# Properties

 Label 547.2.o Level 547 Weight 2 Character orbit o Rep. character $$\chi_{547}(4,\cdot)$$ Character field $$\Q(\zeta_{273})$$ Dimension 6480 Newform subspaces 1 Sturm bound 91 Trace bound 0

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$547$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 547.o (of order $$273$$ and degree $$144$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$547$$ Character field: $$\Q(\zeta_{273})$$ Newform subspaces: $$1$$ Sturm bound: $$91$$ Trace bound: $$0$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(547, [\chi])$$.

Total New Old
Modular forms 6768 6768 0
Cusp forms 6480 6480 0
Eisenstein series 288 288 0

## Trace form

 $$6480q - 143q^{2} - 94q^{3} - 189q^{4} - 141q^{5} - 114q^{6} - 154q^{7} - 130q^{8} - 1178q^{9} + O(q^{10})$$ $$6480q - 143q^{2} - 94q^{3} - 189q^{4} - 141q^{5} - 114q^{6} - 154q^{7} - 130q^{8} - 1178q^{9} - 152q^{10} - 161q^{11} - 99q^{12} - 158q^{13} - 174q^{14} - 71q^{15} - 235q^{16} - 146q^{17} + 33q^{18} - 144q^{19} - 138q^{20} - 98q^{21} - 226q^{22} - 115q^{23} - 123q^{24} - 208q^{25} - 65q^{26} + 131q^{27} - 48q^{28} - 207q^{29} - 56q^{30} - 215q^{31} - 151q^{32} - 63q^{33} - 70q^{34} - 192q^{35} - 17q^{36} - 124q^{37} - 61q^{38} - 268q^{39} - 51q^{40} + 533q^{41} + 292q^{42} - 166q^{43} - 20q^{44} + 51q^{45} - 233q^{46} - 96q^{47} - 211q^{48} - 213q^{49} + 12q^{50} - 213q^{51} - 279q^{52} - 178q^{53} + 173q^{54} - 233q^{55} + 170q^{56} - 22q^{57} + 36q^{58} - 133q^{59} + 225q^{60} - 117q^{61} - 176q^{62} + 202q^{63} + 154q^{64} - 320q^{65} - 124q^{66} - 78q^{67} + 441q^{68} + 203q^{69} - 522q^{70} - 195q^{71} + 564q^{72} - 254q^{73} + 22q^{74} - 326q^{75} - 186q^{76} - 182q^{77} - 100q^{78} - 268q^{79} - 299q^{80} - 776q^{81} - 242q^{82} + 78q^{83} + 162q^{84} - 144q^{85} - 132q^{86} - 84q^{87} + 333q^{88} - 167q^{89} - 134q^{90} - 268q^{91} - 261q^{92} - 21q^{93} + 297q^{94} - 65q^{95} - 567q^{96} + 427q^{97} - 237q^{98} + 237q^{99} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(547, [\chi])$$ into newform subspaces

Label Dim. $$A$$ Field CM Traces $q$-expansion
$$a_2$$ $$a_3$$ $$a_5$$ $$a_7$$
547.2.o.a $$6480$$ $$4.368$$ None $$-143$$ $$-94$$ $$-141$$ $$-154$$

## Hecke characteristic polynomials

There are no characteristic polynomials of Hecke operators in the database