Properties

Label 5472.2.a.bt.1.1
Level $5472$
Weight $2$
Character 5472.1
Self dual yes
Analytic conductor $43.694$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 5472 = 2^{5} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5472.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(43.6941399860\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.15317.1
Defining polynomial: \( x^{4} - 2x^{3} - 4x^{2} + 5x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 608)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.329727\) of defining polynomial
Character \(\chi\) \(=\) 5472.1

$q$-expansion

\(f(q)\) \(=\) \(q-3.40617 q^{5} -2.50407 q^{7} +O(q^{10})\) \(q-3.40617 q^{5} -2.50407 q^{7} -1.40617 q^{11} +6.22101 q^{13} +3.16352 q^{17} -1.00000 q^{19} -7.91023 q^{23} +6.60197 q^{25} -6.22101 q^{29} -8.13124 q^{31} +8.52927 q^{35} -6.13124 q^{37} -1.68923 q^{41} -1.71694 q^{43} +9.84818 q^{47} -0.729644 q^{49} -2.78713 q^{53} +4.78964 q^{55} +9.25078 q^{59} +6.52927 q^{61} -21.1898 q^{65} -1.87233 q^{67} -13.0081 q^{71} -6.28663 q^{73} +3.52114 q^{77} +11.2543 q^{79} +1.80420 q^{83} -10.7755 q^{85} +7.57426 q^{89} -15.5778 q^{91} +3.40617 q^{95} +4.81233 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{5} + q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - q^{5} + q^{7} + 7 q^{11} + 10 q^{13} - 5 q^{17} - 4 q^{19} - 8 q^{23} + 17 q^{25} - 10 q^{29} + 6 q^{31} + 5 q^{35} + 14 q^{37} + 2 q^{41} - 3 q^{43} - 3 q^{47} + 7 q^{49} - 4 q^{53} + 35 q^{55} + 20 q^{59} - 3 q^{61} + 12 q^{65} - 8 q^{67} - 30 q^{71} + 9 q^{73} + 7 q^{77} - 10 q^{79} + 4 q^{83} + 19 q^{85} + 16 q^{89} - 10 q^{91} + q^{95} - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.40617 −1.52328 −0.761642 0.647998i \(-0.775606\pi\)
−0.761642 + 0.647998i \(0.775606\pi\)
\(6\) 0 0
\(7\) −2.50407 −0.946449 −0.473224 0.880942i \(-0.656910\pi\)
−0.473224 + 0.880942i \(0.656910\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.40617 −0.423975 −0.211988 0.977272i \(-0.567994\pi\)
−0.211988 + 0.977272i \(0.567994\pi\)
\(12\) 0 0
\(13\) 6.22101 1.72540 0.862698 0.505719i \(-0.168773\pi\)
0.862698 + 0.505719i \(0.168773\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 3.16352 0.767267 0.383633 0.923485i \(-0.374673\pi\)
0.383633 + 0.923485i \(0.374673\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.91023 −1.64940 −0.824699 0.565572i \(-0.808655\pi\)
−0.824699 + 0.565572i \(0.808655\pi\)
\(24\) 0 0
\(25\) 6.60197 1.32039
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −6.22101 −1.15521 −0.577606 0.816316i \(-0.696013\pi\)
−0.577606 + 0.816316i \(0.696013\pi\)
\(30\) 0 0
\(31\) −8.13124 −1.46041 −0.730207 0.683226i \(-0.760576\pi\)
−0.730207 + 0.683226i \(0.760576\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 8.52927 1.44171
\(36\) 0 0
\(37\) −6.13124 −1.00797 −0.503985 0.863712i \(-0.668133\pi\)
−0.503985 + 0.863712i \(0.668133\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.68923 −0.263813 −0.131906 0.991262i \(-0.542110\pi\)
−0.131906 + 0.991262i \(0.542110\pi\)
\(42\) 0 0
\(43\) −1.71694 −0.261831 −0.130915 0.991394i \(-0.541792\pi\)
−0.130915 + 0.991394i \(0.541792\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 9.84818 1.43650 0.718252 0.695783i \(-0.244942\pi\)
0.718252 + 0.695783i \(0.244942\pi\)
\(48\) 0 0
\(49\) −0.729644 −0.104235
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −2.78713 −0.382842 −0.191421 0.981508i \(-0.561310\pi\)
−0.191421 + 0.981508i \(0.561310\pi\)
\(54\) 0 0
\(55\) 4.78964 0.645834
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 9.25078 1.20435 0.602174 0.798365i \(-0.294301\pi\)
0.602174 + 0.798365i \(0.294301\pi\)
\(60\) 0 0
\(61\) 6.52927 0.835988 0.417994 0.908450i \(-0.362733\pi\)
0.417994 + 0.908450i \(0.362733\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −21.1898 −2.62827
\(66\) 0 0
\(67\) −1.87233 −0.228741 −0.114370 0.993438i \(-0.536485\pi\)
−0.114370 + 0.993438i \(0.536485\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −13.0081 −1.54378 −0.771891 0.635755i \(-0.780689\pi\)
