Properties

Label 546.2.q.h.335.2
Level $546$
Weight $2$
Character 546.335
Analytic conductor $4.360$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
Defining polynomial: \(x^{4} - x^{3} - 2 x^{2} - 3 x + 9\)
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 335.2
Root \(-1.18614 - 1.26217i\) of defining polynomial
Character \(\chi\) \(=\) 546.335
Dual form 546.2.q.h.251.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(0.500000 + 1.65831i) q^{3} +(-0.500000 + 0.866025i) q^{4} +0.792287i q^{5} +(-1.18614 + 1.26217i) q^{6} +(2.50000 - 0.866025i) q^{7} -1.00000 q^{8} +(-2.50000 + 1.65831i) q^{9} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{2} +(0.500000 + 1.65831i) q^{3} +(-0.500000 + 0.866025i) q^{4} +0.792287i q^{5} +(-1.18614 + 1.26217i) q^{6} +(2.50000 - 0.866025i) q^{7} -1.00000 q^{8} +(-2.50000 + 1.65831i) q^{9} +(-0.686141 + 0.396143i) q^{10} +(2.18614 + 3.78651i) q^{11} +(-1.68614 - 0.396143i) q^{12} +(-3.50000 - 0.866025i) q^{13} +(2.00000 + 1.73205i) q^{14} +(-1.31386 + 0.396143i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-2.18614 + 3.78651i) q^{17} +(-2.68614 - 1.33591i) q^{18} +(1.18614 - 2.05446i) q^{19} +(-0.686141 - 0.396143i) q^{20} +(2.68614 + 3.71277i) q^{21} +(-2.18614 + 3.78651i) q^{22} +(3.68614 - 2.12819i) q^{23} +(-0.500000 - 1.65831i) q^{24} +4.37228 q^{25} +(-1.00000 - 3.46410i) q^{26} +(-4.00000 - 3.31662i) q^{27} +(-0.500000 + 2.59808i) q^{28} +(2.18614 - 1.26217i) q^{29} +(-1.00000 - 0.939764i) q^{30} -6.74456 q^{31} +(0.500000 - 0.866025i) q^{32} +(-5.18614 + 5.51856i) q^{33} -4.37228 q^{34} +(0.686141 + 1.98072i) q^{35} +(-0.186141 - 2.99422i) q^{36} +(-10.1168 + 5.84096i) q^{37} +2.37228 q^{38} +(-0.313859 - 6.23711i) q^{39} -0.792287i q^{40} +(8.18614 - 4.72627i) q^{41} +(-1.87228 + 4.18265i) q^{42} +(2.00000 - 3.46410i) q^{43} -4.37228 q^{44} +(-1.31386 - 1.98072i) q^{45} +(3.68614 + 2.12819i) q^{46} -0.939764i q^{47} +(1.18614 - 1.26217i) q^{48} +(5.50000 - 4.33013i) q^{49} +(2.18614 + 3.78651i) q^{50} +(-7.37228 - 1.73205i) q^{51} +(2.50000 - 2.59808i) q^{52} -2.22938i q^{53} +(0.872281 - 5.12241i) q^{54} +(-3.00000 + 1.73205i) q^{55} +(-2.50000 + 0.866025i) q^{56} +(4.00000 + 0.939764i) q^{57} +(2.18614 + 1.26217i) q^{58} +(5.31386 + 3.06796i) q^{59} +(0.313859 - 1.33591i) q^{60} +(-4.50000 - 2.59808i) q^{61} +(-3.37228 - 5.84096i) q^{62} +(-4.81386 + 6.31084i) q^{63} +1.00000 q^{64} +(0.686141 - 2.77300i) q^{65} +(-7.37228 - 1.73205i) q^{66} +(10.1168 - 5.84096i) q^{67} +(-2.18614 - 3.78651i) q^{68} +(5.37228 + 5.04868i) q^{69} +(-1.37228 + 1.58457i) q^{70} +(-8.05842 + 13.9576i) q^{71} +(2.50000 - 1.65831i) q^{72} +10.7446 q^{73} +(-10.1168 - 5.84096i) q^{74} +(2.18614 + 7.25061i) q^{75} +(1.18614 + 2.05446i) q^{76} +(8.74456 + 7.57301i) q^{77} +(5.24456 - 3.39036i) q^{78} +9.62772 q^{79} +(0.686141 - 0.396143i) q^{80} +(3.50000 - 8.29156i) q^{81} +(8.18614 + 4.72627i) q^{82} -1.58457i q^{83} +(-4.55842 + 0.469882i) q^{84} +(-3.00000 - 1.73205i) q^{85} +4.00000 q^{86} +(3.18614 + 2.99422i) q^{87} +(-2.18614 - 3.78651i) q^{88} +(9.30298 - 5.37108i) q^{89} +(1.05842 - 2.12819i) q^{90} +(-9.50000 + 0.866025i) q^{91} +4.25639i q^{92} +(-3.37228 - 11.1846i) q^{93} +(0.813859 - 0.469882i) q^{94} +(1.62772 + 0.939764i) q^{95} +(1.68614 + 0.396143i) q^{96} +(0.372281 - 0.644810i) q^{97} +(6.50000 + 2.59808i) q^{98} +(-11.7446 - 5.84096i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4q + 2q^{2} + 2q^{3} - 2q^{4} + q^{6} + 10q^{7} - 4q^{8} - 10q^{9} + O(q^{10}) \) \( 4q + 2q^{2} + 2q^{3} - 2q^{4} + q^{6} + 10q^{7} - 4q^{8} - 10q^{9} + 3q^{10} + 3q^{11} - q^{12} - 14q^{13} + 8q^{14} - 11q^{15} - 2q^{16} - 3q^{17} - 5q^{18} - q^{19} + 3q^{20} + 5q^{21} - 3q^{22} + 9q^{23} - 2q^{24} + 6q^{25} - 4q^{26} - 16q^{27} - 2q^{28} + 3q^{29} - 4q^{30} - 4q^{31} + 2q^{32} - 15q^{33} - 6q^{34} - 3q^{35} + 5q^{36} - 6q^{37} - 2q^{38} - 7q^{39} + 27q^{41} + 4q^{42} + 8q^{43} - 6q^{44} - 11q^{45} + 9q^{46} - q^{48} + 22q^{49} + 3q^{50} - 18q^{51} + 10q^{52} - 8q^{54} - 12q^{55} - 10q^{56} + 16q^{57} + 3q^{58} + 27q^{59} + 7q^{60} - 18q^{61} - 2q^{62} - 25q^{63} + 4q^{64} - 3q^{65} - 18q^{66} + 6q^{67} - 3q^{68} + 10q^{69} + 6q^{70} - 15q^{71} + 10q^{72} + 20q^{73} - 6q^{74} + 3q^{75} - q^{76} + 12q^{77} - 2q^{78} + 50q^{79} - 3q^{80} + 14q^{81} + 27q^{82} - q^{84} - 12q^{85} + 16q^{86} + 7q^{87} - 3q^{88} - 3q^{89} - 13q^{90} - 38q^{91} - 2q^{93} + 9q^{94} + 18q^{95} + q^{96} - 10q^{97} + 26q^{98} - 24q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0.500000 + 1.65831i 0.288675 + 0.957427i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0.792287i 0.354322i 0.984182 + 0.177161i \(0.0566913\pi\)
−0.984182 + 0.177161i \(0.943309\pi\)
\(6\) −1.18614 + 1.26217i −0.484240 + 0.515278i
\(7\) 2.50000 0.866025i 0.944911 0.327327i
\(8\) −1.00000 −0.353553
\(9\) −2.50000 + 1.65831i −0.833333 + 0.552771i
\(10\) −0.686141 + 0.396143i −0.216977 + 0.125272i
\(11\) 2.18614 + 3.78651i 0.659146 + 1.14167i 0.980837 + 0.194830i \(0.0624155\pi\)
−0.321691 + 0.946845i \(0.604251\pi\)
\(12\) −1.68614 0.396143i −0.486747 0.114357i
\(13\) −3.50000 0.866025i −0.970725 0.240192i
\(14\) 2.00000 + 1.73205i 0.534522 + 0.462910i
\(15\) −1.31386 + 0.396143i −0.339237 + 0.102284i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −2.18614 + 3.78651i −0.530217 + 0.918363i 0.469162 + 0.883112i \(0.344556\pi\)
