Properties

Label 55.2.j
Level 55
Weight 2
Character orbit j
Rep. character \(\chi_{55}(4,\cdot)\)
Character field \(\Q(\zeta_{10})\)
Dimension 16
Newforms 1
Sturm bound 12
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 55 = 5 \cdot 11 \)
Weight: \( k \) = \( 2 \)
Character orbit: \([\chi]\) = 55.j (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) = \( 55 \)
Character field: \(\Q(\zeta_{10})\)
Newforms: \( 1 \)
Sturm bound: \(12\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(55, [\chi])\).

Total New Old
Modular forms 32 32 0
Cusp forms 16 16 0
Eisenstein series 16 16 0

Trace form

\( 16q - 4q^{4} - 2q^{5} - 18q^{6} + 2q^{9} + O(q^{10}) \) \( 16q - 4q^{4} - 2q^{5} - 18q^{6} + 2q^{9} - 6q^{11} - 12q^{14} - 16q^{15} + 16q^{16} + 6q^{19} - 8q^{20} + 8q^{21} + 6q^{24} - 16q^{25} + 40q^{26} + 2q^{29} + 26q^{30} + 8q^{31} - 16q^{34} + 22q^{35} + 10q^{36} + 30q^{39} + 12q^{40} - 52q^{41} + 4q^{44} + 12q^{45} - 62q^{46} - 10q^{49} + 28q^{50} - 42q^{51} - 40q^{54} - 8q^{55} - 20q^{56} + 2q^{59} - 32q^{60} - 40q^{61} - 8q^{64} - 40q^{65} + 58q^{66} + 26q^{69} - 34q^{70} + 36q^{71} + 48q^{74} - 20q^{75} + 56q^{76} + 38q^{79} + 34q^{80} + 68q^{81} + 12q^{84} + 58q^{85} + 22q^{86} + 24q^{89} + 78q^{90} - 20q^{91} + 14q^{94} + 48q^{95} - 86q^{96} - 72q^{99} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(55, [\chi])\) into irreducible Hecke orbits

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
55.2.j.a \(16\) \(0.439\) \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None \(0\) \(0\) \(-2\) \(0\) \(q+(\beta _{1}-\beta _{12}-\beta _{13})q^{2}+(\beta _{5}+\beta _{13}+\cdots)q^{3}+\cdots\)