−0.771891 + 0.635755i \(0.780689\pi\)
\(72\) 0 0
\(73\) −6.28663 −0.735794 −0.367897 0.929867i \(-0.619922\pi\)
−0.367897 + 0.929867i \(0.619922\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 3.52114 0.401271
\(78\) 0 0
\(79\) 11.2543 1.26621 0.633106 0.774065i \(-0.281780\pi\)
0.633106 + 0.774065i \(0.281780\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.80420 0.198036 0.0990182 0.995086i \(-0.468430\pi\)
0.0990182 + 0.995086i \(0.468430\pi\)
\(84\) 0 0
\(85\) −10.7755 −1.16877
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 7.57426 0.802870 0.401435 0.915888i \(-0.368512\pi\)
0.401435 + 0.915888i \(0.368512\pi\)
\(90\) 0 0
\(91\) −15.5778 −1.63300
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 3.40617 0.349465
\(96\) 0 0
\(97\) 4.81233 0.488618 0.244309 0.969697i \(-0.421439\pi\)
0.244309 + 0.969697i \(0.421439\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 16.2462 1.61656 0.808279 0.588799i \(-0.200399\pi\)
0.808279 + 0.588799i \(0.200399\pi\)
\(102\) 0 0
\(103\) −7.68923 −0.757642 −0.378821 0.925470i \(-0.623670\pi\)
−0.378821 + 0.925470i \(0.623670\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −11.8886 −1.14931 −0.574657 0.818394i \(-0.694865\pi\)
−0.574657 + 0.818394i \(0.694865\pi\)
\(108\) 0 0
\(109\) −5.65489 −0.541640 −0.270820 0.962630i \(-0.587295\pi\)
−0.270820 + 0.962630i \(0.587295\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 8.81233 0.828995 0.414497 0.910051i \(-0.363957\pi\)
0.414497 + 0.910051i \(0.363957\pi\)
\(114\) 0 0
\(115\) 26.9436 2.51250
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −7.92167 −0.726179
\(120\) 0 0
\(121\) −9.02270 −0.820245
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −5.45657 −0.488051
\(126\) 0 0
\(127\) −12.0504 −1.06930 −0.534650 0.845073i \(-0.679557\pi\)
−0.534650 + 0.845073i \(0.679557\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0.920878 0.0804575 0.0402287 0.999190i \(-0.487191\pi\)
0.0402287 + 0.999190i \(0.487191\pi\)
\(132\) 0 0
\(133\) 2.50407 0.217130
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0.525705 0.0449140 0.0224570 0.999748i \(-0.492851\pi\)
0.0224570 + 0.999748i \(0.492851\pi\)
\(138\) 0 0
\(139\) 4.52927 0.384168 0.192084 0.981379i \(-0.438475\pi\)
0.192084 + 0.981379i \(0.438475\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −8.74777 −0.731525
\(144\) 0 0
\(145\) 21.1898 1.75972
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 18.9713 1.55419 0.777094 0.629384i \(-0.216693\pi\)
0.777094 + 0.629384i \(0.216693\pi\)
\(150\) 0 0
\(151\) −6.55698 −0.533600 −0.266800 0.963752i \(-0.585966\pi\)
−0.266800 + 0.963752i \(0.585966\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 27.6964 2.22463
\(156\) 0 0
\(157\) 17.5651 1.40185 0.700925 0.713235i \(-0.252771\pi\)
0.700925 + 0.713235i \(0.252771\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 19.8078 1.56107
\(162\) 0 0
\(163\) 22.9436 1.79708 0.898540 0.438892i \(-0.144629\pi\)
0.898540 + 0.438892i \(0.144629\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.24621 0.483346 0.241673 0.970358i \(-0.422304\pi\)
0.241673 + 0.970358i \(0.422304\pi\)
\(168\) 0 0
\(169\) 25.7009 1.97699
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 16.9436 1.28820 0.644098 0.764943i \(-0.277233\pi\)
0.644098 + 0.764943i \(0.277233\pi\)
\(174\) 0 0
\(175\) −16.5318 −1.24969
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 18.2462 1.36379 0.681893 0.731452i \(-0.261157\pi\)
0.681893 + 0.731452i \(0.261157\pi\)
\(180\) 0 0
\(181\) 10.9273 0.812220 0.406110 0.913824i \(-0.366885\pi\)
0.406110 + 0.913824i \(0.366885\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 20.8840 1.53542
\(186\) 0 0
\(187\) −4.44844 −0.325302
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −15.5122 −1.12242 −0.561212 0.827672i \(-0.689665\pi\)
−0.561212 + 0.827672i \(0.689665\pi\)
\(192\) 0 0
\(193\) −9.56512 −0.688512 −0.344256 0.938876i \(-0.611869\pi\)