−0.999379 + 0.0352504i \(0.988777\pi\)
\(18\) −2.68614 1.33591i −0.633129 0.314876i
\(19\) 1.18614 2.05446i 0.272119 0.471325i −0.697285 0.716794i \(-0.745609\pi\)
0.969404 + 0.245470i \(0.0789421\pi\)
\(20\) −0.686141 0.396143i −0.153426 0.0885804i
\(21\) 2.68614 + 3.71277i 0.586164 + 0.810192i
\(22\) −2.18614 + 3.78651i −0.466087 + 0.807286i
\(23\) 3.68614 2.12819i 0.768613 0.443759i −0.0637663 0.997965i \(-0.520311\pi\)
0.832380 + 0.554206i \(0.186978\pi\)
\(24\) −0.500000 1.65831i −0.102062 0.338502i
\(25\) 4.37228 0.874456
\(26\) −1.00000 3.46410i −0.196116 0.679366i
\(27\) −4.00000 3.31662i −0.769800 0.638285i
\(28\) −0.500000 + 2.59808i −0.0944911 + 0.490990i
\(29\) 2.18614 1.26217i 0.405956 0.234379i −0.283095 0.959092i \(-0.591361\pi\)
0.689051 + 0.724713i \(0.258028\pi\)
\(30\) −1.00000 0.939764i −0.182574 0.171577i
\(31\) −6.74456 −1.21136 −0.605680 0.795709i \(-0.707099\pi\)
−0.605680 + 0.795709i \(0.707099\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) −5.18614 + 5.51856i −0.902791 + 0.960658i
\(34\) −4.37228 −0.749840
\(35\) 0.686141 + 1.98072i 0.115979 + 0.334802i
\(36\) −0.186141 2.99422i −0.0310234 0.499037i
\(37\) −10.1168 + 5.84096i −1.66320 + 0.960248i −0.692026 + 0.721873i \(0.743282\pi\)
−0.971173 + 0.238376i \(0.923385\pi\)
\(38\) 2.37228 0.384835
\(39\) −0.313859 6.23711i −0.0502577 0.998736i
\(40\) 0.792287i 0.125272i
\(41\) 8.18614 4.72627i 1.27846 0.738119i 0.301895 0.953341i \(-0.402381\pi\)
0.976565 + 0.215222i \(0.0690474\pi\)
\(42\) −1.87228 + 4.18265i −0.288899 + 0.645397i
\(43\) 2.00000 3.46410i 0.304997 0.528271i −0.672264 0.740312i \(-0.734678\pi\)
0.977261 + 0.212041i \(0.0680112\pi\)
\(44\) −4.37228 −0.659146
\(45\) −1.31386 1.98072i −0.195859 0.295268i
\(46\) 3.68614 + 2.12819i 0.543492 + 0.313785i
\(47\) 0.939764i 0.137079i −0.997648 0.0685393i \(-0.978166\pi\)
0.997648 0.0685393i \(-0.0218339\pi\)
\(48\) 1.18614 1.26217i 0.171205 0.182178i
\(49\) 5.50000 4.33013i 0.785714 0.618590i
\(50\) 2.18614 + 3.78651i 0.309167 + 0.535493i
\(51\) −7.37228 1.73205i −1.03233 0.242536i
\(52\) 2.50000 2.59808i 0.346688 0.360288i
\(53\) 2.22938i 0.306229i −0.988208 0.153115i \(-0.951070\pi\)
0.988208 0.153115i \(-0.0489304\pi\)
\(54\) 0.872281 5.12241i 0.118702 0.697072i
\(55\) −3.00000 + 1.73205i −0.404520 + 0.233550i
\(56\) −2.50000 + 0.866025i −0.334077 + 0.115728i
\(57\) 4.00000 + 0.939764i 0.529813 + 0.124475i
\(58\) 2.18614 + 1.26217i 0.287054 + 0.165731i
\(59\) 5.31386 + 3.06796i 0.691806 + 0.399414i 0.804288 0.594240i \(-0.202547\pi\)
−0.112483 + 0.993654i \(0.535880\pi\)
\(60\) 0.313859 1.33591i 0.0405191 0.172465i
\(61\) −4.50000 2.59808i −0.576166 0.332650i 0.183442 0.983030i \(-0.441276\pi\)
−0.759608 + 0.650381i \(0.774609\pi\)
\(62\) −3.37228 5.84096i −0.428280 0.741803i
\(63\) −4.81386 + 6.31084i −0.606489 + 0.795092i
\(64\) 1.00000 0.125000
\(65\) 0.686141 2.77300i 0.0851053 0.343949i
\(66\) −7.37228 1.73205i −0.907465 0.213201i
\(67\) 10.1168 5.84096i 1.23597 0.713587i 0.267701 0.963502i \(-0.413736\pi\)
0.968268 + 0.249915i \(0.0804026\pi\)
\(68\) −2.18614 3.78651i −0.265108 0.459181i
\(69\) 5.37228 + 5.04868i 0.646747 + 0.607789i
\(70\) −1.37228 + 1.58457i −0.164019 + 0.189393i
\(71\) −8.05842 + 13.9576i −0.956359 + 1.65646i −0.225131 + 0.974328i \(0.572281\pi\)
−0.731228 + 0.682133i \(0.761052\pi\)
\(72\) 2.50000 1.65831i 0.294628 0.195434i
\(73\) 10.7446 1.25756 0.628778 0.777585i \(-0.283555\pi\)
0.628778 + 0.777585i \(0.283555\pi\)
\(74\) −10.1168 5.84096i −1.17606 0.678998i
\(75\) 2.18614 + 7.25061i 0.252434 + 0.837228i
\(76\) 1.18614 + 2.05446i 0.136060 + 0.235662i
\(77\) 8.74456 + 7.57301i 0.996535 + 0.863025i
\(78\) 5.24456 3.39036i 0.593830 0.383883i
\(79\) 9.62772 1.08320 0.541601 0.840635i \(-0.317818\pi\)
0.541601 + 0.840635i \(0.317818\pi\)
\(80\) 0.686141 0.396143i 0.0767129 0.0442902i
\(81\) 3.50000 8.29156i 0.388889 0.921285i
\(82\) 8.18614 + 4.72627i 0.904008 + 0.521929i
\(83\) 1.58457i 0.173930i −0.996211 0.0869648i \(-0.972283\pi\)
0.996211 0.0869648i \(-0.0277168\pi\)
\(84\) −4.55842 + 0.469882i −0.497365 + 0.0512683i
\(85\) −3.00000 1.73205i −0.325396 0.187867i
\(86\) 4.00000 0.431331
\(87\) 3.18614 + 2.99422i 0.341590 + 0.321014i
\(88\) −2.18614 3.78651i −0.233043 0.403643i
\(89\) 9.30298 5.37108i 0.986114 0.569333i 0.0820038 0.996632i \(-0.473868\pi\)
0.904111 + 0.427299i \(0.140535\pi\)
\(90\) 1.05842 2.12819i 0.111567 0.224331i
\(91\) −9.50000 + 0.866025i −0.995871 + 0.0907841i
\(92\) 4.25639i 0.443759i
\(93\) −3.37228 11.1846i −0.349689 1.15979i
\(94\) 0.813859 0.469882i 0.0839432 0.0484646i
\(95\) 1.62772 + 0.939764i 0.167000 + 0.0964177i
\(96\) 1.68614 + 0.396143i 0.172091 + 0.0404312i
\(97\) 0.372281 0.644810i 0.0377994 0.0654706i −0.846507 0.532378i \(-0.821299\pi\)
0.884306 + 0.466907i \(0.154632\pi\)
\(98\) 6.50000 + 2.59808i 0.656599 + 0.262445i
\(99\) −11.7446 5.84096i −1.18037 0.587039i
\(100\) −2.18614 + 3.78651i −0.218614 + 0.378651i
\(101\) 7.37228 + 12.7692i 0.733569 + 1.27058i 0.955348 + 0.295482i \(0.0954804\pi\)
−0.221779 + 0.975097i \(0.571186\pi\)
\(102\) −2.18614 7.25061i −0.216460 0.717917i
\(103\) 8.21782i 0.809726i 0.914377 + 0.404863i \(0.132681\pi\)
−0.914377 + 0.404863i \(0.867319\pi\)
