Properties

Label 546.2.u.a.185.18
Level $546$
Weight $2$
Character 546.185
Analytic conductor $4.360$
Analytic rank $0$
Dimension $76$
CM no
Inner twists $4$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.u (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(76\)
Relative dimension: \(38\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 185.18
Character \(\chi\) \(=\) 546.185
Dual form 546.2.u.a.425.18

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(1.69393 + 0.361382i) q^{3} +(0.500000 + 0.866025i) q^{4} +(0.0272832 + 0.0472559i) q^{5} +(-1.28630 - 1.15993i) q^{6} +(2.23165 - 1.42118i) q^{7} -1.00000i q^{8} +(2.73881 + 1.22431i) q^{9} +O(q^{10})\) \(q+(-0.866025 - 0.500000i) q^{2} +(1.69393 + 0.361382i) q^{3} +(0.500000 + 0.866025i) q^{4} +(0.0272832 + 0.0472559i) q^{5} +(-1.28630 - 1.15993i) q^{6} +(2.23165 - 1.42118i) q^{7} -1.00000i q^{8} +(2.73881 + 1.22431i) q^{9} -0.0545664i q^{10} +4.73776i q^{11} +(0.533999 + 1.64768i) q^{12} +(1.35013 + 3.34322i) q^{13} +(-2.64325 + 0.114956i) q^{14} +(0.0291384 + 0.0899079i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-1.64679 - 2.85233i) q^{17} +(-1.75972 - 2.42969i) q^{18} -0.566108i q^{19} +(-0.0272832 + 0.0472559i) q^{20} +(4.29384 - 1.60091i) q^{21} +(2.36888 - 4.10302i) q^{22} +(-5.33783 - 3.08180i) q^{23} +(0.361382 - 1.69393i) q^{24} +(2.49851 - 4.32755i) q^{25} +(0.502363 - 3.57038i) q^{26} +(4.19690 + 3.06366i) q^{27} +(2.34660 + 1.22207i) q^{28} +(0.837457 - 0.483506i) q^{29} +(0.0197193 - 0.0924317i) q^{30} +(5.91042 + 3.41238i) q^{31} +(0.866025 - 0.500000i) q^{32} +(-1.71214 + 8.02543i) q^{33} +3.29359i q^{34} +(0.128046 + 0.0666840i) q^{35} +(0.309116 + 2.98403i) q^{36} +(-4.88894 + 8.46790i) q^{37} +(-0.283054 + 0.490264i) q^{38} +(1.07885 + 6.15110i) q^{39} +(0.0472559 - 0.0272832i) q^{40} +(0.229870 + 0.398146i) q^{41} +(-4.51903 - 0.760497i) q^{42} +(5.30399 - 9.18678i) q^{43} +(-4.10302 + 2.36888i) q^{44} +(0.0168673 + 0.162828i) q^{45} +(3.08180 + 5.33783i) q^{46} +(-2.56444 - 4.44174i) q^{47} +(-1.15993 + 1.28630i) q^{48} +(2.96049 - 6.34315i) q^{49} +(-4.32755 + 2.49851i) q^{50} +(-1.75877 - 5.42677i) q^{51} +(-2.22025 + 2.84086i) q^{52} +(4.60984 + 2.66149i) q^{53} +(-2.10279 - 4.75166i) q^{54} +(-0.223887 + 0.129261i) q^{55} +(-1.42118 - 2.23165i) q^{56} +(0.204582 - 0.958948i) q^{57} -0.967012 q^{58} +(4.92008 + 8.52182i) q^{59} +(-0.0632933 + 0.0701885i) q^{60} +1.14676i q^{61} +(-3.41238 - 5.91042i) q^{62} +(7.85202 - 1.16011i) q^{63} -1.00000 q^{64} +(-0.121151 + 0.155015i) q^{65} +(5.49547 - 6.09416i) q^{66} -3.18163 q^{67} +(1.64679 - 2.85233i) q^{68} +(-7.92821 - 7.14935i) q^{69} +(-0.0775487 - 0.121773i) q^{70} +(-0.679865 - 0.392520i) q^{71} +(1.22431 - 2.73881i) q^{72} +(-8.73107 - 5.04088i) q^{73} +(8.46790 - 4.88894i) q^{74} +(5.79621 - 6.42765i) q^{75} +(0.490264 - 0.283054i) q^{76} +(6.73321 + 10.5730i) q^{77} +(2.14124 - 5.86644i) q^{78} +(-4.29768 - 7.44380i) q^{79} -0.0545664 q^{80} +(6.00211 + 6.70631i) q^{81} -0.459740i q^{82} -12.9439 q^{83} +(3.53335 + 2.91813i) q^{84} +(0.0898595 - 0.155641i) q^{85} +(-9.18678 + 5.30399i) q^{86} +(1.59332 - 0.516383i) q^{87} +4.73776 q^{88} +(7.66189 - 13.2708i) q^{89} +(0.0668064 - 0.149447i) q^{90} +(7.76434 + 5.54211i) q^{91} -6.16359i q^{92} +(8.77867 + 7.91626i) q^{93} +5.12888i q^{94} +(0.0267519 - 0.0154452i) q^{95} +(1.64768 - 0.533999i) q^{96} +(-12.1215 - 6.99836i) q^{97} +(-5.73543 + 4.01308i) q^{98} +(-5.80050 + 12.9758i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 76q + 38q^{4} + 10q^{7} - 8q^{9} + O(q^{10}) \) \( 76q + 38q^{4} + 10q^{7} - 8q^{9} + 2q^{13} + 12q^{15} - 38q^{16} - 8q^{21} - 42q^{25} + 20q^{28} + 20q^{30} + 12q^{31} - 4q^{36} - 6q^{37} + 12q^{39} + 8q^{42} - 2q^{43} - 4q^{46} + 2q^{49} + 10q^{51} - 14q^{52} + 18q^{54} + 24q^{55} + 8q^{57} + 16q^{58} - 12q^{60} + 32q^{63} - 76q^{64} - 24q^{66} + 96q^{67} - 30q^{69} - 54q^{73} - 12q^{75} + 18q^{76} - 12q^{78} - 60q^{79} + 8q^{81} + 8q^{84} + 8q^{85} - 24q^{87} + 48q^{91} + 16q^{93} - 66q^{97} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.612372 0.353553i
\(3\) 1.69393 + 0.361382i 0.977992 + 0.208644i
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) 0.0272832 + 0.0472559i 0.0122014 + 0.0211335i 0.872062 0.489396i \(-0.162783\pi\)
−0.859860 + 0.510530i \(0.829449\pi\)
\(6\) −1.28630 1.15993i −0.525128 0.473540i
\(7\) 2.23165 1.42118i 0.843483 0.537156i
\(8\) 1.00000i 0.353553i
\(9\) 2.73881 + 1.22431i 0.912935 + 0.408105i
\(10\) 0.0545664i 0.0172554i
\(11\) 4.73776i 1.42849i 0.699897 + 0.714244i \(0.253229\pi\)
−0.699897 + 0.714244i \(0.746771\pi\)
\(12\) 0.533999 + 1.64768i 0.154152 + 0.475644i
\(13\) 1.35013 + 3.34322i 0.374459 + 0.927243i
\(14\) −2.64325 + 0.114956i −0.706439 + 0.0307234i
\(15\) 0.0291384 + 0.0899079i 0.00752350 + 0.0232141i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.64679 2.85233i −0.399406 0.691791i 0.594247 0.804283i \(-0.297450\pi\)
−0.993653 + 0.112491i \(0.964117\pi\)
\(18\) −1.75972 2.42969i −0.414770 0.572683i
\(19\) 0.566108i 0.129874i −0.997889 0.0649371i \(-0.979315\pi\)
0.997889 0.0649371i \(-0.0206847\pi\)
\(20\) −0.0272832 + 0.0472559i −0.00610071 + 0.0105667i
\(21\) 4.29384 1.60091i 0.936994 0.349346i
\(22\) 2.36888 4.10302i 0.505047 0.874766i
\(23\) −5.33783 3.08180i −1.11301 0.642599i −0.173406 0.984850i \(-0.555477\pi\)
−0.939608 + 0.342251i \(0.888811\pi\)
\(24\) 0.361382 1.69393i 0.0737669 0.345772i
\(25\) 2.49851 4.32755i 0.499702 0.865510i
\(26\) 0.502363 3.57038i 0.0985215 0.700210i
\(27\) 4.19690 + 3.06366i 0.807694 + 0.589602i
\(28\) 2.34660 + 1.22207i 0.443466 + 0.230950i
\(29\) 0.837457 0.483506i 0.155512 0.0897848i −0.420225 0.907420i \(-0.638049\pi\)
0.575736 + 0.817635i \(0.304715\pi\)
\(30\) 0.0197193 0.0924317i 0.00360024 0.0168756i
\(31\) 5.91042 + 3.41238i 1.06154 + 0.612882i 0.925859 0.377870i \(-0.123343\pi\)
0.135684 + 0.990752i \(0.456677\pi\)
\(32\) 0.866025 0.500000i 0.153093 0.0883883i
\(33\) −1.71214 + 8.02543i −0.298046 + 1.39705i
\(34\) 3.29359i 0.564845i
\(35\) 0.128046 + 0.0666840i 0.0216437 + 0.0112717i