−0.344256 + 0.938876i \(0.611869\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −19.1394 −1.36362 −0.681812 0.731527i \(-0.738808\pi\)
−0.681812 + 0.731527i \(0.738808\pi\)
\(198\) 0 0
\(199\) 0.133749 0.00948125 0.00474062 0.999989i \(-0.498491\pi\)
0.00474062 + 0.999989i \(0.498491\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 15.5778 1.09335
\(204\) 0 0
\(205\) 5.75379 0.401862
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.40617 0.0972666
\(210\) 0 0
\(211\) 23.0117 1.58419 0.792095 0.610397i \(-0.208990\pi\)
0.792095 + 0.610397i \(0.208990\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.84818 0.398843
\(216\) 0 0
\(217\) 20.3612 1.38221
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 19.6803 1.32384
\(222\) 0 0
\(223\) −7.51471 −0.503222 −0.251611 0.967828i \(-0.580960\pi\)
−0.251611 + 0.967828i \(0.580960\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 5.81690 0.386081 0.193041 0.981191i \(-0.438165\pi\)
0.193041 + 0.981191i \(0.438165\pi\)
\(228\) 0 0
\(229\) −26.1702 −1.72938 −0.864688 0.502309i \(-0.832484\pi\)
−0.864688 + 0.502309i \(0.832484\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.22352 −0.145667 −0.0728337 0.997344i \(-0.523204\pi\)
−0.0728337 + 0.997344i \(0.523204\pi\)
\(234\) 0 0
\(235\) −33.5445 −2.18820
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 8.12873 0.525804 0.262902 0.964823i \(-0.415320\pi\)
0.262902 + 0.964823i \(0.415320\pi\)
\(240\) 0 0
\(241\) 25.9517 1.67170 0.835848 0.548960i \(-0.184976\pi\)
0.835848 + 0.548960i \(0.184976\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.48529 0.158779
\(246\) 0 0
\(247\) −6.22101 −0.395833
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.53741 −0.0970403 −0.0485202 0.998822i \(-0.515451\pi\)
−0.0485202 + 0.998822i \(0.515451\pi\)
\(252\) 0 0
\(253\) 11.1231 0.699304
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0.370318 0.0230998 0.0115499 0.999933i \(-0.496323\pi\)
0.0115499 + 0.999933i \(0.496323\pi\)
\(258\) 0 0
\(259\) 15.3530 0.953992
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −18.9067 −1.16584 −0.582919 0.812530i \(-0.698090\pi\)
−0.582919 + 0.812530i \(0.698090\pi\)
\(264\) 0 0
\(265\) 9.49342 0.583176
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 15.1898 0.926138 0.463069 0.886322i \(-0.346748\pi\)
0.463069 + 0.886322i \(0.346748\pi\)
\(270\) 0 0
\(271\) 28.4027 1.72534 0.862669 0.505768i \(-0.168791\pi\)
0.862669 + 0.505768i \(0.168791\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −9.28347 −0.559814
\(276\) 0 0
\(277\) 28.4647 1.71028 0.855139 0.518398i \(-0.173471\pi\)
0.855139 + 0.518398i \(0.173471\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 27.1394 1.61900 0.809500 0.587120i \(-0.199738\pi\)
0.809500 + 0.587120i \(0.199738\pi\)
\(282\) 0 0
\(283\) 26.9117 1.59974 0.799868 0.600175i \(-0.204903\pi\)
0.799868 + 0.600175i \(0.204903\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 4.22994 0.249685
\(288\) 0 0
\(289\) −6.99213 −0.411302
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −10.2714 −0.600062 −0.300031 0.953929i \(-0.596997\pi\)
−0.300031 + 0.953929i \(0.596997\pi\)
\(294\) 0 0
\(295\) −31.5097 −1.83457
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −49.2096 −2.84587
\(300\) 0 0
\(301\) 4.29933 0.247809
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −22.2398 −1.27345
\(306\) 0 0
\(307\) −5.05854 −0.288706 −0.144353 0.989526i \(-0.546110\pi\)
−0.144353 + 0.989526i \(0.546110\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −13.4222 −0.761105 −0.380553 0.924759i \(-0.624266\pi\)
−0.380553 + 0.924759i \(0.624266\pi\)
\(312\) 0 0
\(313\) 6.94001 0.392272 0.196136 0.980577i \(-0.437161\pi\)
0.196136 + 0.980577i \(0.437161\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −5.60448 −0.314779 −0.157389 0.987537i \(-0.550308\pi\)
−0.157389 + 0.987537i \(0.550308\pi\)
\(318\) 0 0
\(319\) 8.74777 0.489781
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −3.16352 −0.176023
\(324\) 0 0
\(325\) 41.0709 2.27820