\(104\) 3.50000 + 0.866025i 0.343203 + 0.0849208i
\(105\) −2.94158 + 2.12819i −0.287069 + 0.207690i
\(106\) 1.93070 1.11469i 0.187526 0.108268i
\(107\) −0.813859 + 0.469882i −0.0786788 + 0.0454252i −0.538823 0.842419i \(-0.681131\pi\)
0.460144 + 0.887844i \(0.347798\pi\)
\(108\) 4.87228 1.80579i 0.468835 0.173762i
\(109\) 19.8997i 1.90605i −0.302891 0.953025i \(-0.597952\pi\)
0.302891 0.953025i \(-0.402048\pi\)
\(110\) −3.00000 1.73205i −0.286039 0.165145i
\(111\) −14.7446 13.8564i −1.39949 1.31519i
\(112\) −2.00000 1.73205i −0.188982 0.163663i
\(113\) 3.25544 + 1.87953i 0.306246 + 0.176811i 0.645245 0.763975i \(-0.276755\pi\)
−0.339000 + 0.940787i \(0.610089\pi\)
\(114\) 1.18614 + 3.93398i 0.111092 + 0.368451i
\(115\) 1.68614 + 2.92048i 0.157233 + 0.272336i
\(116\) 2.52434i 0.234379i
\(117\) 10.1861 3.63903i 0.941709 0.336428i
\(118\) 6.13592i 0.564857i
\(119\) −2.18614 + 11.3595i −0.200403 + 1.04133i
\(120\) 1.31386 0.396143i 0.119938 0.0361628i
\(121\) −4.05842 + 7.02939i −0.368947 + 0.639036i
\(122\) 5.19615i 0.470438i
\(123\) 11.9307 + 11.2120i 1.07576 + 1.01096i
\(124\) 3.37228 5.84096i 0.302840 0.524534i
\(125\) 7.42554i 0.664160i
\(126\) −7.87228 1.01350i −0.701319 0.0902900i
\(127\) 1.05842 + 1.83324i 0.0939198 + 0.162674i 0.909157 0.416453i \(-0.136727\pi\)
−0.815237 + 0.579127i \(0.803394\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 6.74456 + 1.58457i 0.593826 + 0.139514i
\(130\) 2.74456 0.792287i 0.240714 0.0694882i
\(131\) −21.6060 −1.88772 −0.943861 0.330342i \(-0.892836\pi\)
−0.943861 + 0.330342i \(0.892836\pi\)
\(132\) −2.18614 7.25061i −0.190279 0.631084i
\(133\) 1.18614 6.16337i 0.102851 0.534432i
\(134\) 10.1168 + 5.84096i 0.873962 + 0.504582i
\(135\) 2.62772 3.16915i 0.226158 0.272757i
\(136\) 2.18614 3.78651i 0.187460 0.324690i
\(137\) 3.68614 6.38458i 0.314928 0.545472i −0.664494 0.747294i \(-0.731353\pi\)
0.979422 + 0.201822i \(0.0646862\pi\)
\(138\) −1.68614 + 7.17687i −0.143534 + 0.610936i
\(139\) 7.67527 + 4.43132i 0.651008 + 0.375859i 0.788842 0.614596i \(-0.210681\pi\)
−0.137835 + 0.990455i \(0.544014\pi\)
\(140\) −2.05842 0.396143i −0.173968 0.0334802i
\(141\) 1.55842 0.469882i 0.131243 0.0395712i
\(142\) −16.1168 −1.35250
\(143\) −4.37228 15.1460i −0.365629 1.26657i
\(144\) 2.68614 + 1.33591i 0.223845 + 0.111326i
\(145\) 1.00000 + 1.73205i 0.0830455 + 0.143839i
\(146\) 5.37228 + 9.30506i 0.444613 + 0.770093i
\(147\) 9.93070 + 6.95565i 0.819071 + 0.573693i
\(148\) 11.6819i 0.960248i
\(149\) −3.00000 + 5.19615i −0.245770 + 0.425685i −0.962348 0.271821i \(-0.912374\pi\)
0.716578 + 0.697507i \(0.245707\pi\)
\(150\) −5.18614 + 5.51856i −0.423447 + 0.450588i
\(151\) 16.8781i 1.37352i −0.726885 0.686759i \(-0.759033\pi\)
0.726885 0.686759i \(-0.240967\pi\)
\(152\) −1.18614 + 2.05446i −0.0962087 + 0.166638i
\(153\) −0.813859 13.0916i −0.0657966 1.05839i
\(154\) −2.18614 + 11.3595i −0.176164 + 0.915376i
\(155\) 5.34363i 0.429211i
\(156\) 5.55842 + 2.84674i 0.445030 + 0.227922i
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 4.81386 + 8.33785i 0.382970 + 0.663324i
\(159\) 3.69702 1.11469i 0.293192 0.0884008i
\(160\) 0.686141 + 0.396143i 0.0542442 + 0.0313179i
\(161\) 7.37228 8.51278i 0.581017 0.670901i
\(162\) 8.93070 1.11469i 0.701662 0.0875785i
\(163\) −9.00000 5.19615i −0.704934 0.406994i 0.104248 0.994551i \(-0.466756\pi\)
−0.809183 + 0.587557i \(0.800090\pi\)
\(164\) 9.45254i 0.738119i
\(165\) −4.37228 4.10891i −0.340382 0.319878i
\(166\) 1.37228 0.792287i 0.106510 0.0614934i
\(167\) 5.74456 3.31662i 0.444528 0.256648i −0.260989 0.965342i \(-0.584049\pi\)
0.705516 + 0.708694i \(0.250715\pi\)
\(168\) −2.68614 3.71277i −0.207240 0.286446i
\(169\) 11.5000 + 6.06218i 0.884615 + 0.466321i
\(170\) 3.46410i 0.265684i
\(171\) 0.441578 + 7.10313i 0.0337683 + 0.543190i
\(172\) 2.00000 + 3.46410i 0.152499 + 0.264135i
\(173\) −0.941578 + 1.63086i −0.0715869 + 0.123992i −0.899597 0.436721i \(-0.856140\pi\)
0.828010 + 0.560713i \(0.189473\pi\)
\(174\) −1.00000 + 4.25639i −0.0758098 + 0.322676i
\(175\) 10.9307 3.78651i 0.826284 0.286233i
\(176\) 2.18614 3.78651i 0.164787 0.285419i
\(177\) −2.43070 + 10.3460i −0.182703 + 0.777654i
\(178\) 9.30298 + 5.37108i 0.697288 + 0.402580i
\(179\) −4.37228 + 2.52434i −0.326800 + 0.188678i −0.654419 0.756132i \(-0.727087\pi\)
0.327620 + 0.944810i \(0.393754\pi\)
\(180\) 2.37228 0.147477i 0.176819 0.0109923i
\(181\) 12.1244i 0.901196i 0.892727 + 0.450598i \(0.148789\pi\)
−0.892727 + 0.450598i \(0.851211\pi\)
\(182\) −5.50000 7.79423i −0.407687 0.577747i
\(183\) 2.05842 8.76144i 0.152163 0.647665i
\(184\) −3.68614 + 2.12819i −0.271746 + 0.156893i
\(185\) −4.62772 8.01544i −0.340237 0.589307i
\(186\) 8.00000 8.51278i 0.586588 0.624187i
\(187\) −19.1168 −1.39796
\(188\) 0.813859 + 0.469882i 0.0593568 + 0.0342697i
\(189\) −12.8723 4.82746i −0.936321 0.351146i
\(190\) 1.87953i 0.136355i
\(191\) −10.6277 6.13592i −0.768995 0.443979i 0.0635211 0.997980i \(-0.479767\pi\)
−0.832516 + 0.554001i \(0.813100\pi\)
\(192\) 0.500000 + 1.65831i 0.0360844 + 0.119678i
\(193\) 11.6168 6.70699i 0.836199 0.482780i −0.0197716 0.999805i \(-0.506294\pi\)
0.855970 + 0.517025i \(0.172961\pi\)
\(194\) 0.744563 0.0534565
\(195\) 4.94158 0.248667i 0.353874 0.0178074i
\(196\) 1.00000 + 6.92820i 0.0714286 + 0.494872i
