Properties

Label 55.2.e.a
Level $55$
Weight $2$
Character orbit 55.e
Analytic conductor $0.439$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [55,2,Mod(32,55)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(55, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("55.32");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 55.e (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.439177211117\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + ( - \beta_{2} - 1) q^{3} + 3 \beta_{2} q^{4} + ( - \beta_{2} - 2) q^{5} + ( - \beta_{3} - \beta_1) q^{6} + \beta_{3} q^{8} - \beta_{2} q^{9} + ( - \beta_{3} - 2 \beta_1) q^{10} + (\beta_{3} + \beta_1 + 1) q^{11}+ \cdots + ( - \beta_{3} - \beta_{2} + \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} - 8 q^{5} + 4 q^{11} + 12 q^{12} + 4 q^{15} + 4 q^{16} + 12 q^{20} - 20 q^{22} - 4 q^{23} + 12 q^{25} - 40 q^{26} - 16 q^{27} + 8 q^{31} - 4 q^{33} + 12 q^{36} + 12 q^{37} + 40 q^{38} - 4 q^{45}+ \cdots - 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 5\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 5\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/55\mathbb{Z}\right)^\times\).

\(n\) \(12\) \(46\)
\(\chi(n)\) \(-\beta_{2}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
32.1
−1.58114 + 1.58114i
1.58114 1.58114i
−1.58114 1.58114i
1.58114 + 1.58114i
−1.58114 + 1.58114i −1.00000 + 1.00000i 3.00000i −2.00000 + 1.00000i 3.16228i 0 1.58114 + 1.58114i 1.00000i 1.58114 4.74342i
32.2 1.58114 1.58114i −1.00000 + 1.00000i 3.00000i −2.00000 + 1.00000i 3.16228i 0 −1.58114 1.58114i 1.00000i −1.58114 + 4.74342i
43.1 −1.58114 1.58114i −1.00000 1.00000i 3.00000i −2.00000 1.00000i 3.16228i 0 1.58114 1.58114i 1.00000i 1.58114 + 4.74342i
43.2 1.58114 + 1.58114i −1.00000 1.00000i 3.00000i −2.00000 1.00000i 3.16228i 0 −1.58114 + 1.58114i 1.00000i −1.58114 4.74342i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner
11.b odd 2 1 inner
55.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 55.2.e.a 4
3.b odd 2 1 495.2.k.b 4
4.b odd 2 1 880.2.bd.e 4
5.b even 2 1 275.2.e.b 4
5.c odd 4 1 inner 55.2.e.a 4
5.c odd 4 1 275.2.e.b 4
11.b odd 2 1 inner 55.2.e.a 4
11.c even 5 4 605.2.m.b 16
11.d odd 10 4 605.2.m.b 16
15.e even 4 1 495.2.k.b 4
20.e even 4 1 880.2.bd.e 4
33.d even 2 1 495.2.k.b 4
44.c even 2 1 880.2.bd.e 4
55.d odd 2 1 275.2.e.b 4
55.e even 4 1 inner 55.2.e.a 4
55.e even 4 1 275.2.e.b 4
55.k odd 20 4 605.2.m.b 16
55.l even 20 4 605.2.m.b 16
165.l odd 4 1 495.2.k.b 4
220.i odd 4 1 880.2.bd.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.2.e.a 4 1.a even 1 1 trivial
55.2.e.a 4 5.c odd 4 1 inner
55.2.e.a 4 11.b odd 2 1 inner
55.2.e.a 4 55.e even 4 1 inner
275.2.e.b 4 5.b even 2 1
275.2.e.b 4 5.c odd 4 1
275.2.e.b 4 55.d odd 2 1
275.2.e.b 4 55.e even 4 1
495.2.k.b 4 3.b odd 2 1
495.2.k.b 4 15.e even 4 1
495.2.k.b 4 33.d even 2 1
495.2.k.b 4 165.l odd 4 1
605.2.m.b 16 11.c even 5 4
605.2.m.b 16 11.d odd 10 4
605.2.m.b 16 55.k odd 20 4
605.2.m.b 16 55.l even 20 4
880.2.bd.e 4 4.b odd 2 1
880.2.bd.e 4 20.e even 4 1
880.2.bd.e 4 44.c even 2 1
880.2.bd.e 4 220.i odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} + 25 \) acting on \(S_{2}^{\mathrm{new}}(55, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 25 \) Copy content Toggle raw display
$3$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 4 T + 5)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} - 2 T + 11)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + 400 \) Copy content Toggle raw display
$17$ \( T^{4} + 400 \) Copy content Toggle raw display
$19$ \( (T^{2} - 40)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 40)^{2} \) Copy content Toggle raw display
$31$ \( (T - 2)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} - 6 T + 18)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 40)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} - 6 T + 18)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 2 T + 2)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 40)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 6 T + 18)^{2} \) Copy content Toggle raw display
$71$ \( (T + 8)^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + 400 \) Copy content Toggle raw display
$79$ \( (T^{2} - 40)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 6400 \) Copy content Toggle raw display
$89$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 14 T + 98)^{2} \) Copy content Toggle raw display
show more
show less