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −24.6605 −1.35958
\(330\) 0 0
\(331\) −4.11140 −0.225983 −0.112992 0.993596i \(-0.536043\pi\)
−0.112992 + 0.993596i \(0.536043\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.37745 0.348437
\(336\) 0 0
\(337\) −0.632801 −0.0344709 −0.0172354 0.999851i \(-0.505486\pi\)
−0.0172354 + 0.999851i \(0.505486\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 11.4339 0.619179
\(342\) 0 0
\(343\) 19.3556 1.04510
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3.02871 −0.162590 −0.0812949 0.996690i \(-0.525906\pi\)
−0.0812949 + 0.996690i \(0.525906\pi\)
\(348\) 0 0
\(349\) 19.0954 1.02215 0.511076 0.859535i \(-0.329247\pi\)
0.511076 + 0.859535i \(0.329247\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −15.2025 −0.809147 −0.404573 0.914506i \(-0.632580\pi\)
−0.404573 + 0.914506i \(0.632580\pi\)
\(354\) 0 0
\(355\) 44.3079 2.35162
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −34.9411 −1.84412 −0.922059 0.387048i \(-0.873495\pi\)
−0.922059 + 0.387048i \(0.873495\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 21.4133 1.12082
\(366\) 0 0
\(367\) −7.60839 −0.397155 −0.198577 0.980085i \(-0.563632\pi\)
−0.198577 + 0.980085i \(0.563632\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 6.97916 0.362340
\(372\) 0 0
\(373\) 9.38739 0.486060 0.243030 0.970019i \(-0.421859\pi\)
0.243030 + 0.970019i \(0.421859\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −38.7009 −1.99320
\(378\) 0 0
\(379\) −11.0046 −0.565267 −0.282633 0.959228i \(-0.591208\pi\)
−0.282633 + 0.959228i \(0.591208\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 20.6923 1.05733 0.528665 0.848831i \(-0.322693\pi\)
0.528665 + 0.848831i \(0.322693\pi\)
\(384\) 0 0
\(385\) −11.9936 −0.611249
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 14.4306 0.731659 0.365830 0.930682i \(-0.380785\pi\)
0.365830 + 0.930682i \(0.380785\pi\)
\(390\) 0 0
\(391\) −25.0242 −1.26553
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −38.3342 −1.92880
\(396\) 0 0
\(397\) −14.2739 −0.716388 −0.358194 0.933647i \(-0.616607\pi\)
−0.358194 + 0.933647i \(0.616607\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5.38559 −0.268943 −0.134472 0.990917i \(-0.542934\pi\)
−0.134472 + 0.990917i \(0.542934\pi\)
\(402\) 0 0
\(403\) −50.5845 −2.51979
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8.62155 0.427354
\(408\) 0 0
\(409\) 5.07983 0.251182 0.125591 0.992082i \(-0.459917\pi\)
0.125591 + 0.992082i \(0.459917\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −23.1646 −1.13985
\(414\) 0 0
\(415\) −6.14539 −0.301666
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4.30576 0.210350 0.105175 0.994454i \(-0.466460\pi\)
0.105175 + 0.994454i \(0.466460\pi\)
\(420\) 0 0
\(421\) −17.8670 −0.870782 −0.435391 0.900241i \(-0.643390\pi\)
−0.435391 + 0.900241i \(0.643390\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 20.8855 1.01309
\(426\) 0 0
\(427\) −16.3497 −0.791219
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −18.1958 −0.876461 −0.438230 0.898863i \(-0.644395\pi\)
−0.438230 + 0.898863i \(0.644395\pi\)
\(432\) 0 0
\(433\) −16.6074 −0.798100 −0.399050 0.916929i \(-0.630660\pi\)
−0.399050 + 0.916929i \(0.630660\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 7.91023 0.378398
\(438\) 0 0
\(439\) 11.6084 0.554038 0.277019 0.960864i \(-0.410653\pi\)
0.277019 + 0.960864i \(0.410653\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 23.8140 1.13144 0.565720 0.824598i \(-0.308598\pi\)
0.565720 + 0.824598i \(0.308598\pi\)
\(444\) 0 0
\(445\) −25.7992 −1.22300
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −3.72336 −0.175716 −0.0878582 0.996133i \(-0.528002\pi\)
−0.0878582 + 0.996133i \(0.528002\pi\)
\(450\) 0 0
\(451\) 2.37533 0.111850
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 53.0607 2.48752
\(456\) 0 0
\(457\) 26.7719 1.25234 0.626169 0.779688i \(-0.284622\pi\)
0.626169 + 0.779688i \(0.284622\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −7.76735 −0.361761 −0.180881 0.983505i \(-0.557895\pi\)