\(197\) −12.3030 21.3094i −0.876551 1.51823i −0.855101 0.518462i \(-0.826505\pi\)
−0.0214504 0.999770i \(-0.506828\pi\)
\(198\) −0.813859 13.0916i −0.0578385 0.930377i
\(199\) 3.00000 + 1.73205i 0.212664 + 0.122782i 0.602549 0.798082i \(-0.294152\pi\)
−0.389885 + 0.920864i \(0.627485\pi\)
\(200\) −4.37228 −0.309167
\(201\) 14.7446 + 13.8564i 1.04000 + 0.977356i
\(202\) −7.37228 + 12.7692i −0.518712 + 0.898435i
\(203\) 4.37228 5.04868i 0.306874 0.354348i
\(204\) 5.18614 5.51856i 0.363102 0.386376i
\(205\) 3.74456 + 6.48577i 0.261532 + 0.452986i
\(206\) −7.11684 + 4.10891i −0.495854 + 0.286281i
\(207\) −5.68614 + 11.4333i −0.395214 + 0.794666i
\(208\) 1.00000 + 3.46410i 0.0693375 + 0.240192i
\(209\) 10.3723 0.717466
\(210\) −3.31386 1.48338i −0.228678 0.102363i
\(211\) −5.62772 9.74749i −0.387428 0.671045i 0.604675 0.796473i \(-0.293303\pi\)
−0.992103 + 0.125427i \(0.959970\pi\)
\(212\) 1.93070 + 1.11469i 0.132601 + 0.0765574i
\(213\) −27.1753 6.38458i −1.86202 0.437464i
\(214\) −0.813859 0.469882i −0.0556343 0.0321205i
\(215\) 2.74456 + 1.58457i 0.187178 + 0.108067i
\(216\) 4.00000 + 3.31662i 0.272166 + 0.225668i
\(217\) −16.8614 + 5.84096i −1.14463 + 0.396510i
\(218\) 17.2337 9.94987i 1.16721 0.673891i
\(219\) 5.37228 + 17.8178i 0.363025 + 1.20402i
\(220\) 3.46410i 0.233550i
\(221\) 10.9307 11.3595i 0.735279 0.764124i
\(222\) 4.62772 19.6974i 0.310592 1.32200i
\(223\) −14.1168 24.4511i −0.945334 1.63737i −0.755082 0.655631i \(-0.772403\pi\)
−0.190252 0.981735i \(-0.560931\pi\)
\(224\) 0.500000 2.59808i 0.0334077 0.173591i
\(225\) −10.9307 + 7.25061i −0.728714 + 0.483374i
\(226\) 3.75906i 0.250049i
\(227\) −16.8030 9.70121i −1.11525 0.643892i −0.175068 0.984556i \(-0.556015\pi\)
−0.940185 + 0.340665i \(0.889348\pi\)
\(228\) −2.81386 + 2.99422i −0.186352 + 0.198297i
\(229\) −5.11684 −0.338131 −0.169065 0.985605i \(-0.554075\pi\)
−0.169065 + 0.985605i \(0.554075\pi\)
\(230\) −1.68614 + 2.92048i −0.111181 + 0.192571i
\(231\) −8.18614 + 18.2877i −0.538609 + 1.20324i
\(232\) −2.18614 + 1.26217i −0.143527 + 0.0828654i
\(233\) 4.84630i 0.317491i −0.987320 0.158746i \(-0.949255\pi\)
0.987320 0.158746i \(-0.0507450\pi\)
\(234\) 8.24456 + 7.00194i 0.538964 + 0.457731i
\(235\) 0.744563 0.0485699
\(236\) −5.31386 + 3.06796i −0.345903 + 0.199707i
\(237\) 4.81386 + 15.9658i 0.312694 + 1.03709i
\(238\) −10.9307 + 3.78651i −0.708532 + 0.245443i
\(239\) −15.6060 −1.00947 −0.504733 0.863275i \(-0.668409\pi\)
−0.504733 + 0.863275i \(0.668409\pi\)
\(240\) 1.00000 + 0.939764i 0.0645497 + 0.0606615i
\(241\) 6.37228 11.0371i 0.410475 0.710963i −0.584467 0.811418i \(-0.698696\pi\)
0.994942 + 0.100454i \(0.0320297\pi\)
\(242\) −8.11684 −0.521770
\(243\) 15.5000 + 1.65831i 0.994325 + 0.106381i
\(244\) 4.50000 2.59808i 0.288083 0.166325i
\(245\) 3.43070 + 4.35758i 0.219180 + 0.278395i
\(246\) −3.74456 + 15.9383i −0.238745 + 1.01619i
\(247\) −5.93070 + 6.16337i −0.377362 + 0.392166i
\(248\) 6.74456 0.428280
\(249\) 2.62772 0.792287i 0.166525 0.0502091i
\(250\) −6.43070 + 3.71277i −0.406713 + 0.234816i
\(251\) −8.05842 + 13.9576i −0.508643 + 0.880996i 0.491307 + 0.870987i \(0.336519\pi\)
−0.999950 + 0.0100091i \(0.996814\pi\)
\(252\) −3.05842 7.32435i −0.192662 0.461390i
\(253\) 16.1168 + 9.30506i 1.01326 + 0.585004i
\(254\) −1.05842 + 1.83324i −0.0664113 + 0.115028i
\(255\) 1.37228 5.84096i 0.0859356 0.365775i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −2.44158 4.22894i −0.152301 0.263794i 0.779772 0.626064i \(-0.215335\pi\)
−0.932073 + 0.362270i \(0.882002\pi\)
\(258\) 2.00000 + 6.63325i 0.124515 + 0.412968i
\(259\) −20.2337 + 23.3639i −1.25726 + 1.45176i
\(260\) 2.05842 + 1.98072i 0.127658 + 0.122839i
\(261\) −3.37228 + 6.78073i −0.208739 + 0.419716i
\(262\) −10.8030 18.7113i −0.667411 1.15599i
\(263\) −19.5475 + 11.2858i −1.20535 + 0.695911i −0.961741 0.273961i \(-0.911666\pi\)
−0.243613 + 0.969873i \(0.578333\pi\)
\(264\) 5.18614 5.51856i 0.319185 0.339644i
\(265\) 1.76631 0.108504
\(266\) 5.93070 2.05446i 0.363635 0.125967i
\(267\) 13.5584 + 12.7417i 0.829762 + 0.779780i
\(268\) 11.6819i 0.713587i
\(269\) 0.430703 0.746000i 0.0262604 0.0454844i −0.852597 0.522570i \(-0.824973\pi\)
0.878857 + 0.477085i \(0.158307\pi\)
\(270\) 4.05842 + 0.691097i 0.246988 + 0.0420588i
\(271\) 2.00000 + 3.46410i 0.121491 + 0.210429i 0.920356 0.391082i \(-0.127899\pi\)
−0.798865 + 0.601511i \(0.794566\pi\)
\(272\) 4.37228 0.265108
\(273\) −6.18614 15.3210i −0.374402 0.927266i
\(274\) 7.37228 0.445376
\(275\) 9.55842 + 16.5557i 0.576395 + 0.998345i
\(276\) −7.05842 + 2.12819i −0.424867 + 0.128102i
\(277\) −6.74456 + 11.6819i −0.405241 + 0.701899i −0.994350 0.106155i \(-0.966146\pi\)
0.589108 + 0.808054i \(0.299479\pi\)
\(278\) 8.86263i 0.531545i
\(279\) 16.8614 11.1846i 1.00947 0.669604i
\(280\) −0.686141 1.98072i −0.0410047 0.118371i
\(281\) −14.7446 −0.879587 −0.439793 0.898099i \(-0.644948\pi\)
−0.439793 + 0.898099i \(0.644948\pi\)
\(282\) 1.18614 + 1.11469i 0.0706336 + 0.0663789i
\(283\) 2.05842 1.18843i 0.122360 0.0706449i −0.437571 0.899184i \(-0.644161\pi\)
0.559931 + 0.828539i \(0.310828\pi\)
\(284\) −8.05842 13.9576i −0.478179 0.828231i
\(285\) −0.744563 + 3.16915i −0.0441041 + 0.187724i
\(286\) 10.9307 11.3595i 0.646346 0.671703i
\(287\) 16.3723 18.9051i 0.966425 1.11593i