\(36\) 0.309116 + 2.98403i 0.0515193 + 0.497339i
\(37\) −4.88894 + 8.46790i −0.803737 + 1.39211i 0.113403 + 0.993549i \(0.463825\pi\)
−0.917140 + 0.398564i \(0.869509\pi\)
\(38\) −0.283054 + 0.490264i −0.0459174 + 0.0795313i
\(39\) 1.07885 + 6.15110i 0.172754 + 0.984965i
\(40\) 0.0472559 0.0272832i 0.00747181 0.00431385i
\(41\) 0.229870 + 0.398146i 0.0358996 + 0.0621800i 0.883417 0.468588i \(-0.155237\pi\)
−0.847517 + 0.530768i \(0.821904\pi\)
\(42\) −4.51903 0.760497i −0.697302 0.117347i
\(43\) 5.30399 9.18678i 0.808850 1.40097i −0.104810 0.994492i \(-0.533423\pi\)
0.913661 0.406478i \(-0.133243\pi\)
\(44\) −4.10302 + 2.36888i −0.618553 + 0.357122i
\(45\) 0.0168673 + 0.162828i 0.00251443 + 0.0242729i
\(46\) 3.08180 + 5.33783i 0.454386 + 0.787020i
\(47\) −2.56444 4.44174i −0.374062 0.647895i 0.616124 0.787649i \(-0.288702\pi\)
−0.990186 + 0.139754i \(0.955369\pi\)
\(48\) −1.15993 + 1.28630i −0.167422 + 0.185661i
\(49\) 2.96049 6.34315i 0.422927 0.906164i
\(50\) −4.32755 + 2.49851i −0.612008 + 0.353343i
\(51\) −1.75877 5.42677i −0.246277 0.759900i
\(52\) −2.22025 + 2.84086i −0.307893 + 0.393956i
\(53\) 4.60984 + 2.66149i 0.633210 + 0.365584i 0.781994 0.623286i \(-0.214203\pi\)
−0.148784 + 0.988870i \(0.547536\pi\)
\(54\) −2.10279 4.75166i −0.286154 0.646619i
\(55\) −0.223887 + 0.129261i −0.0301889 + 0.0174296i
\(56\) −1.42118 2.23165i −0.189913 0.298216i
\(57\) 0.204582 0.958948i 0.0270975 0.127016i
\(58\) −0.967012 −0.126975
\(59\) 4.92008 + 8.52182i 0.640540 + 1.10945i 0.985312 + 0.170761i \(0.0546226\pi\)
−0.344773 + 0.938686i \(0.612044\pi\)
\(60\) −0.0632933 + 0.0701885i −0.00817113 + 0.00906130i
\(61\) 1.14676i 0.146827i 0.997302 + 0.0734135i \(0.0233893\pi\)
−0.997302 + 0.0734135i \(0.976611\pi\)
\(62\) −3.41238 5.91042i −0.433373 0.750624i
\(63\) 7.85202 1.16011i 0.989261 0.146160i
\(64\) −1.00000 −0.125000
\(65\) −0.121151 + 0.155015i −0.0150269 + 0.0192273i
\(66\) 5.49547 6.09416i 0.676446 0.750139i
\(67\) −3.18163 −0.388698 −0.194349 0.980932i \(-0.562259\pi\)
−0.194349 + 0.980932i \(0.562259\pi\)
\(68\) 1.64679 2.85233i 0.199703 0.345896i
\(69\) −7.92821 7.14935i −0.954444 0.860680i
\(70\) −0.0775487 0.121773i −0.00926885 0.0145546i
\(71\) −0.679865 0.392520i −0.0806851 0.0465836i 0.459115 0.888377i \(-0.348167\pi\)
−0.539800 + 0.841793i \(0.681500\pi\)
\(72\) 1.22431 2.73881i 0.144287 0.322771i
\(73\) −8.73107 5.04088i −1.02189 0.589991i −0.107242 0.994233i \(-0.534202\pi\)
−0.914652 + 0.404242i \(0.867535\pi\)
\(74\) 8.46790 4.88894i 0.984373 0.568328i
\(75\) 5.79621 6.42765i 0.669288 0.742201i
\(76\) 0.490264 0.283054i 0.0562372 0.0324685i
\(77\) 6.73321 + 10.5730i 0.767321 + 1.20490i
\(78\) 2.14124 5.86644i 0.242448 0.664243i
\(79\) −4.29768 7.44380i −0.483527 0.837493i 0.516294 0.856411i \(-0.327311\pi\)
−0.999821 + 0.0189184i \(0.993978\pi\)
\(80\) −0.0545664 −0.00610071
\(81\) 6.00211 + 6.70631i 0.666901 + 0.745146i
\(82\) 0.459740i 0.0507697i
\(83\) −12.9439 −1.42077 −0.710387 0.703811i \(-0.751480\pi\)
−0.710387 + 0.703811i \(0.751480\pi\)
\(84\) 3.53335 + 2.91813i 0.385520 + 0.318394i
\(85\) 0.0898595 0.155641i 0.00974664 0.0168817i
\(86\) −9.18678 + 5.30399i −0.990635 + 0.571944i
\(87\) 1.59332 0.516383i 0.170822 0.0553621i
\(88\) 4.73776 0.505047
\(89\) 7.66189 13.2708i 0.812159 1.40670i −0.0991917 0.995068i \(-0.531626\pi\)
0.911350 0.411632i \(-0.135041\pi\)
\(90\) 0.0668064 0.149447i 0.00704201 0.0157531i
\(91\) 7.76434 + 5.54211i 0.813924 + 0.580971i
\(92\) 6.16359i 0.642599i
\(93\) 8.77867 + 7.91626i 0.910306 + 0.820878i
\(94\) 5.12888i 0.529004i
\(95\) 0.0267519 0.0154452i 0.00274469 0.00158465i
\(96\) 1.64768 0.533999i 0.168165 0.0545011i
\(97\) −12.1215 6.99836i −1.23075 0.710575i −0.263566 0.964641i \(-0.584899\pi\)
−0.967187 + 0.254066i \(0.918232\pi\)
\(98\) −5.73543 + 4.01308i −0.579366 + 0.405383i
\(99\) −5.80050 + 12.9758i −0.582972 + 1.30412i
\(100\) 4.99702 0.499702
\(101\) 2.77670 0.276292 0.138146 0.990412i \(-0.455886\pi\)
0.138146 + 0.990412i \(0.455886\pi\)
\(102\) −1.19024 + 5.57911i −0.117852 + 0.552414i
\(103\) −8.11913 + 4.68758i −0.800002 + 0.461881i −0.843472 0.537174i \(-0.819492\pi\)
0.0434701 + 0.999055i \(0.486159\pi\)
\(104\) 3.34322 1.35013i 0.327830 0.132391i
\(105\) 0.192802 + 0.159232i 0.0188155 + 0.0155394i
\(106\) −2.66149 4.60984i −0.258507 0.447747i
\(107\) −1.71030 0.987440i −0.165341 0.0954595i 0.415046 0.909800i \(-0.363765\pi\)
−0.580387 + 0.814341i \(0.697099\pi\)
\(108\) −0.554755 + 5.16645i −0.0533814 + 0.497142i
\(109\) 0.563497 0.976006i 0.0539732 0.0934844i −0.837776 0.546013i \(-0.816145\pi\)
0.891750 + 0.452529i \(0.149478\pi\)
\(110\) 0.258522 0.0246491
\(111\) −11.3417 + 12.5773i −1.07650 + 1.19378i
\(112\) 0.114956 + 2.64325i 0.0108624 + 0.249764i
\(113\) −7.98058 4.60759i −0.750750 0.433445i 0.0752152 0.997167i \(-0.476036\pi\)
−0.825965 + 0.563722i \(0.809369\pi\)
\(114\) −0.656647 + 0.728183i −0.0615006 + 0.0682006i
\(115\) 0.336325i 0.0313625i
\(116\) 0.837457 + 0.483506i 0.0777559 + 0.0448924i
\(117\) −0.395406 + 10.8094i −0.0365553 + 0.999332i
\(118\) 9.84016i 0.905860i
\(119\) −7.72874 4.02500i −0.708492 0.368971i
\(120\) 0.0899079 0.0291384i 0.00820743 0.00265996i
\(121\) −11.4463 −1.04058
\(122\) 0.573378 0.993119i 0.0519112 0.0899128i
\(123\) 0.245501 + 0.757503i 0.0221360 + 0.0683018i
\(124\) 6.82476i 0.612882i
\(125\) 0.545501 0.0487911
\(126\) −7.38010 2.92133i −0.657471 0.260253i
\(127\) −0.435625 0.754524i −0.0386554 0.0669532i 0.846050 0.533103i \(-0.178974\pi\)
−0.884706 + 0.466150i \(0.845641\pi\)
\(128\) 0.866025 + 0.500000i 0.0765466 + 0.0441942i
\(129\) 12.3045 13.6450i 1.08335 1.20138i
\(130\) 0.182428 0.0736718i 0.0160000 0.00646145i
\(131\) 5.35095 + 9.26812i 0.467515 + 0.809760i 0.999311 0.0371126i \(-0.0118160\pi\)
−0.531796 + 0.846872i \(0.678483\pi\)
\(132\) −7.80630 + 2.52996i −0.679451 + 0.220205i
\(133\) −0.804543 1.26335i −0.0697627 0.109547i
\(134\) 2.75537 + 1.59081i 0.238028 + 0.137425i
\(135\) −0.0302710 + 0.281915i −0.00260531 + 0.0242634i
\(136\) −2.85233 + 1.64679i −0.244585 + 0.141211i