−0.180881 + 0.983505i \(0.557895\pi\)
\(462\) 0 0
\(463\) 13.7928 0.641004 0.320502 0.947248i \(-0.396148\pi\)
0.320502 + 0.947248i \(0.396148\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 27.7282 1.28311 0.641554 0.767078i \(-0.278290\pi\)
0.641554 + 0.767078i \(0.278290\pi\)
\(468\) 0 0
\(469\) 4.68843 0.216492
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 2.41430 0.111010
\(474\) 0 0
\(475\) −6.60197 −0.302919
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 14.0163 0.640420 0.320210 0.947347i \(-0.396247\pi\)
0.320210 + 0.947347i \(0.396247\pi\)
\(480\) 0 0
\(481\) −38.1425 −1.73915
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −16.3916 −0.744304
\(486\) 0 0
\(487\) 37.5764 1.70275 0.851374 0.524559i \(-0.175770\pi\)
0.851374 + 0.524559i \(0.175770\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 5.24309 0.236617 0.118309 0.992977i \(-0.462253\pi\)
0.118309 + 0.992977i \(0.462253\pi\)
\(492\) 0 0
\(493\) −19.6803 −0.886356
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 32.5733 1.46111
\(498\) 0 0
\(499\) −29.0542 −1.30065 −0.650323 0.759658i \(-0.725367\pi\)
−0.650323 + 0.759658i \(0.725367\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −31.5512 −1.40680 −0.703399 0.710796i \(-0.748335\pi\)
−0.703399 + 0.710796i \(0.748335\pi\)
\(504\) 0 0
\(505\) −55.3373 −2.46248
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −17.5097 −0.776104 −0.388052 0.921638i \(-0.626852\pi\)
−0.388052 + 0.921638i \(0.626852\pi\)
\(510\) 0 0
\(511\) 15.7421 0.696391
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 26.1908 1.15410
\(516\) 0 0
\(517\) −13.8482 −0.609042
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 37.8780 1.65947 0.829733 0.558161i \(-0.188493\pi\)
0.829733 + 0.558161i \(0.188493\pi\)
\(522\) 0 0
\(523\) −28.3739 −1.24070 −0.620352 0.784324i \(-0.713010\pi\)
−0.620352 + 0.784324i \(0.713010\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −25.7234 −1.12053
\(528\) 0 0
\(529\) 39.5718 1.72051
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −10.5087 −0.455182
\(534\) 0 0
\(535\) 40.4945 1.75073
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.02600 0.0441930
\(540\) 0 0
\(541\) 38.5868 1.65898 0.829488 0.558524i \(-0.188632\pi\)
0.829488 + 0.558524i \(0.188632\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 19.2615 0.825071
\(546\) 0 0
\(547\) 13.3947 0.572717 0.286359 0.958123i \(-0.407555\pi\)
0.286359 + 0.958123i \(0.407555\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 6.22101 0.265024
\(552\) 0 0
\(553\) −28.1816 −1.19841
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −4.46471 −0.189176 −0.0945879 0.995517i \(-0.530153\pi\)
−0.0945879 + 0.995517i \(0.530153\pi\)
\(558\) 0 0
\(559\) −10.6811 −0.451762
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −22.1171 −0.932124 −0.466062 0.884752i \(-0.654328\pi\)
−0.466062 + 0.884752i \(0.654328\pi\)
\(564\) 0 0
\(565\) −30.0163 −1.26279
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −6.70238 −0.280978 −0.140489 0.990082i \(-0.544868\pi\)
−0.140489 + 0.990082i \(0.544868\pi\)
\(570\) 0 0
\(571\) 6.37533 0.266799 0.133400 0.991062i \(-0.457411\pi\)
0.133400 + 0.991062i \(0.457411\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −52.2231 −2.17785
\(576\) 0 0
\(577\) 44.5654 1.85528 0.927641 0.373474i \(-0.121834\pi\)
0.927641 + 0.373474i \(0.121834\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4.51783 −0.187431
\(582\) 0 0
\(583\) 3.91917 0.162315
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −29.6311 −1.22301 −0.611503 0.791242i \(-0.709435\pi\)
−0.611503 + 0.791242i \(0.709435\pi\)
\(588\) 0 0
\(589\) 8.13124 0.335042
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −43.6572 −1.79279 −0.896393 0.443259i \(-0.853822\pi\)
−0.896393 + 0.443259i \(0.853822\pi\)
\(594\) 0 0
\(595\) 26.9825 1.10618
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −12.5661 −0.513438 −0.256719 0.966486i \(-0.582641\pi\)