\(288\) 0.186141 + 2.99422i 0.0109684 + 0.176436i
\(289\) −1.05842 1.83324i −0.0622601 0.107838i
\(290\) −1.00000 + 1.73205i −0.0587220 + 0.101710i
\(291\) 1.25544 + 0.294954i 0.0735950 + 0.0172905i
\(292\) −5.37228 + 9.30506i −0.314389 + 0.544538i
\(293\) 3.25544 + 1.87953i 0.190185 + 0.109803i 0.592069 0.805887i \(-0.298311\pi\)
−0.401884 + 0.915690i \(0.631645\pi\)
\(294\) −1.05842 + 12.0781i −0.0617284 + 0.704407i
\(295\) −2.43070 + 4.21010i −0.141521 + 0.245122i
\(296\) 10.1168 5.84096i 0.588030 0.339499i
\(297\) 3.81386 22.3966i 0.221303 1.29958i
\(298\) −6.00000 −0.347571
\(299\) −14.7446 + 4.25639i −0.852700 + 0.246153i
\(300\) −7.37228 1.73205i −0.425639 0.100000i
\(301\) 2.00000 10.3923i 0.115278 0.599002i
\(302\) 14.6168 8.43904i 0.841105 0.485612i
\(303\) −17.4891 + 18.6101i −1.00472 + 1.06912i
\(304\) −2.37228 −0.136060
\(305\) 2.05842 3.56529i 0.117865 0.204148i
\(306\) 10.9307 7.25061i 0.624867 0.414490i
\(307\) −21.2337 −1.21187 −0.605935 0.795514i \(-0.707201\pi\)
−0.605935 + 0.795514i \(0.707201\pi\)
\(308\) −10.9307 + 3.78651i −0.622835 + 0.215756i
\(309\) −13.6277 + 4.10891i −0.775254 + 0.233748i
\(310\) 4.62772 2.67181i 0.262837 0.151749i
\(311\) 10.3723 0.588158 0.294079 0.955781i \(-0.404987\pi\)
0.294079 + 0.955781i \(0.404987\pi\)
\(312\) 0.313859 + 6.23711i 0.0177688 + 0.353107i
\(313\) 13.8564i 0.783210i −0.920133 0.391605i \(-0.871920\pi\)
0.920133 0.391605i \(-0.128080\pi\)
\(314\) 0 0
\(315\) −5.00000 3.81396i −0.281718 0.214892i
\(316\) −4.81386 + 8.33785i −0.270801 + 0.469041i
\(317\) −15.2554 −0.856831 −0.428415 0.903582i \(-0.640928\pi\)
−0.428415 + 0.903582i \(0.640928\pi\)
\(318\) 2.81386 + 2.64436i 0.157793 + 0.148289i
\(319\) 9.55842 + 5.51856i 0.535169 + 0.308980i
\(320\) 0.792287i 0.0442902i
\(321\) −1.18614 1.11469i −0.0662039 0.0622160i
\(322\) 11.0584 + 2.12819i 0.616262 + 0.118600i
\(323\) 5.18614 + 8.98266i 0.288565 + 0.499809i
\(324\) 5.43070 + 7.17687i 0.301706 + 0.398715i
\(325\) −15.3030 3.78651i −0.848857 0.210038i
\(326\) 10.3923i 0.575577i
\(327\) 33.0000 9.94987i 1.82490 0.550229i
\(328\) −8.18614 + 4.72627i −0.452004 + 0.260965i
\(329\) −0.813859 2.34941i −0.0448695 0.129527i
\(330\) 1.37228 5.84096i 0.0755416 0.321534i
\(331\) −1.88316 1.08724i −0.103508 0.0597602i 0.447353 0.894358i \(-0.352367\pi\)
−0.550860 + 0.834598i \(0.685700\pi\)
\(332\) 1.37228 + 0.792287i 0.0753137 + 0.0434824i
\(333\) 15.6060 31.3793i 0.855202 1.71957i
\(334\) 5.74456 + 3.31662i 0.314328 + 0.181478i
\(335\) 4.62772 + 8.01544i 0.252839 + 0.437930i
\(336\) 1.87228 4.18265i 0.102141 0.228182i
\(337\) −10.6060 −0.577744 −0.288872 0.957368i \(-0.593280\pi\)
−0.288872 + 0.957368i \(0.593280\pi\)
\(338\) 0.500000 + 12.9904i 0.0271964 + 0.706584i
\(339\) −1.48913 + 6.33830i −0.0808782 + 0.344249i
\(340\) 3.00000 1.73205i 0.162698 0.0939336i
\(341\) −14.7446 25.5383i −0.798463 1.38298i
\(342\) −5.93070 + 3.93398i −0.320696 + 0.212725i
\(343\) 10.0000 15.5885i 0.539949 0.841698i
\(344\) −2.00000 + 3.46410i −0.107833 + 0.186772i
\(345\) −4.00000 + 4.25639i −0.215353 + 0.229156i
\(346\) −1.88316 −0.101239
\(347\) 18.0475 + 10.4198i 0.968843 + 0.559362i 0.898883 0.438188i \(-0.144380\pi\)
0.0699597 + 0.997550i \(0.477713\pi\)
\(348\) −4.18614 + 1.26217i −0.224401 + 0.0676594i
\(349\) 10.0584 + 17.4217i 0.538415 + 0.932562i 0.998990 + 0.0449411i \(0.0143100\pi\)
−0.460575 + 0.887621i \(0.652357\pi\)
\(350\) 8.74456 + 7.57301i 0.467417 + 0.404795i
\(351\) 11.1277 + 15.0723i 0.593954 + 0.804499i
\(352\) 4.37228 0.233043
\(353\) −25.3723 + 14.6487i −1.35043 + 0.779671i −0.988310 0.152460i \(-0.951280\pi\)
−0.362121 + 0.932131i \(0.617947\pi\)
\(354\) −10.1753 + 3.06796i −0.540809 + 0.163060i
\(355\) −11.0584 6.38458i −0.586920 0.338858i
\(356\) 10.7422i 0.569333i
\(357\) −19.9307 + 2.05446i −1.05484 + 0.108733i
\(358\) −4.37228 2.52434i −0.231082 0.133415i
\(359\) 16.6277 0.877577 0.438789 0.898590i \(-0.355408\pi\)
0.438789 + 0.898590i \(0.355408\pi\)
\(360\) 1.31386 + 1.98072i 0.0692465 + 0.104393i
\(361\) 6.68614 + 11.5807i 0.351902 + 0.609512i
\(362\) −10.5000 + 6.06218i −0.551868 + 0.318621i
\(363\) −13.6861 3.21543i −0.718336 0.168767i
\(364\) 4.00000 8.66025i 0.209657 0.453921i
\(365\) 8.51278i 0.445579i
\(366\) 8.61684 2.59808i 0.450410 0.135804i
\(367\) −26.2337 + 15.1460i −1.36939 + 0.790616i −0.990850 0.134970i \(-0.956906\pi\)
−0.378538 + 0.925586i \(0.623573\pi\)
\(368\) −3.68614 2.12819i −0.192153 0.110940i
\(369\) −12.6277 + 25.3909i −0.657373 + 1.32180i
\(370\) 4.62772 8.01544i 0.240584 0.416703i
\(371\) −1.93070 5.57346i −0.100237 0.289360i
\(372\) 11.3723 + 2.67181i 0.589625 + 0.138527i
\(373\) −4.00000 + 6.92820i −0.207112 + 0.358729i −0.950804 0.309794i \(-0.899740\pi\)
0.743691 + 0.668523i \(0.233073\pi\)
\(374\) −9.55842 16.5557i −0.494254 0.856073i
\(375\) −12.3139 + 3.71277i −0.635885 + 0.191727i
\(376\) 0.939764i 0.0484646i
\(377\) −8.74456 + 2.52434i −0.450368 + 0.130010i
\(378\) −2.25544 13.5615i −0.116007 0.697526i
\(379\) −4.88316 + 2.81929i −0.250831 + 0.144817i −0.620145 0.784487i \(-0.712926\pi\)
0.369314 + 0.929305i \(0.379593\pi\)
\(380\) −1.62772 + 0.939764i −0.0835002 + 0.0482089i
\(381\) −2.51087 + 2.67181i −0.128636 + 0.136881i
\(382\) 12.2718i 0.627882i
