Properties

Label 55.12.e.a
Level $55$
Weight $12$
Character orbit 55.e
Analytic conductor $42.259$
Analytic rank $0$
Dimension $4$
CM discriminant -11
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [55,12,Mod(32,55)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(55, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1, 2]))
 
N = Newforms(chi, 12, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("55.32");
 
S:= CuspForms(chi, 12);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 55.e (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2588749308\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{11})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 11^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (23 \beta_{3} + 23 \beta_{2} + \cdots - 22) q^{3}+ \cdots + ( - 3082 \beta_{3} + 177147 \beta_1 - 1541) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (23 \beta_{3} + 23 \beta_{2} + \cdots - 22) q^{3}+ \cdots + (5187218454 \beta_{3} + \cdots + 2593609227) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 134 q^{3}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 134 q^{3} - 274432 q^{12} - 3635288 q^{15} - 16777216 q^{16} - 55676928 q^{20} - 90995634 q^{23} - 174226798 q^{25} + 94349266 q^{27} + 896409866 q^{33} + 1451188224 q^{36} + 750230698 q^{37} + 4815918342 q^{45} - 4692711432 q^{47} + 562036736 q^{48} - 12168160764 q^{53} - 3468716438 q^{55} - 3714715648 q^{60} + 27382241198 q^{67} + 112120819788 q^{71} - 31198305568 q^{75} + 112881436792 q^{81} - 186359058432 q^{92} - 213202585398 q^{93} - 303384024802 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 5x^{2} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - 2\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( -2\nu^{3} + 15\nu \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 11\nu^{2} - 28 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + 6\beta_1 ) / 11 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 28 ) / 11 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 2\beta_{2} + 45\beta_1 ) / 11 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/55\mathbb{Z}\right)^\times\).

\(n\) \(12\) \(46\)
\(\chi(n)\) \(-\beta_{1}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
32.1
−1.65831 0.500000i
1.65831 0.500000i
−1.65831 + 0.500000i
1.65831 + 0.500000i
0 −453.053 + 453.053i 2048.00i 1623.49 + 6796.50i 0 0 0 233367.i 0
32.2 0 386.053 386.053i 2048.00i −1623.49 + 6796.50i 0 0 0 120927.i 0
43.1 0 −453.053 453.053i 2048.00i 1623.49 6796.50i 0 0 0 233367.i 0
43.2 0 386.053 + 386.053i 2048.00i −1623.49 6796.50i 0 0 0 120927.i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.b odd 2 1 CM by \(\Q(\sqrt{-11}) \)
5.c odd 4 1 inner
55.e even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 55.12.e.a 4
5.c odd 4 1 inner 55.12.e.a 4
11.b odd 2 1 CM 55.12.e.a 4
55.e even 4 1 inner 55.12.e.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.12.e.a 4 1.a even 1 1 trivial
55.12.e.a 4 5.c odd 4 1 inner
55.12.e.a 4 11.b odd 2 1 CM
55.12.e.a 4 55.e even 4 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} \) acting on \(S_{12}^{\mathrm{new}}(55, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + \cdots + 122363538025 \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 23\!\cdots\!25 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} - 285311670611)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 27\!\cdots\!25 \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} - 16\!\cdots\!99)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 46\!\cdots\!25 \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 31\!\cdots\!00 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 34\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( (T^{2} + 55\!\cdots\!11)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 32\!\cdots\!25 \) Copy content Toggle raw display
$71$ \( (T - 28030204947)^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( (T^{2} + 58\!\cdots\!81)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 75\!\cdots\!25 \) Copy content Toggle raw display
show more
show less