\(137\) −4.05094 + 2.33881i −0.346095 + 0.199818i −0.662964 0.748651i \(-0.730702\pi\)
0.316869 + 0.948469i \(0.397368\pi\)
\(138\) 3.29135 + 10.1556i 0.280179 + 0.864504i
\(139\) −16.9346 9.77718i −1.43637 0.829289i −0.438776 0.898597i \(-0.644588\pi\)
−0.997595 + 0.0693072i \(0.977921\pi\)
\(140\) 0.00627275 + 0.144233i 0.000530144 + 0.0121899i
\(141\) −2.73882 8.45075i −0.230650 0.711682i
\(142\) 0.392520 + 0.679865i 0.0329396 + 0.0570530i
\(143\) −15.8394 + 6.39660i −1.32456 + 0.534910i
\(144\) −2.42969 + 1.75972i −0.202474 + 0.146643i
\(145\) 0.0456970 + 0.0263832i 0.00379493 + 0.00219100i
\(146\) 5.04088 + 8.73107i 0.417187 + 0.722588i
\(147\) 7.30716 9.67499i 0.602685 0.797980i
\(148\) −9.77788 −0.803737
\(149\) 23.3685i 1.91442i −0.289396 0.957209i \(-0.593454\pi\)
0.289396 0.957209i \(-0.406546\pi\)
\(150\) −8.23349 + 2.66841i −0.672261 + 0.217874i
\(151\) −9.78550 + 16.9490i −0.796333 + 1.37929i 0.125656 + 0.992074i \(0.459896\pi\)
−0.921989 + 0.387215i \(0.873437\pi\)
\(152\) −0.566108 −0.0459174
\(153\) −1.01810 9.82817i −0.0823085 0.794560i
\(154\) −0.544635 12.5231i −0.0438880 1.00914i
\(155\) 0.372403i 0.0299121i
\(156\) −4.78759 + 4.00986i −0.383314 + 0.321046i
\(157\) −7.99582 4.61639i −0.638136 0.368428i 0.145760 0.989320i \(-0.453437\pi\)
−0.783896 + 0.620892i \(0.786771\pi\)
\(158\) 8.59536i 0.683810i
\(159\) 6.84693 + 6.17429i 0.542997 + 0.489653i
\(160\) 0.0472559 + 0.0272832i 0.00373590 + 0.00215693i
\(161\) −16.2919 + 0.708544i −1.28398 + 0.0558411i
\(162\) −1.84482 8.80889i −0.144943 0.692092i
\(163\) 4.23279 0.331538 0.165769 0.986165i \(-0.446989\pi\)
0.165769 + 0.986165i \(0.446989\pi\)
\(164\) −0.229870 + 0.398146i −0.0179498 + 0.0310900i
\(165\) −0.425962 + 0.138051i −0.0331611 + 0.0107472i
\(166\) 11.2097 + 6.47194i 0.870043 + 0.502320i
\(167\) 5.39330 + 9.34146i 0.417346 + 0.722864i 0.995672 0.0929418i \(-0.0296270\pi\)
−0.578326 + 0.815806i \(0.696294\pi\)
\(168\) −1.60091 4.29384i −0.123513 0.331277i
\(169\) −9.35429 + 9.02759i −0.719561 + 0.694430i
\(170\) −0.155641 + 0.0898595i −0.0119371 + 0.00689191i
\(171\) 0.693094 1.55046i 0.0530022 0.118567i
\(172\) 10.6080 0.808850
\(173\) −25.4354 −1.93382 −0.966908 0.255124i \(-0.917884\pi\)
−0.966908 + 0.255124i \(0.917884\pi\)
\(174\) −1.63805 0.349461i −0.124180 0.0264926i
\(175\) −0.574440 13.2084i −0.0434236 0.998461i
\(176\) −4.10302 2.36888i −0.309277 0.178561i
\(177\) 5.25464 + 16.2134i 0.394963 + 1.21867i
\(178\) −13.2708 + 7.66189i −0.994687 + 0.574283i
\(179\) 4.85816i 0.363116i −0.983380 0.181558i \(-0.941886\pi\)
0.983380 0.181558i \(-0.0581140\pi\)
\(180\) −0.132579 + 0.0960215i −0.00988188 + 0.00715702i
\(181\) 6.63622i 0.493266i 0.969109 + 0.246633i \(0.0793243\pi\)
−0.969109 + 0.246633i \(0.920676\pi\)
\(182\) −3.95306 8.68178i −0.293021 0.643536i
\(183\) −0.414417 + 1.94252i −0.0306346 + 0.143596i
\(184\) −3.08180 + 5.33783i −0.227193 + 0.393510i
\(185\) −0.533544 −0.0392269
\(186\) −3.64442 11.2450i −0.267222 0.824525i
\(187\) 13.5136 7.80210i 0.988215 0.570546i
\(188\) 2.56444 4.44174i 0.187031 0.323947i
\(189\) 13.7200 + 0.872442i 0.997984 + 0.0634608i
\(190\) −0.0308905 −0.00224103
\(191\) 11.7572i 0.850724i 0.905023 + 0.425362i \(0.139853\pi\)
−0.905023 + 0.425362i \(0.860147\pi\)
\(192\) −1.69393 0.361382i −0.122249 0.0260805i
\(193\) 23.3987 1.68427 0.842137 0.539263i \(-0.181297\pi\)
0.842137 + 0.539263i \(0.181297\pi\)
\(194\) 6.99836 + 12.1215i 0.502453 + 0.870274i
\(195\) −0.261241 + 0.218804i −0.0187079 + 0.0156689i
\(196\) 6.97357 0.607718i 0.498112 0.0434084i
\(197\) 8.57934 4.95328i 0.611253 0.352907i −0.162203 0.986757i \(-0.551860\pi\)
0.773456 + 0.633851i \(0.218527\pi\)
\(198\) 11.5113 8.33712i 0.818071 0.592493i
\(199\) 2.66634 1.53941i 0.189012 0.109126i −0.402508 0.915416i \(-0.631861\pi\)
0.591520 + 0.806290i \(0.298528\pi\)
\(200\) −4.32755 2.49851i −0.306004 0.176671i
\(201\) −5.38946 1.14978i −0.380143 0.0810996i
\(202\) −2.40470 1.38835i −0.169194 0.0976841i
\(203\) 1.18176 2.26919i 0.0829431 0.159266i
\(204\) 3.82034 4.23653i 0.267477 0.296616i
\(205\) −0.0125432 + 0.0217254i −0.000876052 + 0.00151737i
\(206\) 9.37516 0.653199
\(207\) −10.8462 14.9756i −0.753862 1.04088i
\(208\) −3.57038 0.502363i −0.247561 0.0348326i
\(209\) 2.68208 0.185524
\(210\) −0.0873557 0.234300i −0.00602811 0.0161682i
\(211\) 1.29565 + 2.24413i 0.0891960 + 0.154492i 0.907172 0.420761i \(-0.138237\pi\)
−0.817976 + 0.575253i \(0.804904\pi\)
\(212\) 5.32298i 0.365584i
\(213\) −1.00979 0.910593i −0.0691900 0.0623928i
\(214\) 0.987440 + 1.71030i 0.0675000 + 0.116913i
\(215\) 0.578839 0.0394765
\(216\) 3.06366 4.19690i 0.208456 0.285563i
\(217\) 18.0396 0.784550i 1.22461 0.0532587i
\(218\) −0.976006 + 0.563497i −0.0661035 + 0.0381649i
\(219\) −12.9681 11.6942i −0.876306 0.790218i
\(220\) −0.223887 0.129261i −0.0150944 0.00871478i
\(221\) 7.31259 9.35662i 0.491898 0.629394i
\(222\) 16.1108 5.22138i 1.08129 0.350436i
\(223\) −20.4174 + 11.7880i −1.36725 + 0.789382i −0.990576 0.136964i \(-0.956265\pi\)
−0.376673 + 0.926346i \(0.622932\pi\)
\(224\) 1.22207 2.34660i 0.0816531 0.156789i
\(225\) 12.1412 8.79335i 0.809414 0.586223i
\(226\) 4.60759 + 7.98058i 0.306492 + 0.530860i
\(227\) 13.0526 + 22.6078i 0.866331 + 1.50053i 0.865719 + 0.500530i \(0.166861\pi\)
0.000611932 1.00000i \(0.499805\pi\)
\(228\) 0.932764 0.302301i 0.0617738 0.0200204i
\(229\) −18.5664 + 10.7193i −1.22690 + 0.708351i −0.966380 0.257118i \(-0.917227\pi\)
−0.260519 + 0.965469i \(0.583894\pi\)
\(230\) −0.168163 + 0.291266i −0.0110883 + 0.0192055i
\(231\) 7.58470 + 20.3432i 0.499037 + 1.33848i
\(232\) −0.483506 0.837457i −0.0317437 0.0549817i
\(233\) 22.2853 12.8664i 1.45996 0.842909i 0.460953 0.887425i \(-0.347508\pi\)
0.999009 + 0.0445157i \(0.0141745\pi\)
\(234\) 5.74714 9.16353i 0.375703 0.599039i
\(235\) 0.139932 0.242370i 0.00912818 0.0158105i
\(236\) −4.92008 + 8.52182i −0.320270 + 0.554724i
\(237\) −4.58992 14.1624i −0.298147 0.919946i
\(238\) 4.68078 + 7.35012i 0.303410 + 0.476437i
\(239\) 4.85891i 0.314297i 0.987575 + 0.157148i \(0.0502301\pi\)
−0.987575 + 0.157148i \(0.949770\pi\)
