Properties

 Label 55.2.a.a Level $55$ Weight $2$ Character orbit 55.a Self dual yes Analytic conductor $0.439$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [55,2,Mod(1,55)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(55, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("55.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$55 = 5 \cdot 11$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 55.a (trivial)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$0.439177211117$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: yes Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + q^{2} - q^{4} + q^{5} - 3 q^{8} - 3 q^{9}+O(q^{10})$$ q + q^2 - q^4 + q^5 - 3 * q^8 - 3 * q^9 $$q + q^{2} - q^{4} + q^{5} - 3 q^{8} - 3 q^{9} + q^{10} - q^{11} + 2 q^{13} - q^{16} + 6 q^{17} - 3 q^{18} - 4 q^{19} - q^{20} - q^{22} + 4 q^{23} + q^{25} + 2 q^{26} + 6 q^{29} - 8 q^{31} + 5 q^{32} + 6 q^{34} + 3 q^{36} - 2 q^{37} - 4 q^{38} - 3 q^{40} + 2 q^{41} + 4 q^{43} + q^{44} - 3 q^{45} + 4 q^{46} - 12 q^{47} - 7 q^{49} + q^{50} - 2 q^{52} - 2 q^{53} - q^{55} + 6 q^{58} + 4 q^{59} - 10 q^{61} - 8 q^{62} + 7 q^{64} + 2 q^{65} - 16 q^{67} - 6 q^{68} + 8 q^{71} + 9 q^{72} + 14 q^{73} - 2 q^{74} + 4 q^{76} + 8 q^{79} - q^{80} + 9 q^{81} + 2 q^{82} - 4 q^{83} + 6 q^{85} + 4 q^{86} + 3 q^{88} + 10 q^{89} - 3 q^{90} - 4 q^{92} - 12 q^{94} - 4 q^{95} + 10 q^{97} - 7 q^{98} + 3 q^{99}+O(q^{100})$$ q + q^2 - q^4 + q^5 - 3 * q^8 - 3 * q^9 + q^10 - q^11 + 2 * q^13 - q^16 + 6 * q^17 - 3 * q^18 - 4 * q^19 - q^20 - q^22 + 4 * q^23 + q^25 + 2 * q^26 + 6 * q^29 - 8 * q^31 + 5 * q^32 + 6 * q^34 + 3 * q^36 - 2 * q^37 - 4 * q^38 - 3 * q^40 + 2 * q^41 + 4 * q^43 + q^44 - 3 * q^45 + 4 * q^46 - 12 * q^47 - 7 * q^49 + q^50 - 2 * q^52 - 2 * q^53 - q^55 + 6 * q^58 + 4 * q^59 - 10 * q^61 - 8 * q^62 + 7 * q^64 + 2 * q^65 - 16 * q^67 - 6 * q^68 + 8 * q^71 + 9 * q^72 + 14 * q^73 - 2 * q^74 + 4 * q^76 + 8 * q^79 - q^80 + 9 * q^81 + 2 * q^82 - 4 * q^83 + 6 * q^85 + 4 * q^86 + 3 * q^88 + 10 * q^89 - 3 * q^90 - 4 * q^92 - 12 * q^94 - 4 * q^95 + 10 * q^97 - 7 * q^98 + 3 * q^99

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
1.00000 0 −1.00000 1.00000 0 0 −3.00000 −3.00000 1.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Atkin-Lehner signs

$$p$$ Sign
$$5$$ $$-1$$
$$11$$ $$1$$

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 55.2.a.a 1
3.b odd 2 1 495.2.a.a 1
4.b odd 2 1 880.2.a.h 1
5.b even 2 1 275.2.a.a 1
5.c odd 4 2 275.2.b.b 2
7.b odd 2 1 2695.2.a.c 1
8.b even 2 1 3520.2.a.p 1
8.d odd 2 1 3520.2.a.n 1
11.b odd 2 1 605.2.a.b 1
11.c even 5 4 605.2.g.a 4
11.d odd 10 4 605.2.g.c 4
12.b even 2 1 7920.2.a.i 1
13.b even 2 1 9295.2.a.b 1
15.d odd 2 1 2475.2.a.i 1
15.e even 4 2 2475.2.c.f 2
20.d odd 2 1 4400.2.a.p 1
20.e even 4 2 4400.2.b.n 2
33.d even 2 1 5445.2.a.i 1
44.c even 2 1 9680.2.a.r 1
55.d odd 2 1 3025.2.a.f 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.2.a.a 1 1.a even 1 1 trivial
275.2.a.a 1 5.b even 2 1
275.2.b.b 2 5.c odd 4 2
495.2.a.a 1 3.b odd 2 1
605.2.a.b 1 11.b odd 2 1
605.2.g.a 4 11.c even 5 4
605.2.g.c 4 11.d odd 10 4
880.2.a.h 1 4.b odd 2 1
2475.2.a.i 1 15.d odd 2 1
2475.2.c.f 2 15.e even 4 2
2695.2.a.c 1 7.b odd 2 1
3025.2.a.f 1 55.d odd 2 1
3520.2.a.n 1 8.d odd 2 1
3520.2.a.p 1 8.b even 2 1
4400.2.a.p 1 20.d odd 2 1
4400.2.b.n 2 20.e even 4 2
5445.2.a.i 1 33.d even 2 1
7920.2.a.i 1 12.b even 2 1
9295.2.a.b 1 13.b even 2 1
9680.2.a.r 1 44.c even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{2} - 1$$ acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(55))$$.

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T - 1$$
$3$ $$T$$
$5$ $$T - 1$$
$7$ $$T$$
$11$ $$T + 1$$
$13$ $$T - 2$$
$17$ $$T - 6$$
$19$ $$T + 4$$
$23$ $$T - 4$$
$29$ $$T - 6$$
$31$ $$T + 8$$
$37$ $$T + 2$$
$41$ $$T - 2$$
$43$ $$T - 4$$
$47$ $$T + 12$$
$53$ $$T + 2$$
$59$ $$T - 4$$
$61$ $$T + 10$$
$67$ $$T + 16$$
$71$ $$T - 8$$
$73$ $$T - 14$$
$79$ $$T - 8$$
$83$ $$T + 4$$
$89$ $$T - 10$$
$97$ $$T - 10$$