−0.256719 + 0.966486i \(0.582641\pi\)
\(600\) 0 0
\(601\) −37.9213 −1.54684 −0.773421 0.633893i \(-0.781456\pi\)
−0.773421 + 0.633893i \(0.781456\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 30.7328 1.24947
\(606\) 0 0
\(607\) −1.93332 −0.0784710 −0.0392355 0.999230i \(-0.512492\pi\)
−0.0392355 + 0.999230i \(0.512492\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 61.2656 2.47854
\(612\) 0 0
\(613\) 18.4306 0.744404 0.372202 0.928152i \(-0.378603\pi\)
0.372202 + 0.928152i \(0.378603\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −30.5314 −1.22915 −0.614574 0.788859i \(-0.710672\pi\)
−0.614574 + 0.788859i \(0.710672\pi\)
\(618\) 0 0
\(619\) −28.9094 −1.16197 −0.580984 0.813915i \(-0.697332\pi\)
−0.580984 + 0.813915i \(0.697332\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −18.9665 −0.759875
\(624\) 0 0
\(625\) −14.4238 −0.576954
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −19.3963 −0.773382
\(630\) 0 0
\(631\) −32.5314 −1.29505 −0.647527 0.762042i \(-0.724197\pi\)
−0.647527 + 0.762042i \(0.724197\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 41.0457 1.62885
\(636\) 0 0
\(637\) −4.53912 −0.179846
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 30.1312 1.19011 0.595056 0.803684i \(-0.297130\pi\)
0.595056 + 0.803684i \(0.297130\pi\)
\(642\) 0 0
\(643\) −20.1752 −0.795633 −0.397817 0.917465i \(-0.630232\pi\)
−0.397817 + 0.917465i \(0.630232\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 14.2741 0.561174 0.280587 0.959829i \(-0.409471\pi\)
0.280587 + 0.959829i \(0.409471\pi\)
\(648\) 0 0
\(649\) −13.0081 −0.510614
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −9.21538 −0.360626 −0.180313 0.983609i \(-0.557711\pi\)
−0.180313 + 0.983609i \(0.557711\pi\)
\(654\) 0 0
\(655\) −3.13666 −0.122560
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −12.1511 −0.473339 −0.236669 0.971590i \(-0.576056\pi\)
−0.236669 + 0.971590i \(0.576056\pi\)
\(660\) 0 0
\(661\) 13.6924 0.532574 0.266287 0.963894i \(-0.414203\pi\)
0.266287 + 0.963894i \(0.414203\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −8.52927 −0.330751
\(666\) 0 0
\(667\) 49.2096 1.90540
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −9.18124 −0.354438
\(672\) 0 0
\(673\) 40.5341 1.56247 0.781237 0.624234i \(-0.214589\pi\)
0.781237 + 0.624234i \(0.214589\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −11.5653 −0.444492 −0.222246 0.974991i \(-0.571339\pi\)
−0.222246 + 0.974991i \(0.571339\pi\)
\(678\) 0 0
\(679\) −12.0504 −0.462452
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 44.2625 1.69366 0.846828 0.531866i \(-0.178509\pi\)
0.846828 + 0.531866i \(0.178509\pi\)
\(684\) 0 0
\(685\) −1.79064 −0.0684168
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −17.3387 −0.660554
\(690\) 0 0
\(691\) 32.6676 1.24274 0.621368 0.783519i \(-0.286577\pi\)
0.621368 + 0.783519i \(0.286577\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −15.4275 −0.585197
\(696\) 0 0
\(697\) −5.34391 −0.202415
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 8.73150 0.329784 0.164892 0.986312i \(-0.447272\pi\)
0.164892 + 0.986312i \(0.447272\pi\)
\(702\) 0 0
\(703\) 6.13124 0.231244
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −40.6816 −1.52999
\(708\) 0 0
\(709\) 14.3058 0.537264 0.268632 0.963243i \(-0.413428\pi\)
0.268632 + 0.963243i \(0.413428\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 64.3200 2.40880
\(714\) 0 0
\(715\) 29.7964 1.11432
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −21.4959 −0.801663 −0.400831 0.916152i \(-0.631279\pi\)
−0.400831 + 0.916152i \(0.631279\pi\)
\(720\) 0 0
\(721\) 19.2543 0.717069
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −41.0709 −1.52533
\(726\) 0 0
\(727\) 47.6002 1.76539 0.882696 0.469944i \(-0.155726\pi\)
0.882696 + 0.469944i \(0.155726\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −5.43158 −0.200894
\(732\) 0 0
\(733\) −49.7239 −1.83659 −0.918297 0.395892i \(-0.870435\pi\)