\(383\) −13.0693 7.54556i −0.667810 0.385560i 0.127436 0.991847i \(-0.459325\pi\)
−0.795246 + 0.606287i \(0.792658\pi\)
\(384\) −1.18614 + 1.26217i −0.0605300 + 0.0644098i
\(385\) −6.00000 + 6.92820i −0.305788 + 0.353094i
\(386\) 11.6168 + 6.70699i 0.591282 + 0.341377i
\(387\) 0.744563 + 11.9769i 0.0378482 + 0.608819i
\(388\) 0.372281 + 0.644810i 0.0188997 + 0.0327353i
\(389\) 29.2974i 1.48544i −0.669604 0.742718i \(-0.733536\pi\)
0.669604 0.742718i \(-0.266464\pi\)
\(390\) 2.68614 + 4.15520i 0.136018 + 0.210407i
\(391\) 18.6101i 0.941155i
\(392\) −5.50000 + 4.33013i −0.277792 + 0.218704i
\(393\) −10.8030 35.8294i −0.544938 1.80736i
\(394\) 12.3030 21.3094i 0.619815 1.07355i
\(395\) 7.62792i 0.383802i
\(396\) 10.9307 7.25061i 0.549289 0.364357i
\(397\) −1.12772 + 1.95327i −0.0565986 + 0.0980316i −0.892936 0.450183i \(-0.851359\pi\)
0.836338 + 0.548214i \(0.184692\pi\)
\(398\) 3.46410i 0.173640i
\(399\) 10.8139 1.11469i 0.541370 0.0558044i
\(400\) −2.18614 3.78651i −0.109307 0.189325i
\(401\) 5.74456 + 9.94987i 0.286870 + 0.496873i 0.973061 0.230548i \(-0.0740520\pi\)
−0.686191 + 0.727421i \(0.740719\pi\)
\(402\) −4.62772 + 19.6974i −0.230810 + 0.982415i
\(403\) 23.6060 + 5.84096i 1.17590 + 0.290959i
\(404\) −14.7446 −0.733569
\(405\) 6.56930 + 2.77300i 0.326431 + 0.137792i
\(406\) 6.55842 + 1.26217i 0.325489 + 0.0626404i
\(407\) −44.2337 25.5383i −2.19258 1.26589i
\(408\) 7.37228 + 1.73205i 0.364982 + 0.0857493i
\(409\) 10.7446 18.6101i 0.531284 0.920212i −0.468049 0.883703i \(-0.655043\pi\)
0.999333 0.0365091i \(-0.0116238\pi\)
\(410\) −3.74456 + 6.48577i −0.184931 + 0.320309i
\(411\) 12.4307 + 2.92048i 0.613161 + 0.144057i
\(412\) −7.11684 4.10891i −0.350622 0.202432i
\(413\) 15.9416 + 3.06796i 0.784434 + 0.150964i
\(414\) −12.7446 + 0.792287i −0.626361 + 0.0389388i
\(415\) 1.25544 0.0616270
\(416\) −2.50000 + 2.59808i −0.122573 + 0.127381i
\(417\) −3.51087 + 14.9436i −0.171928 + 0.731794i
\(418\) 5.18614 + 8.98266i 0.253662 + 0.439356i
\(419\) 2.74456 + 4.75372i 0.134081 + 0.232235i 0.925246 0.379368i \(-0.123859\pi\)
−0.791165 + 0.611602i \(0.790525\pi\)
\(420\) −0.372281 3.61158i −0.0181655 0.176227i
\(421\) 26.8280i 1.30751i −0.756704 0.653757i \(-0.773192\pi\)
0.756704 0.653757i \(-0.226808\pi\)
\(422\) 5.62772 9.74749i 0.273953 0.474501i
\(423\) 1.55842 + 2.34941i 0.0757731 + 0.114232i
\(424\) 2.22938i 0.108268i
\(425\) −9.55842 + 16.5557i −0.463652 + 0.803068i
\(426\) −8.05842 26.7268i −0.390432 1.29492i
\(427\) −13.5000 2.59808i −0.653311 0.125730i
\(428\) 0.939764i 0.0454252i
\(429\) 22.9307 14.8236i 1.10710 0.715691i
\(430\) 3.16915i 0.152830i
\(431\) 12.6861 + 21.9730i 0.611070 + 1.05840i 0.991060 + 0.133414i \(0.0425939\pi\)
−0.379991 + 0.924990i \(0.624073\pi\)
\(432\) −0.872281 + 5.12241i −0.0419677 + 0.246452i
\(433\) 21.3505 + 12.3267i 1.02604 + 0.592385i 0.915848 0.401525i \(-0.131520\pi\)
0.110193 + 0.993910i \(0.464853\pi\)
\(434\) −13.4891 11.6819i −0.647499 0.560750i
\(435\) −2.37228 + 2.52434i −0.113742 + 0.121033i
\(436\) 17.2337 + 9.94987i 0.825344 + 0.476513i
\(437\) 10.0974i 0.483022i
\(438\) −12.7446 + 13.5615i −0.608959 + 0.647991i
\(439\) 21.3505 12.3267i 1.01901 0.588323i 0.105190 0.994452i \(-0.466455\pi\)
0.913816 + 0.406129i \(0.133122\pi\)
\(440\) 3.00000 1.73205i 0.143019 0.0825723i
\(441\) −6.56930 + 19.9460i −0.312824 + 0.949811i
\(442\) 15.3030 + 3.78651i 0.727889 + 0.180106i
\(443\) 7.86797i 0.373818i −0.982377 0.186909i \(-0.940153\pi\)
0.982377 0.186909i \(-0.0598470\pi\)
\(444\) 19.3723 5.84096i 0.919368 0.277200i
\(445\) 4.25544 + 7.37063i 0.201727 + 0.349402i
\(446\) 14.1168 24.4511i 0.668452 1.15779i
\(447\) −10.1168 2.37686i −0.478510 0.112422i
\(448\) 2.50000 0.866025i 0.118114 0.0409159i
\(449\) 19.8030 34.2998i 0.934561 1.61871i 0.159145 0.987255i \(-0.449126\pi\)
0.775416 0.631451i \(-0.217540\pi\)
\(450\) −11.7446 5.84096i −0.553644 0.275346i
\(451\) 35.7921 + 20.6646i 1.68538 + 0.973057i
\(452\) −3.25544 + 1.87953i −0.153123 + 0.0884055i
\(453\) 27.9891 8.43904i 1.31504 0.396501i
\(454\) 19.4024i 0.910600i
\(455\) −0.686141 7.52673i −0.0321668 0.352858i
\(456\) −4.00000 0.939764i −0.187317 0.0440085i
\(457\) 9.17527 5.29734i 0.429201 0.247799i −0.269805 0.962915i \(-0.586959\pi\)
0.699006 + 0.715116i \(0.253626\pi\)
\(458\) −2.55842 4.43132i −0.119547 0.207062i
\(459\) 21.3030 7.89542i 0.994338 0.368527i
\(460\) −3.37228 −0.157233
\(461\) 27.4307 + 15.8371i 1.27758 + 0.737608i 0.976402 0.215961i \(-0.0692884\pi\)
0.301173 + 0.953569i \(0.402622\pi\)
\(462\) −19.9307 + 2.05446i −0.927260 + 0.0955819i
\(463\) 10.8347i 0.503533i 0.967788 + 0.251766i \(0.0810115\pi\)
−0.967788 + 0.251766i \(0.918989\pi\)
\(464\) −2.18614 1.26217i −0.101489 0.0585947i
\(465\) 8.86141 2.67181i 0.410938 0.123902i
\(466\) 4.19702 2.42315i 0.194423 0.112250i
\(467\) −25.3723 −1.17409 −0.587045 0.809555i \(-0.699709\pi\)
−0.587045 + 0.809555i \(0.699709\pi\)
\(468\) −1.94158 + 10.6410i −0.0897495 + 0.491879i
\(469\) 20.2337 23.3639i 0.934305 1.07884i
\(470\) 0.372281 + 0.644810i 0.0171721 + 0.0297429i
\(471\) 0 0
\(472\) −5.31386 3.06796i −0.244590 0.141214i
\(473\) 17.4891 0.804151
\(474\) −11.4198 + 12.1518i −0.524530 + 0.558151i
\(475\) 5.18614 8.98266i 0.237956 0.412153i
\(476\) −8.74456 7.57301i −0.400806 0.347108i
\(477\) 3.69702 + 5.57346i 0.169275 + 0.255191i