\(240\) −0.0924317 0.0197193i −0.00596644 0.00127288i
\(241\) 2.50327 1.44527i 0.161250 0.0930978i −0.417203 0.908813i \(-0.636990\pi\)
0.578454 + 0.815715i \(0.303656\pi\)
\(242\) 9.91282 + 5.72317i 0.637220 + 0.367899i
\(243\) 7.74362 + 13.5291i 0.496753 + 0.867892i
\(244\) −0.993119 + 0.573378i −0.0635779 + 0.0367067i
\(245\) 0.380522 0.0331609i 0.0243107 0.00211858i
\(246\) 0.166142 0.778767i 0.0105928 0.0496524i
\(247\) 1.89263 0.764321i 0.120425 0.0486326i
\(248\) 3.41238 5.91042i 0.216687 0.375312i
\(249\) −21.9260 4.67769i −1.38951 0.296436i
\(250\) −0.472418 0.272751i −0.0298783 0.0172503i
\(251\) 3.89281 6.74254i 0.245712 0.425586i −0.716620 0.697464i \(-0.754312\pi\)
0.962332 + 0.271879i \(0.0876449\pi\)
\(252\) 4.93069 + 6.21999i 0.310604 + 0.391823i
\(253\) 14.6008 25.2893i 0.917945 1.58993i
\(254\) 0.871249i 0.0546670i
\(255\) 0.208462 0.231172i 0.0130544 0.0144765i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 6.05714 10.4913i 0.377834 0.654428i −0.612913 0.790151i \(-0.710002\pi\)
0.990747 + 0.135723i \(0.0433356\pi\)
\(258\) −17.4785 + 5.66465i −1.08817 + 0.352666i
\(259\) 1.12403 + 25.8454i 0.0698438 + 1.60596i
\(260\) −0.194823 0.0274121i −0.0120824 0.00170003i
\(261\) 2.88559 0.298919i 0.178614 0.0185026i
\(262\) 10.7019i 0.661166i
\(263\) 9.10252i 0.561285i −0.959812 0.280643i \(-0.909452\pi\)
0.959812 0.280643i \(-0.0905476\pi\)
\(264\) 8.02543 + 1.71214i 0.493931 + 0.105375i
\(265\) 0.290456i 0.0178426i
\(266\) 0.0650778 + 1.49637i 0.00399017 + 0.0917482i
\(267\) 17.7745 19.7109i 1.08778 1.20629i
\(268\) −1.59081 2.75537i −0.0971745 0.168311i
\(269\) 5.77027 + 9.99440i 0.351819 + 0.609369i 0.986568 0.163349i \(-0.0522298\pi\)
−0.634749 + 0.772719i \(0.718896\pi\)
\(270\) 0.167173 0.229010i 0.0101738 0.0139371i
\(271\) 6.55095 + 3.78219i 0.397942 + 0.229752i 0.685595 0.727983i \(-0.259542\pi\)
−0.287654 + 0.957734i \(0.592875\pi\)
\(272\) 3.29359 0.199703
\(273\) 11.1494 + 12.1938i 0.674795 + 0.738005i
\(274\) 4.67762 0.282586
\(275\) 20.5029 + 11.8373i 1.23637 + 0.713818i
\(276\) 2.22741 10.4407i 0.134075 0.628456i
\(277\) −12.2398 21.2000i −0.735419 1.27378i −0.954539 0.298085i \(-0.903652\pi\)
0.219121 0.975698i \(-0.429681\pi\)
\(278\) 9.77718 + 16.9346i 0.586396 + 1.01567i
\(279\) 12.0097 + 16.5821i 0.719000 + 0.992742i
\(280\) 0.0666840 0.128046i 0.00398513 0.00765219i
\(281\) 22.3416i 1.33279i −0.745599 0.666394i \(-0.767837\pi\)
0.745599 0.666394i \(-0.232163\pi\)
\(282\) −1.85349 + 8.68797i −0.110374 + 0.517361i
\(283\) 16.8284i 1.00034i 0.865927 + 0.500171i \(0.166730\pi\)
−0.865927 + 0.500171i \(0.833270\pi\)
\(284\) 0.785040i 0.0465836i
\(285\) 0.0508976 0.0164955i 0.00301491 0.000977109i
\(286\) 16.9156 + 2.38007i 1.00024 + 0.140737i
\(287\) 1.07883 + 0.561835i 0.0636811 + 0.0331640i
\(288\) 2.98403 0.309116i 0.175836 0.0182148i
\(289\) 3.07615 5.32804i 0.180950 0.313414i
\(290\) −0.0263832 0.0456970i −0.00154927 0.00268342i
\(291\) −18.0039 16.2352i −1.05541 0.951726i
\(292\) 10.0818i 0.589991i
\(293\) −0.258953 + 0.448519i −0.0151282 + 0.0262028i −0.873490 0.486841i \(-0.838149\pi\)
0.858362 + 0.513044i \(0.171482\pi\)
\(294\) −11.1657 + 4.72520i −0.651196 + 0.275580i
\(295\) −0.268471 + 0.465005i −0.0156310 + 0.0270736i
\(296\) 8.46790 + 4.88894i 0.492186 + 0.284164i
\(297\) −14.5149 + 19.8839i −0.842238 + 1.15378i
\(298\) −11.6842 + 20.2377i −0.676849 + 1.17234i
\(299\) 3.09636 22.0064i 0.179067 1.27266i
\(300\) 8.46461 + 1.80584i 0.488705 + 0.104260i
\(301\) −1.21945 28.0396i −0.0702882 1.61617i
\(302\) 16.9490 9.78550i 0.975305 0.563092i
\(303\) 4.70355 + 1.00345i 0.270212 + 0.0576468i
\(304\) 0.490264 + 0.283054i 0.0281186 + 0.0162343i
\(305\) −0.0541909 + 0.0312871i −0.00310296 + 0.00179150i
\(306\) −4.03238 + 9.02049i −0.230516 + 0.515667i
\(307\) 5.00175i 0.285465i 0.989761 + 0.142732i \(0.0455888\pi\)
−0.989761 + 0.142732i \(0.954411\pi\)
\(308\) −5.78988 + 11.1176i −0.329909 + 0.633486i
\(309\) −15.4473 + 5.00633i −0.878764 + 0.284800i
\(310\) 0.186201 0.322510i 0.0105755 0.0183173i
\(311\) −11.8105 + 20.4564i −0.669712 + 1.15998i 0.308272 + 0.951298i \(0.400249\pi\)
−0.977985 + 0.208677i \(0.933084\pi\)
\(312\) 6.15110 1.07885i 0.348238 0.0610778i
\(313\) 24.0008 13.8569i 1.35661 0.783238i 0.367443 0.930046i \(-0.380233\pi\)
0.989165 + 0.146808i \(0.0469000\pi\)
\(314\) 4.61639 + 7.99582i 0.260518 + 0.451230i
\(315\) 0.269050 + 0.339403i 0.0151592 + 0.0191232i
\(316\) 4.29768 7.44380i 0.241763 0.418746i
\(317\) 9.71277 5.60767i 0.545524 0.314958i −0.201791 0.979429i \(-0.564676\pi\)
0.747315 + 0.664470i \(0.231343\pi\)
\(318\) −2.84247 8.77056i −0.159398 0.491829i
\(319\) 2.29073 + 3.96767i 0.128256 + 0.222147i
\(320\) −0.0272832 0.0472559i −0.00152518 0.00264168i
\(321\) −2.54028 2.29073i −0.141785 0.127856i
\(322\) 14.4635 + 7.53235i 0.806019 + 0.419761i
\(323\) −1.61473 + 0.932263i −0.0898458 + 0.0518725i
\(324\) −2.80678 + 8.55114i −0.155932 + 0.475063i
\(325\) 17.8413 + 2.51032i 0.989656 + 0.139248i
\(326\) −3.66571 2.11640i −0.203025 0.117216i
\(327\) 1.30724 1.44965i 0.0722904 0.0801658i
\(328\) 0.398146 0.229870i 0.0219839 0.0126924i
\(329\) −12.0354 6.26786i −0.663536 0.345558i
\(330\) 0.437919 + 0.0934254i 0.0241066 + 0.00514290i
\(331\) −16.6502 −0.915180 −0.457590 0.889163i \(-0.651287\pi\)
−0.457590 + 0.889163i \(0.651287\pi\)
\(332\) −6.47194 11.2097i −0.355194 0.615213i
\(333\) −23.7572 + 17.2063i −1.30189 + 0.942901i
\(334\) 10.7866i 0.590216i
\(335\) −0.0868050 0.150351i −0.00474266 0.00821453i
\(336\) −0.760497 + 4.51903i −0.0414885 + 0.246533i
\(337\) 8.79331 0.479002 0.239501 0.970896i \(-0.423016\pi\)
0.239501 + 0.970896i \(0.423016\pi\)
\(338\) 12.6148 3.14097i 0.686157 0.170846i
\(339\) −11.8534 10.6890i −0.643791 0.580546i
\(340\) 0.179719 0.00974664
\(341\) −16.1670 + 28.0021i −0.875494 + 1.51640i
\(342\) −1.37547 + 0.996191i −0.0743768 + 0.0538678i
\(343\) −2.40801 18.3630i −0.130020 0.991511i
\(344\) −9.18678 5.30399i −0.495318 0.285972i
\(345\) 0.121542 0.569711i 0.00654360 0.0306722i
\(346\) 22.0277 + 12.7177i 1.18422 + 0.683708i