−0.918297 + 0.395892i \(0.870435\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.63280 0.0969805
\(738\) 0 0
\(739\) −35.5283 −1.30693 −0.653464 0.756957i \(-0.726685\pi\)
−0.653464 + 0.756957i \(0.726685\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 20.3612 0.746979 0.373490 0.927634i \(-0.378161\pi\)
0.373490 + 0.927634i \(0.378161\pi\)
\(744\) 0 0
\(745\) −64.6194 −2.36747
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 29.7699 1.08777
\(750\) 0 0
\(751\) −18.9868 −0.692840 −0.346420 0.938080i \(-0.612603\pi\)
−0.346420 + 0.938080i \(0.612603\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 22.3342 0.812824
\(756\) 0 0
\(757\) −22.4738 −0.816826 −0.408413 0.912797i \(-0.633918\pi\)
−0.408413 + 0.912797i \(0.633918\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.40973 0.0511028 0.0255514 0.999674i \(-0.491866\pi\)
0.0255514 + 0.999674i \(0.491866\pi\)
\(762\) 0 0
\(763\) 14.1602 0.512634
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 57.5492 2.07798
\(768\) 0 0
\(769\) −0.114116 −0.00411512 −0.00205756 0.999998i \(-0.500655\pi\)
−0.00205756 + 0.999998i \(0.500655\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 46.1799 1.66097 0.830487 0.557038i \(-0.188062\pi\)
0.830487 + 0.557038i \(0.188062\pi\)
\(774\) 0 0
\(775\) −53.6822 −1.92832
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.68923 0.0605228
\(780\) 0 0
\(781\) 18.2916 0.654525
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −59.8297 −2.13541
\(786\) 0 0
\(787\) −12.6847 −0.452159 −0.226080 0.974109i \(-0.572591\pi\)
−0.226080 + 0.974109i \(0.572591\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −22.0667 −0.784601
\(792\) 0 0
\(793\) 40.6186 1.44241
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −39.2796 −1.39135 −0.695677 0.718355i \(-0.744895\pi\)
−0.695677 + 0.718355i \(0.744895\pi\)
\(798\) 0 0
\(799\) 31.1549 1.10218
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 8.84004 0.311958
\(804\) 0 0
\(805\) −67.4685 −2.37795
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.09896 0.0386374 0.0193187 0.999813i \(-0.493850\pi\)
0.0193187 + 0.999813i \(0.493850\pi\)
\(810\) 0 0
\(811\) −36.5627 −1.28389 −0.641944 0.766751i \(-0.721872\pi\)
−0.641944 + 0.766751i \(0.721872\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −78.1496 −2.73746
\(816\) 0 0
\(817\) 1.71694 0.0600681
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 17.8823 0.624097 0.312049 0.950066i \(-0.398985\pi\)
0.312049 + 0.950066i \(0.398985\pi\)
\(822\) 0 0
\(823\) 8.31328 0.289783 0.144891 0.989448i \(-0.453717\pi\)
0.144891 + 0.989448i \(0.453717\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0.280204 0.00974363 0.00487182 0.999988i \(-0.498449\pi\)
0.00487182 + 0.999988i \(0.498449\pi\)
\(828\) 0 0
\(829\) 6.04148 0.209829 0.104915 0.994481i \(-0.466543\pi\)
0.104915 + 0.994481i \(0.466543\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2.30824 −0.0799759
\(834\) 0 0
\(835\) −21.2756 −0.736274
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 29.5942 1.02171 0.510853 0.859668i \(-0.329330\pi\)
0.510853 + 0.859668i \(0.329330\pi\)
\(840\) 0 0
\(841\) 9.70093 0.334515
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −87.5416 −3.01152
\(846\) 0 0
\(847\) 22.5934 0.776320
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 48.4996 1.66254
\(852\) 0 0
\(853\) 15.2331 0.521570 0.260785 0.965397i \(-0.416019\pi\)
0.260785 + 0.965397i \(0.416019\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.25535 0.0770412 0.0385206 0.999258i \(-0.487735\pi\)
0.0385206 + 0.999258i \(0.487735\pi\)
\(858\) 0 0
\(859\) 1.91686 0.0654025 0.0327013 0.999465i \(-0.489589\pi\)
0.0327013 + 0.999465i \(0.489589\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −35.8530 −1.22045 −0.610225 0.792228i \(-0.708921\pi\)
−0.610225 + 0.792228i \(0.708921\pi\)
\(864\) 0 0
\(865\) −57.7126 −1.96229
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −15.8255 −0.536843
\(870\) 0 0
\(871\) −11.6478 −0.394669
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 13.6636 0.461915