\(478\) −7.80298 13.5152i −0.356900 0.618169i
\(479\) −2.69702 + 1.55712i −0.123230 + 0.0711467i −0.560348 0.828257i \(-0.689333\pi\)
0.437118 + 0.899404i \(0.355999\pi\)
\(480\) −0.313859 + 1.33591i −0.0143257 + 0.0609755i
\(481\) 40.4674 11.6819i 1.84515 0.532650i
\(482\) 12.7446 0.580499
\(483\) 17.8030 + 7.96916i 0.810064 + 0.362609i
\(484\) −4.05842 7.02939i −0.184474 0.319518i
\(485\) 0.510875 + 0.294954i 0.0231976 + 0.0133932i
\(486\) 6.31386 + 14.2525i 0.286402 + 0.646509i
\(487\) −26.6168 15.3672i −1.20612 0.696356i −0.244214 0.969721i \(-0.578530\pi\)
−0.961910 + 0.273365i \(0.911863\pi\)
\(488\) 4.50000 + 2.59808i 0.203705 + 0.117609i
\(489\) 4.11684 17.5229i 0.186170 0.792412i
\(490\) −2.05842 + 5.14987i −0.0929900 + 0.232647i
\(491\) −6.60597 + 3.81396i −0.298123 + 0.172122i −0.641599 0.767040i \(-0.721729\pi\)
0.343476 + 0.939161i \(0.388396\pi\)
\(492\) −15.6753 + 4.72627i −0.706696 + 0.213077i
\(493\) 11.0371i 0.497087i
\(494\) −8.30298 2.05446i −0.373569 0.0924343i
\(495\) 4.62772 9.30506i 0.208000 0.418232i
\(496\) 3.37228 + 5.84096i 0.151420 + 0.262267i
\(497\) −8.05842 + 41.8728i −0.361470 + 1.87825i
\(498\) 2.00000 + 1.87953i 0.0896221 + 0.0842236i
\(499\) 16.4356i 0.735761i −0.929873 0.367880i \(-0.880084\pi\)
0.929873 0.367880i \(-0.119916\pi\)
\(500\) −6.43070 3.71277i −0.287590 0.166040i
\(501\) 8.37228 + 7.86797i 0.374046 + 0.351515i
\(502\) −16.1168 −0.719330
\(503\) 11.4891 19.8997i 0.512275 0.887286i −0.487624 0.873054i \(-0.662136\pi\)
0.999899 0.0142322i \(-0.00453039\pi\)
\(504\) 4.81386 6.31084i 0.214426 0.281107i
\(505\) −10.1168 + 5.84096i −0.450194 + 0.259919i
\(506\) 18.6101i 0.827321i
\(507\) −4.30298 + 22.1017i −0.191102 + 0.981570i
\(508\) −2.11684 −0.0939198
\(509\) −20.3139 + 11.7282i −0.900396 + 0.519844i −0.877329 0.479890i \(-0.840677\pi\)
−0.0230673 + 0.999734i \(0.507343\pi\)
\(510\) 5.74456 1.73205i 0.254374 0.0766965i
\(511\) 26.8614 9.30506i 1.18828 0.411632i
\(512\) −1.00000 −0.0441942
\(513\) −11.5584 + 4.28384i −0.510317 + 0.189136i
\(514\) 2.44158 4.22894i 0.107693 0.186530i
\(515\) −6.51087 −0.286903
\(516\) −4.74456 + 5.04868i −0.208868 + 0.222256i
\(517\) 3.55842 2.05446i 0.156499 0.0903549i
\(518\) −30.3505 5.84096i −1.33353 0.256637i
\(519\) −3.17527 0.746000i −0.139379 0.0327458i
\(520\) −0.686141 + 2.77300i −0.0300893 + 0.121604i
\(521\) 1.11684 0.0489298 0.0244649 0.999701i \(-0.492212\pi\)
0.0244649 + 0.999701i \(0.492212\pi\)
\(522\) −7.55842 + 0.469882i −0.330823 + 0.0205662i
\(523\) 7.50000 4.33013i 0.327952 0.189343i −0.326979 0.945031i \(-0.606031\pi\)
0.654932 + 0.755688i \(0.272697\pi\)
\(524\) 10.8030 18.7113i 0.471931 0.817408i
\(525\) 11.7446 + 16.2333i 0.512575 + 0.708478i
\(526\) −19.5475 11.2858i −0.852314 0.492083i
\(527\) 14.7446 25.5383i 0.642283 1.11247i
\(528\) 7.37228 + 1.73205i 0.320837 + 0.0753778i
\(529\) −2.44158 + 4.22894i −0.106156 + 0.183867i
\(530\) 0.883156 + 1.52967i 0.0383618 + 0.0664447i
\(531\) −18.3723 + 1.14214i −0.797289 + 0.0495648i
\(532\) 4.74456 + 4.10891i 0.205703 + 0.178144i
\(533\) −32.7446 + 9.45254i −1.41832 + 0.409435i
\(534\) −4.25544 + 18.1128i −0.184151 + 0.783817i
\(535\) −0.372281 0.644810i −0.0160951 0.0278776i
\(536\) −10.1168 + 5.84096i −0.436981 + 0.252291i
\(537\) −6.37228 5.98844i −0.274984 0.258420i
\(538\) 0.861407 0.0371379
\(539\) 28.4198 + 11.3595i 1.22413 + 0.489289i
\(540\) 1.43070 + 3.86025i 0.0615677 + 0.166119i
\(541\) 1.28962i 0.0554451i −0.999616 0.0277226i \(-0.991175\pi\)
0.999616 0.0277226i \(-0.00882549\pi\)
\(542\) −2.00000 + 3.46410i −0.0859074 + 0.148796i
\(543\) −20.1060 + 6.06218i −0.862830 + 0.260153i
\(544\) 2.18614 + 3.78651i 0.0937300 + 0.162345i
\(545\) 15.7663 0.675355
\(546\) 10.1753 13.0178i 0.435461 0.557112i
\(547\) 8.51087 0.363899 0.181949 0.983308i \(-0.441759\pi\)
0.181949 + 0.983308i \(0.441759\pi\)
\(548\) 3.68614 + 6.38458i 0.157464 + 0.272736i
\(549\) 15.5584 0.967215i 0.664017 0.0412797i
\(550\) −9.55842 + 16.5557i −0.407572 + 0.705936i
\(551\) 5.98844i 0.255116i
\(552\) −5.37228 5.04868i −0.228659 0.214886i
\(553\) 24.0693 8.33785i 1.02353 0.354561i
\(554\) −13.4891 −0.573098
\(555\) 10.9783 11.6819i 0.466001 0.495870i
\(556\) −7.67527 + 4.43132i −0.325504 + 0.187930i
\(557\) 12.3030 + 21.3094i 0.521294 + 0.902908i 0.999693 + 0.0247655i \(0.00788391\pi\)
−0.478399 + 0.878143i \(0.658783\pi\)
\(558\) 18.1168 + 9.01011i 0.766947 + 0.381428i
\(559\) −10.0000 + 10.3923i −0.422955 + 0.439548i
\(560\) 1.37228 1.58457i 0.0579895 0.0669605i
\(561\) −9.55842 31.7017i −0.403557 1.33845i
\(562\) −7.37228 12.7692i −0.310981 0.538635i
\(563\) 18.0000 31.1769i 0.758610 1.31395i −0.184950 0.982748i \(-0.559212\pi\)
0.943560 0.331202i \(-0.107454\pi\)
\(564\) −0.372281 + 1.58457i −0.0156759 + 0.0667226i
\(565\) −1.48913 + 2.57924i −0.0626480 + 0.108509i
\(566\) 2.05842 + 1.18843i 0.0865219 + 0.0499535i
\(567\) 1.56930 23.7600i 0.0659043 0.997826i
\(568\) 8.05842 13.9576i 0.338124 0.585648i
\(569\) −29.6644 + 17.1267i −1.24360 + 0.717990i −0.969824 0.243804i \(-0.921605\pi\)
−0.273772 + 0.961795i \(0.588271\pi\)
\(570\) −3.11684 + 0.939764i −0.130550 + 0.0393624i
\(571\) −9.48913 −0.397108 −0.198554 0.980090i \(-0.563624\pi\)
−0.198554 + 0.980090i \(0.563624\pi\)
\(572\) 15.3030 + 3.78651i 0.639850 + 0.158322i
