711\) 1.19986 + 3.69278i 0.0449982 + 0.138490i
\(712\) −2.23690 0.726814i −0.0838315 0.0272385i
\(713\) 0.827834 1.13942i 0.0310026 0.0426714i
\(714\) 17.0905 0.639598
\(715\) 33.4646 2.51489i 1.25151 0.0940516i
\(716\) −34.1450 −1.27606
\(717\) 31.4039 43.2238i 1.17280 1.61422i
\(718\) −50.5682 16.4306i −1.88719 0.613184i
\(719\) −1.48738 4.57768i −0.0554699 0.170719i 0.919483 0.393129i \(-0.128607\pi\)
−0.974953 + 0.222411i \(0.928607\pi\)
\(720\) 22.6563 + 23.8081i 0.844351 + 0.887274i
\(721\) 7.61592 5.53329i 0.283632 0.206071i
\(722\) 15.8925 5.16378i 0.591457 0.192176i
\(723\) 56.8090 + 18.4584i 2.11275 + 0.686473i
\(724\) −9.40269 6.83146i −0.349448 0.253889i
\(725\) 23.7101 6.42417i 0.880571 0.238588i
\(726\) −50.8053 + 28.6686i −1.88556 + 1.06399i
\(727\) 21.8922i 0.811937i 0.913887 + 0.405969i \(0.133066\pi\)
−0.913887 + 0.405969i \(0.866934\pi\)
\(728\) 0.495395 0.681853i 0.0183606 0.0252712i
\(729\) 12.2694 37.7614i 0.454423 1.39857i
\(730\) −5.85925 + 2.80477i −0.216860 + 0.103809i
\(731\) −6.10627 + 4.43647i −0.225849 + 0.164089i
\(732\) 7.97464 + 10.9762i 0.294751 + 0.405690i
\(733\) 45.6788 14.8419i 1.68718 0.548199i 0.700901 0.713259i \(-0.252782\pi\)
0.986284 + 0.165060i \(0.0527817\pi\)
\(734\) 1.26242 3.88533i 0.0465968 0.143410i
\(735\) 31.2680 + 16.9206i 1.15334 + 0.624125i
\(736\) −27.1885 −1.00218
\(737\) 1.82312 31.7893i 0.0671554 1.17097i
\(738\) 45.2820i 1.66685i
\(739\) −27.5934 20.0478i −1.01504 0.737470i −0.0497805 0.998760i \(-0.515852\pi\)
−0.965260 + 0.261290i \(0.915852\pi\)
\(740\) 5.37029 29.2032i 0.197416 1.07353i
\(741\) 12.0106 + 36.9648i 0.441220 + 1.35794i
\(742\) 3.05671 + 4.20720i 0.112215 + 0.154451i
\(743\) 15.5411 + 21.3906i 0.570149 + 0.784743i 0.992572 0.121656i \(-0.0388203\pi\)
−0.422423 + 0.906399i \(0.638820\pi\)
\(744\) 0.0653350 + 0.201080i 0.00239530 + 0.00737196i
\(745\) −37.1296 6.82792i −1.36032 0.250156i
\(746\) −14.5244 10.5526i −0.531777 0.386359i
\(747\) 28.6019i 1.04649i
\(748\) 14.6811 17.9481i 0.536794 0.656247i
\(749\) −7.38062 −0.269682
\(750\) 13.5997 57.7114i 0.496590 2.10732i
\(751\) 14.1963 43.6918i 0.518032 1.59434i −0.259666 0.965699i \(-0.583612\pi\)
0.777697 0.628639i \(-0.216388\pi\)
\(752\) −15.6292 + 5.07825i −0.569939 + 0.185185i
\(753\) 26.1132 + 35.9417i 0.951617 + 1.30979i
\(754\) 36.3977 26.4445i 1.32553 0.963052i
\(755\) −24.7728 + 11.8585i −0.901575 + 0.431577i
\(756\) −1.42168 + 4.37549i −0.0517061 + 0.159135i
\(757\) 18.1365 24.9628i 0.659183 0.907288i −0.340271 0.940327i \(-0.610519\pi\)
0.999454 + 0.0330398i \(0.0105188\pi\)
\(758\) 42.6271i 1.54828i
\(759\) 10.6201 27.2640i 0.385485 0.989620i
\(760\) 1.40099 0.186436i 0.0508194 0.00676275i
\(761\) 11.4860 + 8.34507i 0.416367 + 0.302508i 0.776175 0.630518i \(-0.217158\pi\)
−0.359807 + 0.933027i \(0.617158\pi\)
\(762\) −35.7618 11.6197i −1.29551 0.420938i
\(763\) 9.05303 2.94151i 0.327742 0.106490i
\(764\) 36.9811 26.8684i 1.33793 0.972063i
\(765\) 20.9035 19.8923i 0.755767 0.719206i
\(766\) −16.2464 50.0012i −0.587005 1.80662i
\(767\) −43.5754 14.1585i −1.57342 0.511234i
\(768\) −22.1319 + 30.4620i −0.798617 + 1.09920i
\(769\) 30.0208 1.08258 0.541290 0.840836i \(-0.317936\pi\)
0.541290 + 0.840836i \(0.317936\pi\)
\(770\) −13.4112 + 5.49973i −0.483307 + 0.198196i
\(771\) −12.4107 −0.446961
\(772\) −27.6846 + 38.1046i −0.996392 + 1.37142i
\(773\) −28.9401 9.40320i −1.04090