\(347\) 23.6601 13.6602i 1.27014 0.733316i 0.295126 0.955458i \(-0.404638\pi\)
0.975014 + 0.222142i \(0.0713049\pi\)
\(348\) 1.24386 + 1.12167i 0.0666781 + 0.0601277i
\(349\) −0.474380 + 0.273884i −0.0253930 + 0.0146606i −0.512643 0.858602i \(-0.671333\pi\)
0.487250 + 0.873263i \(0.338000\pi\)
\(350\) −6.10672 + 11.7260i −0.326418 + 0.626782i
\(351\) −4.57613 + 18.1675i −0.244256 + 0.969711i
\(352\) 2.36888 + 4.10302i 0.126262 + 0.218692i
\(353\) −21.8838 −1.16476 −0.582378 0.812918i \(-0.697878\pi\)
−0.582378 + 0.812918i \(0.697878\pi\)
\(354\) 3.55606 16.6685i 0.189002 0.885923i
\(355\) 0.0428368i 0.00227354i
\(356\) 15.3238 0.812159
\(357\) −11.6374 9.61110i −0.615916 0.508673i
\(358\) −2.42908 + 4.20729i −0.128381 + 0.222362i
\(359\) 20.1753 11.6482i 1.06481 0.614771i 0.138054 0.990425i \(-0.455915\pi\)
0.926760 + 0.375654i \(0.122582\pi\)
\(360\) 0.162828 0.0168673i 0.00858178 0.000888987i
\(361\) 18.6795 0.983133
\(362\) 3.31811 5.74713i 0.174396 0.302063i
\(363\) −19.3893 4.13650i −1.01767 0.217110i
\(364\) −0.917435 + 9.49517i −0.0480867 + 0.497682i
\(365\) 0.550126i 0.0287949i
\(366\) 1.33016 1.47507i 0.0695285 0.0771030i
\(367\) 4.33758i 0.226420i 0.993571 + 0.113210i \(0.0361132\pi\)
−0.993571 + 0.113210i \(0.963887\pi\)
\(368\) 5.33783 3.08180i 0.278254 0.160650i
\(369\) 0.142113 + 1.37188i 0.00739810 + 0.0714171i
\(370\) 0.462062 + 0.266772i 0.0240215 + 0.0138688i
\(371\) 14.0700 0.611911i 0.730477 0.0317688i
\(372\) −2.46635 + 11.5607i −0.127874 + 0.599393i
\(373\) −9.31427 −0.482274 −0.241137 0.970491i \(-0.577520\pi\)
−0.241137 + 0.970491i \(0.577520\pi\)
\(374\) −15.6042 −0.806874
\(375\) 0.924042 + 0.197135i 0.0477173 + 0.0101800i
\(376\) −4.44174 + 2.56444i −0.229065 + 0.132251i
\(377\) 2.74714 + 2.14701i 0.141485 + 0.110577i
\(378\) −11.4457 7.61557i −0.588701 0.391702i
\(379\) 3.73379 + 6.46712i 0.191792 + 0.332194i 0.945844 0.324621i \(-0.105237\pi\)
−0.754052 + 0.656815i \(0.771903\pi\)
\(380\) 0.0267519 + 0.0154452i 0.00137235 + 0.000792324i
\(381\) −0.465247 1.43554i −0.0238353 0.0735449i
\(382\) 5.87862 10.1821i 0.300776 0.520960i
\(383\) −11.5239 −0.588841 −0.294421 0.955676i \(-0.595127\pi\)
−0.294421 + 0.955676i \(0.595127\pi\)
\(384\) 1.28630 + 1.15993i 0.0656410 + 0.0591925i
\(385\) −0.315933 + 0.606649i −0.0161014 + 0.0309177i
\(386\) −20.2639 11.6993i −1.03140 0.595481i
\(387\) 25.7741 18.6670i 1.31017 0.948899i
\(388\) 13.9967i 0.710575i
\(389\) −9.47378 5.46969i −0.480340 0.277324i 0.240218 0.970719i \(-0.422781\pi\)
−0.720558 + 0.693395i \(0.756114\pi\)
\(390\) 0.335644 0.0588689i 0.0169960 0.00298094i
\(391\) 20.3003i 1.02663i
\(392\) −6.34315 2.96049i −0.320377 0.149527i
\(393\) 5.71481 + 17.6333i 0.288274 + 0.889483i
\(394\) −9.90657 −0.499086
\(395\) 0.234509 0.406181i 0.0117994 0.0204372i
\(396\) −14.1376 + 1.46452i −0.710442 + 0.0735947i
\(397\) 4.07431i 0.204484i 0.994760 + 0.102242i \(0.0326016\pi\)
−0.994760 + 0.102242i \(0.967398\pi\)
\(398\) −3.07882 −0.154328
\(399\) −0.906286 2.43078i −0.0453711 0.121691i
\(400\) 2.49851 + 4.32755i 0.124926 + 0.216377i
\(401\) −6.30564 3.64056i −0.314889 0.181801i 0.334223 0.942494i \(-0.391526\pi\)
−0.649112 + 0.760693i \(0.724859\pi\)
\(402\) 4.09252 + 3.69047i 0.204116 + 0.184064i
\(403\) −3.42851 + 24.3670i −0.170786 + 1.21381i
\(404\) 1.38835 + 2.40470i 0.0690731 + 0.119638i
\(405\) −0.153156 + 0.466605i −0.00761038 + 0.0231858i
\(406\) −2.15803 + 1.37430i −0.107101 + 0.0682053i
\(407\) −40.1188 23.1626i −1.98862 1.14813i
\(408\) −5.42677 + 1.75877i −0.268665 + 0.0870722i
\(409\) −11.8222 + 6.82554i −0.584569 + 0.337501i −0.762947 0.646461i \(-0.776248\pi\)
0.178378 + 0.983962i \(0.442915\pi\)
\(410\) 0.0217254 0.0125432i 0.00107294 0.000619463i
\(411\) −7.70722 + 2.49785i −0.380169 + 0.123210i
\(412\) −8.11913 4.68758i −0.400001 0.230941i
\(413\) 23.0909 + 12.0254i 1.13623 + 0.591730i
\(414\) 1.90527 + 18.3924i 0.0936387 + 0.903935i
\(415\) −0.353150 0.611674i −0.0173355 0.0300259i
\(416\) 2.84086 + 2.22025i 0.139285 + 0.108857i
\(417\) −25.1527 22.6817i −1.23173 1.11073i
\(418\) −2.32275 1.34104i −0.113610 0.0655925i
\(419\) 7.63041 + 13.2163i 0.372770 + 0.645657i 0.989991 0.141134i \(-0.0450747\pi\)
−0.617221 + 0.786790i \(0.711741\pi\)
\(420\) −0.0414976 + 0.246587i −0.00202487 + 0.0120322i
\(421\) −17.2971 −0.843008 −0.421504 0.906827i \(-0.638498\pi\)
−0.421504 + 0.906827i \(0.638498\pi\)
\(422\) 2.59129i 0.126142i
\(423\) −1.58542 15.3048i −0.0770857 0.744142i
\(424\) 2.66149 4.60984i 0.129253 0.223873i
\(425\) −16.4581 −0.798336
\(426\) 0.419211 + 1.29349i 0.0203108 + 0.0626700i
\(427\) 1.62975 + 2.55915i 0.0788690 + 0.123846i
\(428\) 1.97488i 0.0954595i
\(429\) −29.1424 + 5.11132i −1.40701 + 0.246777i
\(430\) −0.501289 0.289419i −0.0241743 0.0139570i
\(431\) 37.2206i 1.79285i 0.443191 + 0.896427i \(0.353846\pi\)
−0.443191 + 0.896427i \(0.646154\pi\)
\(432\) −4.75166 + 2.10279i −0.228614 + 0.101171i
\(433\) 1.96666 + 1.13545i 0.0945115 + 0.0545662i 0.546511 0.837452i \(-0.315956\pi\)
−0.451999 + 0.892018i \(0.649289\pi\)
\(434\) −16.0150 8.34035i −0.768745 0.400350i
\(435\) 0.0678731 + 0.0612053i 0.00325427 + 0.00293457i
\(436\) 1.12699 0.0539732
\(437\) −1.74463 + 3.02179i −0.0834570 + 0.144552i
\(438\) 5.38366 + 16.6115i 0.257241 + 0.793729i
\(439\) 21.5971 + 12.4691i 1.03077 + 0.595117i 0.917206 0.398413i \(-0.130439\pi\)
0.113567 + 0.993530i \(0.463772\pi\)
\(440\) 0.129261 + 0.223887i 0.00616228 + 0.0106734i
\(441\) 15.8742 13.7481i 0.755914 0.654671i
\(442\) −11.0112 + 4.44678i −0.523749 + 0.211512i
\(443\) −23.2821 + 13.4420i −1.10617 + 0.638647i −0.937834 0.347084i \(-0.887172\pi\)
−0.168334 + 0.985730i \(0.553839\pi\)
\(444\) −16.5631 3.53356i −0.786048 0.167695i
\(445\) 0.836163 0.0396379
\(446\) 23.5760 1.11635
\(447\) 8.44495 39.5846i 0.399432 1.87229i
\(448\) −2.23165 + 1.42118i −0.105435 + 0.0671445i
\(449\) 33.0058 + 19.0559i 1.55764 + 0.899304i 0.997482 + 0.0709182i \(0.0225929\pi\)
0.560158 + 0.828386i \(0.310740\pi\)
\(450\) −14.9113 + 1.54466i −0.702924 + 0.0728159i
\(451\) −1.88632 + 1.08907i −0.0888233 + 0.0512822i
