Defining parameters
Level: | \( N \) | \(=\) | \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 546.s (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(224\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(5\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(546, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 240 | 24 | 216 |
Cusp forms | 208 | 24 | 184 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(546, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
546.2.s.a | $4$ | $4.360$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(-2\) | \(0\) | \(0\) | \(q+\zeta_{12}q^{2}+(-1+\zeta_{12}^{2})q^{3}+\zeta_{12}^{2}q^{4}+\cdots\) |
546.2.s.b | $4$ | $4.360$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(-2\) | \(0\) | \(0\) | \(q+\zeta_{12}q^{2}+(-1+\zeta_{12}^{2})q^{3}+\zeta_{12}^{2}q^{4}+\cdots\) |
546.2.s.c | $4$ | $4.360$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(-2\) | \(0\) | \(0\) | \(q+\zeta_{12}q^{2}+(-1+\zeta_{12}^{2})q^{3}+\zeta_{12}^{2}q^{4}+\cdots\) |
546.2.s.d | $4$ | $4.360$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(2\) | \(0\) | \(0\) | \(q+\zeta_{12}q^{2}+(1-\zeta_{12}^{2})q^{3}+\zeta_{12}^{2}q^{4}+\cdots\) |
546.2.s.e | $8$ | $4.360$ | 8.0.195105024.2 | None | \(0\) | \(4\) | \(0\) | \(0\) | \(q+\beta _{2}q^{2}+(1+\beta _{4})q^{3}-\beta _{4}q^{4}+(-\beta _{1}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(546, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(546, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(182, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(273, [\chi])\)\(^{\oplus 2}\)