Properties

Label 55.2.j
Level $55$
Weight $2$
Character orbit 55.j
Rep. character $\chi_{55}(4,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $16$
Newform subspaces $1$
Sturm bound $12$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 55.j (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 55 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(12\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(55, [\chi])\).

Total New Old
Modular forms 32 32 0
Cusp forms 16 16 0
Eisenstein series 16 16 0

Trace form

\( 16 q - 4 q^{4} - 2 q^{5} - 18 q^{6} + 2 q^{9} - 6 q^{11} - 12 q^{14} - 16 q^{15} + 16 q^{16} + 6 q^{19} - 8 q^{20} + 8 q^{21} + 6 q^{24} - 16 q^{25} + 40 q^{26} + 2 q^{29} + 26 q^{30} + 8 q^{31} - 16 q^{34}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(55, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
55.2.j.a 55.j 55.j $16$ $0.439$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 55.2.j.a \(0\) \(0\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+(\beta _{1}-\beta _{12}-\beta _{13})q^{2}+(\beta _{5}+\beta _{13}+\cdots)q^{3}+\cdots\)