\(452\) 9.21518i 0.433445i
\(453\) −22.7010 + 25.1741i −1.06659 + 1.18278i
\(454\) 26.1052i 1.22518i
\(455\) −0.0500611 + 0.518117i −0.00234690 + 0.0242897i
\(456\) −0.958948 0.204582i −0.0449069 0.00958041i
\(457\) 13.9866 24.2255i 0.654267 1.13322i −0.327811 0.944743i \(-0.606311\pi\)
0.982077 0.188480i \(-0.0603559\pi\)
\(458\) 21.4386 1.00176
\(459\) 1.82713 17.0162i 0.0852833 0.794246i
\(460\) 0.291266 0.168163i 0.0135803 0.00784062i
\(461\) −4.40994 + 7.63823i −0.205391 + 0.355748i −0.950257 0.311466i \(-0.899180\pi\)
0.744866 + 0.667214i \(0.232513\pi\)
\(462\) 3.60305 21.4101i 0.167629 0.996087i
\(463\) −1.13863 −0.0529167 −0.0264583 0.999650i \(-0.508423\pi\)
−0.0264583 + 0.999650i \(0.508423\pi\)
\(464\) 0.967012i 0.0448924i
\(465\) −0.134580 + 0.630825i −0.00624099 + 0.0292538i
\(466\) −25.7329 −1.19205
\(467\) −5.62914 9.74995i −0.260485 0.451174i 0.705886 0.708326i \(-0.250549\pi\)
−0.966371 + 0.257152i \(0.917216\pi\)
\(468\) −9.55894 + 5.06228i −0.441862 + 0.234004i
\(469\) −7.10027 + 4.52167i −0.327860 + 0.208791i
\(470\) −0.242370 + 0.139932i −0.0111797 + 0.00645460i
\(471\) −11.8761 10.7094i −0.547221 0.493463i
\(472\) 8.52182 4.92008i 0.392249 0.226465i
\(473\) 43.5247 + 25.1290i 2.00127 + 1.15543i
\(474\) −3.10621 + 14.5599i −0.142673 + 0.668761i
\(475\) −2.44986 1.41443i −0.112407 0.0648984i
\(476\) −0.378619 8.70578i −0.0173540 0.399029i
\(477\) 9.36695 + 12.9332i 0.428883 + 0.592170i
\(478\) 2.42945 4.20794i 0.111121 0.192467i
\(479\) 32.8473 1.50083 0.750416 0.660966i \(-0.229853\pi\)
0.750416 + 0.660966i \(0.229853\pi\)
\(480\) 0.0701885 + 0.0632933i 0.00320365 + 0.00288893i
\(481\) −34.9108 4.91205i −1.59179 0.223970i
\(482\) −2.89053 −0.131660
\(483\) −27.8535 4.68739i −1.26738 0.213284i
\(484\) −5.72317 9.91282i −0.260144 0.450583i
\(485\) 0.763750i 0.0346801i
\(486\) 0.0583746 15.5883i 0.00264792 0.707102i
\(487\) −7.63011 13.2157i −0.345753 0.598862i 0.639737 0.768594i \(-0.279043\pi\)
−0.985490 + 0.169732i \(0.945710\pi\)
\(488\) 1.14676 0.0519112
\(489\) 7.17006 + 1.52966i 0.324241 + 0.0691735i
\(490\) −0.346123 0.161543i −0.0156362 0.00729777i
\(491\) 5.43320 3.13686i 0.245197 0.141564i −0.372366 0.928086i \(-0.621453\pi\)
0.617563 + 0.786521i \(0.288120\pi\)
\(492\) −0.533267 + 0.591361i −0.0240415 + 0.0266606i
\(493\) −2.75824 1.59247i −0.124225 0.0717211i
\(494\) −2.02122 0.284392i −0.0909391 0.0127954i
\(495\) −0.771439 + 0.0799133i −0.0346736 + 0.00359184i
\(496\) −5.91042 + 3.41238i −0.265386 + 0.153220i
\(497\) −2.07506 + 0.0902454i −0.0930792 + 0.00404806i
\(498\) 16.6497 + 15.0140i 0.746089 + 0.672794i
\(499\) 5.83077 + 10.0992i 0.261021 + 0.452102i 0.966513 0.256616i \(-0.0826075\pi\)
−0.705493 + 0.708717i \(0.749274\pi\)
\(500\) 0.272751 + 0.472418i 0.0121978 + 0.0211272i
\(501\) 5.76003 + 17.7728i 0.257339 + 0.794032i
\(502\) −6.74254 + 3.89281i −0.300934 + 0.173745i
\(503\) 0.152024 0.263314i 0.00677843 0.0117406i −0.862616 0.505859i \(-0.831176\pi\)
0.869395 + 0.494118i \(0.164509\pi\)
\(504\) −1.16011 7.85202i −0.0516752 0.349757i
\(505\) 0.0757573 + 0.131216i 0.00337116 + 0.00583902i
\(506\) −25.2893 + 14.6008i −1.12425 + 0.649085i
\(507\) −19.1079 + 11.9116i −0.848613 + 0.529014i
\(508\) 0.435625 0.754524i 0.0193277 0.0334766i
\(509\) 3.39059 5.87267i 0.150285 0.260302i −0.781047 0.624472i \(-0.785314\pi\)
0.931332 + 0.364171i \(0.118647\pi\)
\(510\) −0.296119 + 0.0959699i −0.0131124 + 0.00424962i
\(511\) −26.6487 + 1.15896i −1.17887 + 0.0512695i
\(512\) 1.00000i 0.0441942i
\(513\) 1.73436 2.37590i 0.0765740 0.104899i
\(514\) −10.4913 + 6.05714i −0.462751 + 0.267169i
\(515\) −0.443032 0.255784i −0.0195223 0.0112712i
\(516\) 17.9692 + 3.83354i 0.791049 + 0.168762i
\(517\) 21.0439 12.1497i 0.925509 0.534343i
\(518\) 11.9493 22.9448i 0.525021 1.00814i
\(519\) −43.0858 9.19190i −1.89126 0.403480i
\(520\) 0.155015 + 0.121151i 0.00679788 + 0.00531282i
\(521\) −2.15594 + 3.73419i −0.0944533 + 0.163598i −0.909380 0.415966i \(-0.863444\pi\)
0.814927 + 0.579564i \(0.196777\pi\)
\(522\) −2.64846 1.18393i −0.115920 0.0518190i
\(523\) −4.42230 2.55322i −0.193374 0.111644i 0.400187 0.916433i \(-0.368945\pi\)
−0.593561 + 0.804789i \(0.702278\pi\)
\(524\) −5.35095 + 9.26812i −0.233758 + 0.404880i
\(525\) 3.80022 22.5817i 0.165855 0.985546i
\(526\) −4.55126 + 7.88301i −0.198444 + 0.343716i
\(527\) 22.4779i 0.979155i
\(528\) −6.09416 5.49547i −0.265214 0.239160i
\(529\) 7.49494 + 12.9816i 0.325867 + 0.564418i
\(530\) 0.145228 0.251542i 0.00630830 0.0109263i
\(531\) 3.04175 + 29.3633i 0.132001 + 1.27426i
\(532\) 0.691825 1.32843i 0.0299944 0.0575948i
\(533\) −1.02074 + 1.30606i −0.0442130 + 0.0565716i
\(534\) −25.2487 + 8.18289i −1.09262 + 0.354108i
\(535\) 0.107762i 0.00465896i
\(536\) 3.18163i 0.137425i
\(537\) 1.75565 8.22939i 0.0757621 0.355125i
\(538\) 11.5405i 0.497548i
\(539\) 30.0523 + 14.0261i 1.29444 + 0.604145i
\(540\) −0.259281 + 0.114742i −0.0111577 + 0.00493771i
\(541\) −2.52578 4.37478i −0.108592 0.188086i 0.806608 0.591086i \(-0.201301\pi\)
−0.915200 + 0.403000i \(0.867967\pi\)
\(542\) −3.78219 6.55095i −0.162459 0.281387i
\(543\) −2.39821 + 11.2413i −0.102917 + 0.482410i
\(544\) −2.85233 1.64679i −0.122293 0.0706057i
\(545\) 0.0614960 0.00263420
\(546\) −3.55878 16.1349i −0.152302 0.690510i
\(547\) 32.1836 1.37607 0.688037 0.725676i \(-0.258473\pi\)
0.688037 + 0.725676i \(0.258473\pi\)
\(548\) −4.05094 2.33881i −0.173048 0.0999091i
\(549\) −1.40399 + 3.14074i −0.0599208 + 0.134044i
\(550\) −11.8373 20.5029i −0.504746 0.874245i
\(551\) −0.273717 0.474091i −0.0116607 0.0201970i
\(552\) −7.14935 + 7.92821i −0.304296 + 0.337447i
\(553\) −20.1699 10.5041i −0.857711 0.446682i
\(554\) 24.4796i 1.04004i
\(555\) −0.903786 0.192813i −0.0383636 0.00818447i
\(556\) 19.5544i 0.829289i
\(557\) 37.4217i 1.58561i −0.609477 0.792804i \(-0.708620\pi\)
0.609477 0.792804i \(-0.291380\pi\)
\(558\) −2.10964 20.3653i −0.0893083 0.862133i
\(559\) 37.8745 + 5.32906i 1.60192 + 0.225395i
\(560\) −0.121773 + 0.0775487i −0.00514584 + 0.00327703i
\(561\) 25.7107 8.33264i 1.08551 0.351804i