\(876\) 0 0
\(877\) 48.2323 1.62869 0.814344 0.580383i \(-0.197097\pi\)
0.814344 + 0.580383i \(0.197097\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −4.77336 −0.160819 −0.0804094 0.996762i \(-0.525623\pi\)
−0.0804094 + 0.996762i \(0.525623\pi\)
\(882\) 0 0
\(883\) 22.2144 0.747573 0.373787 0.927515i \(-0.378059\pi\)
0.373787 + 0.927515i \(0.378059\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 42.1729 1.41603 0.708014 0.706198i \(-0.249591\pi\)
0.708014 + 0.706198i \(0.249591\pi\)
\(888\) 0 0
\(889\) 30.1750 1.01204
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −9.84818 −0.329557
\(894\) 0 0
\(895\) −62.1496 −2.07743
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 50.5845 1.68709
\(900\) 0 0
\(901\) −8.81714 −0.293742
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −37.2202 −1.23724
\(906\) 0 0
\(907\) 26.7564 0.888430 0.444215 0.895920i \(-0.353483\pi\)
0.444215 + 0.895920i \(0.353483\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −11.1281 −0.368691 −0.184346 0.982861i \(-0.559017\pi\)
−0.184346 + 0.982861i \(0.559017\pi\)
\(912\) 0 0
\(913\) −2.53700 −0.0839625
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −2.30594 −0.0761489
\(918\) 0 0
\(919\) 5.45195 0.179843 0.0899216 0.995949i \(-0.471338\pi\)
0.0899216 + 0.995949i \(0.471338\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −80.9237 −2.66364
\(924\) 0 0
\(925\) −40.4783 −1.33092
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.94402 0.0637813 0.0318906 0.999491i \(-0.489847\pi\)
0.0318906 + 0.999491i \(0.489847\pi\)
\(930\) 0 0
\(931\) 0.729644 0.0239131
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 15.1521 0.495527
\(936\) 0 0
\(937\) −11.2897 −0.368820 −0.184410 0.982849i \(-0.559037\pi\)
−0.184410 + 0.982849i \(0.559037\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −51.4229 −1.67634 −0.838170 0.545409i \(-0.816374\pi\)
−0.838170 + 0.545409i \(0.816374\pi\)
\(942\) 0 0
\(943\) 13.3622 0.435133
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.94045 −0.0630563 −0.0315281 0.999503i \(-0.510037\pi\)
−0.0315281 + 0.999503i \(0.510037\pi\)
\(948\) 0 0
\(949\) −39.1092 −1.26954
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 23.4523 0.759693 0.379847 0.925049i \(-0.375977\pi\)
0.379847 + 0.925049i \(0.375977\pi\)
\(954\) 0 0
\(955\) 52.8371 1.70977
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −1.31640 −0.0425088
\(960\) 0 0
\(961\) 35.1171 1.13281
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 32.5804 1.04880
\(966\) 0 0
\(967\) −59.0194 −1.89794 −0.948968 0.315373i \(-0.897870\pi\)
−0.948968 + 0.315373i \(0.897870\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 39.7743 1.27642 0.638209 0.769863i \(-0.279676\pi\)
0.638209 + 0.769863i \(0.279676\pi\)
\(972\) 0 0
\(973\) −11.3416 −0.363595
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 41.9538 1.34222 0.671111 0.741357i \(-0.265817\pi\)
0.671111 + 0.741357i \(0.265817\pi\)
\(978\) 0 0
\(979\) −10.6507 −0.340397
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 7.93132 0.252970 0.126485 0.991969i \(-0.459630\pi\)
0.126485 + 0.991969i \(0.459630\pi\)
\(984\) 0 0
\(985\) 65.1919 2.07719
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 13.5814 0.431863
\(990\) 0 0
\(991\) −24.8408 −0.789093 −0.394546 0.918876i \(-0.629098\pi\)
−0.394546 + 0.918876i \(0.629098\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −0.455573 −0.0144426
\(996\) 0 0
\(997\) 28.1157 0.890433 0.445216 0.895423i \(-0.353127\pi\)
0.445216 + 0.895423i \(0.353127\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5472.2.a.bt.1.1 4
3.2 odd 2 608.2.a.i.1.4 4
4.3 odd 2 5472.2.a.bs.1.1 4
12.11 even 2 608.2.a.j.1.2 yes 4
24.5 odd 2 1216.2.a.x.1.1 4
24.11 even 2 1216.2.a.w.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
608.2.a.i.1.4 4 3.2 odd 2
608.2.a.j.1.2 yes 4 12.11 even 2
1216.2.a.w.1.3 4 24.11 even 2
1216.2.a.x.1.1 4 24.5 odd 2
5472.2.a.bs.1.1 4 4.3 odd 2
5472.2.a.bt.1.1 4 1.1 even 1 trivial