Properties

Label 55.1.d
Level $55$
Weight $1$
Character orbit 55.d
Rep. character $\chi_{55}(54,\cdot)$
Character field $\Q$
Dimension $1$
Newform subspaces $1$
Sturm bound $6$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 55.d (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 55 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(6\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(55, [\chi])\).

Total New Old
Modular forms 3 3 0
Cusp forms 1 1 0
Eisenstein series 2 2 0

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 1 0 0 0

Trace form

\( q - q^{4} - q^{5} + q^{9} + O(q^{10}) \) \( q - q^{4} - q^{5} + q^{9} - q^{11} + q^{16} + q^{20} + q^{25} - 2 q^{31} - q^{36} + q^{44} - q^{45} - q^{49} + q^{55} + 2 q^{59} - q^{64} + 2 q^{71} - q^{80} + q^{81} - 2 q^{89} - q^{99} + O(q^{100}) \)

Decomposition of \(S_{1}^{\mathrm{new}}(55, [\chi])\) into newform subspaces

Label Dim. \(A\) Field Image CM RM Traces $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
55.1.d.a $1$ $0.027$ \(\Q\) $D_{2}$ \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-55}) \) \(\Q(\sqrt{5}) \) \(0\) \(0\) \(-1\) \(0\) \(q-q^{4}-q^{5}+q^{9}-q^{11}+q^{16}+q^{20}+\cdots\)