\(562\) −11.1708 + 19.3484i −0.471212 + 0.816163i
\(563\) 13.5997 + 23.5555i 0.573161 + 0.992744i 0.996239 + 0.0866505i \(0.0276164\pi\)
−0.423078 + 0.906093i \(0.639050\pi\)
\(564\) 5.94915 6.59726i 0.250505 0.277795i
\(565\) 0.502839i 0.0211546i
\(566\) 8.41418 14.5738i 0.353674 0.612582i
\(567\) 22.9255 + 6.43603i 0.962780 + 0.270288i
\(568\) −0.392520 + 0.679865i −0.0164698 + 0.0285265i
\(569\) 31.0496 + 17.9265i 1.30167 + 0.751517i 0.980690 0.195570i \(-0.0626557\pi\)
0.320976 + 0.947087i \(0.395989\pi\)
\(570\) −0.0523263 0.0111633i −0.00219171 0.000467578i
\(571\) 3.22192 5.58053i 0.134833 0.233538i −0.790700 0.612203i \(-0.790283\pi\)
0.925534 + 0.378665i \(0.123617\pi\)
\(572\) −13.4593 10.5190i −0.562762 0.439822i
\(573\) −4.24886 + 19.9160i −0.177499 + 0.832001i
\(574\) −0.653373 1.02598i −0.0272713 0.0428234i
\(575\) −26.6732 + 15.3998i −1.11235 + 0.642216i
\(576\) −2.73881 1.22431i −0.114117 0.0510131i
\(577\) 13.5099 + 7.79997i 0.562427 + 0.324717i 0.754119 0.656738i \(-0.228064\pi\)
−0.191692 + 0.981455i \(0.561398\pi\)
\(578\) −5.32804 + 3.07615i −0.221617 + 0.127951i
\(579\) 39.6358 + 8.45588i 1.64721 + 0.351414i
\(580\) 0.0527663i 0.00219100i
\(581\) −28.8861 + 18.3956i −1.19840 + 0.763178i
\(582\) 7.47423 + 23.0621i 0.309817 + 0.955954i
\(583\) −12.6095 + 21.8403i −0.522232 + 0.904532i
\(584\) −5.04088 + 8.73107i −0.208593 + 0.361294i
\(585\) −0.521597 + 0.276230i −0.0215654 + 0.0114207i
\(586\) 0.448519 0.258953i 0.0185282 0.0106972i
\(587\) −1.29017 2.23464i −0.0532510 0.0922335i 0.838171 0.545407i \(-0.183625\pi\)
−0.891422 + 0.453174i \(0.850292\pi\)
\(588\) 12.0324 + 1.49069i 0.496206 + 0.0614752i
\(589\) 1.93178 3.34594i 0.0795975 0.137867i
\(590\) 0.465005 0.268471i 0.0191440 0.0110528i
\(591\) 16.3228 5.29010i 0.671432 0.217606i
\(592\) −4.88894 8.46790i −0.200934 0.348028i
\(593\) 9.35407 + 16.2017i 0.384125 + 0.665325i 0.991647 0.128978i \(-0.0411697\pi\)
−0.607522 + 0.794303i \(0.707836\pi\)
\(594\) 22.5122 9.96253i 0.923687 0.408768i
\(595\) −0.0206599 0.475043i −0.000846971 0.0194749i
\(596\) 20.2377 11.6842i 0.828968 0.478605i
\(597\) 5.07291 1.64409i 0.207621 0.0672881i
\(598\) −13.6847 + 17.5099i −0.559610 + 0.716033i
\(599\) 9.48179 + 5.47431i 0.387415 + 0.223674i 0.681040 0.732247i \(-0.261528\pi\)
−0.293624 + 0.955921i \(0.594861\pi\)
\(600\) −6.42765 5.79621i −0.262408 0.236629i
\(601\) 11.4546 6.61334i 0.467244 0.269764i −0.247841 0.968801i \(-0.579721\pi\)
0.715085 + 0.699037i \(0.246388\pi\)
\(602\) −12.9637 + 24.8927i −0.528361 + 1.01455i
\(603\) −8.71386 3.89531i −0.354856 0.158629i
\(604\) −19.5710 −0.796333
\(605\) −0.312293 0.540907i −0.0126965 0.0219910i
\(606\) −3.57166 3.22079i −0.145089 0.130836i
\(607\) 28.4807i 1.15600i −0.816038 0.577999i \(-0.803834\pi\)
0.816038 0.577999i \(-0.196166\pi\)
\(608\) −0.283054 0.490264i −0.0114794 0.0198828i
\(609\) 2.82186 3.41679i 0.114348 0.138455i
\(610\) 0.0625743 0.00253356
\(611\) 11.3874 14.5704i 0.460685 0.589457i
\(612\) 8.00239 5.79578i 0.323478 0.234281i
\(613\) 35.9381 1.45152 0.725762 0.687946i \(-0.241487\pi\)
0.725762 + 0.687946i \(0.241487\pi\)
\(614\) 2.50087 4.33164i 0.100927 0.174811i
\(615\) −0.0290984 + 0.0322684i −0.00117336 + 0.00130119i
\(616\) 10.5730 6.73321i 0.425998 0.271289i
\(617\) 31.2556 + 18.0454i 1.25830 + 0.726481i 0.972744 0.231881i \(-0.0744879\pi\)
0.285558 + 0.958362i \(0.407821\pi\)
\(618\) 15.8809 + 3.38802i 0.638823 + 0.136286i
\(619\) −34.4650 19.8984i −1.38527 0.799784i −0.392489 0.919757i \(-0.628386\pi\)
−0.992777 + 0.119973i \(0.961719\pi\)
\(620\) −0.322510 + 0.186201i −0.0129523 + 0.00747803i
\(621\) −12.9608 29.2873i −0.520098 1.17526i
\(622\) 20.4564 11.8105i 0.820226 0.473558i
\(623\) −1.76157 40.5046i −0.0705756 1.62278i
\(624\) −5.86644 2.14124i −0.234845 0.0857183i
\(625\) −12.4777 21.6120i −0.499107 0.864479i
\(626\) −27.7138 −1.10767
\(627\) 4.54326 + 0.969258i 0.181440 + 0.0387084i
\(628\) 9.23278i 0.368428i
\(629\) 32.2043 1.28407
\(630\) −0.0633027 0.428456i −0.00252204 0.0170701i
\(631\) −18.0785 + 31.3129i −0.719695 + 1.24655i 0.241426 + 0.970419i \(0.422385\pi\)
−0.961121 + 0.276129i \(0.910948\pi\)
\(632\) −7.44380 + 4.29768i −0.296098 + 0.170953i
\(633\) 1.38375 + 4.26962i 0.0549991 + 0.169702i
\(634\) −11.2153 −0.445418
\(635\) 0.0237705 0.0411716i 0.000943302 0.00163385i
\(636\) −1.92363 + 9.01676i −0.0762769 + 0.357538i
\(637\) 25.2036 + 1.33348i 0.998603 + 0.0528345i
\(638\) 4.58147i 0.181382i
\(639\) −1.38145 1.90740i −0.0546493 0.0754558i
\(640\) 0.0545664i 0.00215693i
\(641\) −7.06718 + 4.08024i −0.279137 + 0.161160i −0.633032 0.774125i \(-0.718190\pi\)
0.353896 + 0.935285i \(0.384857\pi\)
\(642\) 1.05458 + 3.25397i 0.0416211 + 0.128424i
\(643\) 16.4057 + 9.47185i 0.646979 + 0.373533i 0.787298 0.616573i \(-0.211479\pi\)
−0.140319 + 0.990106i \(0.544813\pi\)
\(644\) −8.75959 13.7550i −0.345176 0.542021i
\(645\) 0.980513 + 0.209182i 0.0386077 + 0.00823654i
\(646\) 1.86453 0.0733588
\(647\) −20.3288 −0.799208 −0.399604 0.916688i \(-0.630852\pi\)
−0.399604 + 0.916688i \(0.630852\pi\)
\(648\) 6.70631 6.00211i 0.263449 0.235785i
\(649\) −40.3743 + 23.3101i −1.58483 + 0.915003i
\(650\) −14.1958 11.0946i −0.556807 0.435168i
\(651\) 30.8413 + 5.19021i 1.20877 + 0.203420i
\(652\) 2.11640 + 3.66571i 0.0828845 + 0.143560i
\(653\) −20.1946 11.6594i −0.790277 0.456267i 0.0497829 0.998760i \(-0.484147\pi\)
−0.840060 + 0.542493i \(0.817480\pi\)
\(654\) −1.85692 + 0.601814i −0.0726115 + 0.0235328i
\(655\) −0.291982 + 0.505728i −0.0114087 + 0.0197604i
\(656\) −0.459740 −0.0179498
\(657\) −17.7411 24.4956i −0.692145 0.955663i
\(658\) 7.28907 + 11.4458i 0.284158 + 0.446206i
\(659\) −35.4529 20.4688i −1.38105 0.797349i −0.388766 0.921337i \(-0.627099\pi\)
−0.992284 + 0.123987i \(0.960432\pi\)
\(660\) −0.332536 0.299868i −0.0129440 0.0116724i
\(661\) 9.31221i 0.362203i −0.983464 0.181102i \(-0.942034\pi\)
0.983464 0.181102i \(-0.0579663\pi\)
\(662\) 14.4195 + 8.32512i 0.560431 + 0.323565i
\(663\) 15.7683 13.2068i 0.612391 0.512911i
\(664\) 12.9439i 0.502320i
\(665\) 0.0377504 0.0724877i 0.00146390 0.00281095i
\(666\) 29.1775 3.02250i 1.13061 0.117120i
\(667\) −5.96027 −0.230782
\(668\) −5.39330 + 9.34146i −0.208673 + 0.361432i
\(669\) −38.8456 + 12.5896i −1.50186 + 0.486740i
\(670\) 0.173610i 0.00670714i
\(671\) −5.43305 −0.209740
\(672\) 2.91813 3.53335i 0.112569 0.136302i
\(673\) 5.08322 + 8.80440i 0.195944 + 0.339385i 0.947210 0.320615i \(-0.103890\pi\)
−0.751266 + 0.660000i \(0.770556\pi\)
\(674\) −7.61523 4.39666i −0.293328 0.169353i
\(675\) 23.7441 10.5077i 0.913912 0.404442i
\(676\) −12.4953 3.58726i −0.480587 0.137971i
\(677\) −10.0028 17.3253i −0.384438 0.665866i 0.607253 0.794508i \(-0.292271\pi\)
−0.991691 + 0.128642i \(0.958938\pi\)
\(678\) 4.92090 + 15.1836i 0.188986 + 0.583125i
\(679\) −36.9968 + 1.60901i −1.41981 + 0.0617482i
\(680\) −0.155641 0.0898595i −0.00596857 0.00344596i
\(681\) 13.9402 + 43.0130i 0.534188 + 1.64826i
\(682\) 28.0021 16.1670i 1.07226 0.619068i
\(683\) 7.68727 4.43825i 0.294145 0.169825i −0.345664 0.938358i \(-0.612346\pi\)
0.639810 + 0.768533i \(0.279013\pi\)
\(684\) 1.68929 0.174993i 0.0645914 0.00669103i
\(685\) −0.221045 0.127620i −0.00844570 0.00487613i
\(686\) −7.09613 + 17.1069i −0.270931 + 0.653143i
\(687\) −35.3239 + 11.4482i −1.34769 + 0.436776i
\(688\) 5.30399 + 9.18678i 0.202213 + 0.350243i
\(689\) −2.67407 + 19.0051i −0.101874 + 0.724036i
\(690\) −0.390114 + 0.432614i −0.0148514 + 0.0164693i
\(691\) −10.3616 5.98230i −0.394175 0.227577i 0.289792 0.957090i \(-0.406414\pi\)
−0.683968 + 0.729512i \(0.739747\pi\)
\(692\) −12.7177 22.0277i −0.483454 0.837367i
\(693\) 5.49630 + 37.2009i 0.208787 + 1.41315i
\(694\) −27.3203 −1.03707
\(695\) 1.06701i 0.0404740i
\(696\) −0.516383 1.59332i −0.0195735 0.0603948i
\(697\) 0.757096 1.31133i 0.0286771 0.0496701i
\(698\) 0.547767 0.0207333
\(699\) 42.3995 13.7413i 1.60370 0.519746i
\(700\) 11.1516 7.10168i 0.421490 0.268418i
\(701\) 21.0976i 0.796847i 0.917202 + 0.398423i \(0.130443\pi\)
−0.917202 + 0.398423i \(0.869557\pi\)
\(702\) 13.0468 13.4455i 0.492420 0.507467i
\(703\) 4.79375 + 2.76767i 0.180800 + 0.104385i
\(704\) 4.73776i 0.178561i
\(705\) 0.324624 0.359989i 0.0122260 0.0135580i
\(706\) 18.9519 + 10.9419i 0.713264 + 0.411803i
\(707\) 6.19662 3.94620i 0.233048 0.148412i
\(708\) −11.4139 + 12.6574i −0.428961 + 0.475693i
\(709\) 28.8724 1.08432 0.542162 0.840274i \(-0.317606\pi\)
0.542162 + 0.840274i \(0.317606\pi\)
\(710\) −0.0214184 + 0.0370978i −0.000803819 + 0.00139225i
\(711\) −2.65696 25.6488i −0.0996439 0.961906i
\(712\) −13.2708 7.66189i −0.497344 0.287141i
\(713\) −21.0325 36.4294i −0.787675 1.36429i
\(714\) 5.27272 + 14.1421i 0.197327 + 0.529256i
\(715\) −0.734426 0.573984i −0.0274660 0.0214658i
\(716\) 4.20729 2.42908i 0.157234 0.0907790i
\(717\) −1.75592 + 8.23066i −0.0655762 + 0.307379i
\(718\) −23.2965 −0.869417
\(719\) −29.5891 −1.10349 −0.551744 0.834013i \(-0.686038\pi\)
−0.551744 + 0.834013i \(0.686038\pi\)
\(720\) −0.149447 0.0668064i −0.00556955 0.00248973i
\(721\) −11.4571 + 21.9998i −0.426685 + 0.819315i
\(722\) −16.1769 9.33976i −0.602043 0.347590i
\(723\) 4.76267 1.54354i 0.177126 0.0574049i
\(724\) −5.74713 + 3.31811i −0.213591 + 0.123317i
\(725\) 4.83218i 0.179463i
\(726\) 14.7234 + 13.2770i 0.546436 + 0.492755i
\(727\) 19.8262i 0.735312i 0.929962 + 0.367656i \(0.119840\pi\)
−0.929962 + 0.367656i \(0.880160\pi\)
\(728\) 5.54211 7.76434i 0.205404 0.287766i
\(729\) 8.22798 + 25.7158i 0.304740 + 0.952436i
\(730\) −0.275063 + 0.476423i −0.0101805 + 0.0176332i
\(731\) −34.9383 −1.29224
\(732\) −1.88948 + 0.612367i −0.0698374 + 0.0226337i
\(733\) 12.7910 7.38488i 0.472446 0.272767i −0.244817 0.969569i \(-0.578728\pi\)
0.717263 + 0.696803i \(0.245395\pi\)
\(734\) 2.16879 3.75645i 0.0800514 0.138653i
\(735\) 0.656563 + 0.0813418i 0.0242177 + 0.00300034i
\(736\) −6.16359 −0.227193
\(737\) 15.0738i 0.555250i
\(738\) 0.562865 1.25914i 0.0207194 0.0463495i
\(739\) −0.502545 −0.0184864 −0.00924321 0.999957i \(-0.502942\pi\)
−0.00924321 + 0.999957i \(0.502942\pi\)
\(740\) −0.266772 0.462062i −0.00980673 0.0169858i
\(741\) 3.48219 0.610745i 0.127921 0.0224363i
\(742\) −12.4909 6.50506i −0.458556 0.238808i
\(743\) −9.20149 + 5.31248i −0.337570 + 0.194896i −0.659197 0.751970i \(-0.729104\pi\)
0.321627 + 0.946866i \(0.395770\pi\)
\(744\) 7.91626 8.77867i 0.290224 0.321842i
\(745\) 1.10430 0.637566i 0.0404583 0.0233586i
\(746\) 8.06639 + 4.65713i 0.295332 + 0.170510i
\(747\) −35.4507 15.8474i −1.29707 0.579825i
\(748\) 13.5136 + 7.80210i 0.494108 + 0.285273i
\(749\) −5.22011 + 0.227025i −0.190739 + 0.00829532i
\(750\) −0.701676 0.632744i −0.0256216 0.0231046i
\(751\) 16.9041 29.2787i 0.616838 1.06839i −0.373221 0.927742i \(-0.621747\pi\)
0.990059 0.140652i \(-0.0449199\pi\)
\(752\) 5.12888 0.187031
\(753\) 9.03079 10.0146i 0.329100 0.364953i
\(754\) −1.30559 3.23294i −0.0475469 0.117737i
\(755\) −1.06792 −0.0388656
\(756\) 6.10445 + 12.3181i 0.222017 + 0.448005i
\(757\) 23.7078 + 41.0631i 0.861675 + 1.49246i 0.870312 + 0.492501i \(0.163917\pi\)
−0.00863717 + 0.999963i \(0.502749\pi\)
\(758\) 7.46759i 0.271235i
\(759\) 33.8719 37.5619i 1.22947 1.36341i
\(760\) −0.0154452 0.0267519i −0.000560258 0.000970395i
\(761\) −20.3127 −0.736334 −0.368167 0.929760i \(-0.620015\pi\)
−0.368167 + 0.929760i \(0.620015\pi\)
\(762\) −0.314854 + 1.47584i −0.0114060 + 0.0534639i
\(763\) −0.129555 2.97893i −0.00469021 0.107845i
\(764\) −10.1821 + 5.87862i −0.368374 + 0.212681i
\(765\) 0.436662 0.316255i 0.0157875 0.0114342i
\(766\) 9.97995 + 5.76193i 0.360590 + 0.208187i
\(767\) −21.8476 + 27.9545i −0.788871 + 1.00938i
\(768\) −0.533999 1.64768i −0.0192690 0.0594555i
\(769\) −17.3839 + 10.0366i −0.626879 + 0.361929i −0.779542 0.626350i \(-0.784548\pi\)
0.152664 + 0.988278i \(0.451215\pi\)
\(770\) 0.576930 0.367407i 0.0207911 0.0132404i
\(771\) 14.0517 15.5826i 0.506061 0.561192i
\(772\) 11.6993 + 20.2639i 0.421069 + 0.729312i
\(773\) 9.71340 + 16.8241i 0.349367 + 0.605121i 0.986137 0.165933i \(-0.0530635\pi\)
−0.636770 + 0.771053i \(0.719730\pi\)
\(774\) −31.6545 + 3.27909i −1.13780 + 0.117865i
\(775\) 29.5345 17.0518i