\(573\) 4.86141 20.6920i 0.203088 0.864422i
\(574\) 24.5584 + 4.72627i 1.02505 + 0.197271i
\(575\) 16.1168 9.30506i 0.672119 0.388048i
\(576\) −2.50000 + 1.65831i −0.104167 + 0.0690963i
\(577\) 5.76631 0.240055 0.120027 0.992771i \(-0.461702\pi\)
0.120027 + 0.992771i \(0.461702\pi\)
\(578\) 1.05842 1.83324i 0.0440246 0.0762528i
\(579\) 16.9307 + 15.9109i 0.703616 + 0.661233i
\(580\) −2.00000 −0.0830455
\(581\) −1.37228 3.96143i −0.0569318 0.164348i
\(582\) 0.372281 + 1.23472i 0.0154316 + 0.0511807i
\(583\) 8.44158 4.87375i 0.349614 0.201850i
\(584\) −10.7446 −0.444613
\(585\) 2.88316 + 8.07035i 0.119204 + 0.333668i
\(586\) 3.75906i 0.155285i
\(587\) −37.5475 + 21.6781i −1.54975 + 0.894750i −0.551593 + 0.834113i \(0.685980\pi\)
−0.998160 + 0.0606372i \(0.980687\pi\)
\(588\) −10.9891 + 5.12241i −0.453184 + 0.211245i
\(589\) −8.00000 + 13.8564i −0.329634 + 0.570943i
\(590\) −4.86141 −0.200141
\(591\) 29.1861 31.0569i 1.20056 1.27751i
\(592\) 10.1168 + 5.84096i 0.415800 + 0.240062i
\(593\) 3.11425i 0.127887i −0.997954 0.0639434i \(-0.979632\pi\)
0.997954 0.0639434i \(-0.0203677\pi\)
\(594\) 21.3030 7.89542i 0.874072 0.323953i
\(595\) −9.00000 1.73205i −0.368964 0.0710072i
\(596\) −3.00000 5.19615i −0.122885 0.212843i
\(597\) −1.37228 + 5.84096i −0.0561637 + 0.239055i
\(598\) −11.0584 10.6410i −0.452213 0.435142i
\(599\) 22.5716i 0.922249i −0.887335 0.461125i \(-0.847446\pi\)
0.887335 0.461125i \(-0.152554\pi\)
\(600\) −2.18614 7.25061i −0.0892488 0.296005i
\(601\) −37.1168 + 21.4294i −1.51403 + 0.874124i −0.514163 + 0.857693i \(0.671897\pi\)
−0.999865 + 0.0164316i \(0.994769\pi\)
\(602\) 10.0000 3.46410i 0.407570 0.141186i
\(603\) −15.6060 + 31.3793i −0.635524 + 1.27786i
\(604\) 14.6168 + 8.43904i 0.594751 + 0.343380i
\(605\) −5.56930 3.21543i −0.226424 0.130726i
\(606\) −24.8614 5.84096i −1.00993 0.237273i
\(607\) −30.3505 17.5229i −1.23189 0.711232i −0.264466 0.964395i \(-0.585196\pi\)
−0.967424 + 0.253163i \(0.918529\pi\)
\(608\) −1.18614 2.05446i −0.0481044 0.0833192i
\(609\) 10.5584 + 4.72627i 0.427849 + 0.191518i
\(610\) 4.11684 0.166686
\(611\) −0.813859 + 3.28917i −0.0329252 + 0.133066i
\(612\) 11.7446 + 5.84096i 0.474746 + 0.236107i
\(613\) −8.23369 + 4.75372i −0.332556 + 0.192001i −0.656975 0.753912i \(-0.728164\pi\)
0.324420 + 0.945913i \(0.394831\pi\)
\(614\) −10.6168 18.3889i −0.428461 0.742116i
\(615\) −8.88316 + 9.45254i −0.358203 + 0.381163i
\(616\) −8.74456 7.57301i −0.352328 0.305125i
\(617\) 16.8030 29.1036i 0.676463 1.17167i −0.299576 0.954072i \(-0.596845\pi\)
0.976039 0.217595i \(-0.0698213\pi\)
\(618\) −10.3723 9.74749i −0.417234 0.392102i
\(619\) 33.4674 1.34517 0.672584 0.740021i \(-0.265184\pi\)
0.672584 + 0.740021i \(0.265184\pi\)
\(620\) 4.62772 + 2.67181i 0.185854 + 0.107303i
\(621\) −21.8030 3.71277i −0.874924 0.148988i
\(622\) 5.18614 + 8.98266i 0.207945 + 0.360172i
\(623\) 18.6060 21.4843i 0.745432 0.860751i
\(624\) −5.24456 + 3.39036i −0.209951 + 0.135723i
\(625\) 15.9783 0.639130
\(626\) 12.0000 6.92820i 0.479616 0.276907i
\(627\) 5.18614 + 17.2005i 0.207115 + 0.686921i
\(628\) 0 0
\(629\) 51.0767i 2.03656i
\(630\) 0.802985 6.23711i 0.0319917 0.248492i
\(631\) −28.5000 16.4545i −1.13457 0.655043i −0.189488 0.981883i \(-0.560683\pi\)
−0.945080 + 0.326841i \(0.894016\pi\)
\(632\) −9.62772 −0.382970
\(633\) 13.3505 14.2063i 0.530636 0.564648i
\(634\) −7.62772 13.2116i −0.302935 0.524700i
\(635\) −1.45245 + 0.838574i −0.0576388 + 0.0332778i
\(636\) −0.883156 + 3.75906i −0.0350194 + 0.149056i
\(637\) −23.0000 + 10.3923i −0.911293 + 0.411758i
\(638\) 11.0371i 0.436964i
\(639\) −3.00000 48.2574i −0.118678 1.90903i
\(640\) −0.686141 + 0.396143i −0.0271221 + 0.0156589i
\(641\) 23.6644 + 13.6626i 0.934687 + 0.539642i 0.888291 0.459281i \(-0.151893\pi\)
0.0463963 + 0.998923i \(0.485226\pi\)
\(642\) 0.372281 1.58457i 0.0146928 0.0625381i
\(643\) 1.61684 2.80046i 0.0637621 0.110439i −0.832382 0.554202i \(-0.813023\pi\)
0.896144 + 0.443763i \(0.146357\pi\)
\(644\) 3.68614 + 10.6410i 0.145254 + 0.419313i
\(645\) −1.25544 + 5.34363i −0.0494328 + 0.210405i
\(646\) −5.18614 + 8.98266i −0.204046 + 0.353418i
\(647\) 19.9307 + 34.5210i 0.783557 + 1.35716i 0.929857 + 0.367920i \(0.119930\pi\)
−0.146301 + 0.989240i \(0.546737\pi\)
\(648\) −3.50000 + 8.29156i −0.137493 + 0.325723i
\(649\) 26.8280i 1.05309i
\(650\) −4.37228 15.1460i −0.171495 0.594076i
\(651\) −18.1168 25.0410i −0.710055 0.981434i
\(652\) 9.00000 5.19615i 0.352467 0.203497i
\(653\) −9.04755 + 5.22360i −0.354058 + 0.204415i −0.666471 0.745531i \(-0.732196\pi\)
0.312413 + 0.949946i \(0.398863\pi\)
\(654\) 25.1168 + 23.6039i 0.982146 + 0.922986i
\(655\) 17.1181i 0.668861i
\(656\) −8.18614 4.72627i −0.319615 0.184530i
\(657\) −26.8614 + 17.8178i −1.04796 + 0.695140i
\(658\) 1.62772 1.87953i 0.0634551 0.0732716i
\(659\) 37.1644 + 21.4569i 1.44772 + 0.835841i 0.998345 0.0575028i \(-0.0183138\pi\)
0.449374 + 0.893344i \(0.351647\pi\)
\(660\) 5.74456 1.73205i 0.223607 0.0674200i
\(661\) 10.5693 + 18.3066i 0.411098 + 0.712043i 0.995010 0.0997743i \(-0.0318121\pi\)
−0.583912 + 0.811817i \(0.698479\pi\)
\(662\) 2.17448i 0.0845136i
\(663\) 24.3030 + 12.4468i 0.943850 + 0.483392i
\(664\) 1.58457i 0.0614934i
\(665\) 4.88316 + 0.939764i 0.189361 + 0.0364425i
\(666\) 34.9783 2.17448i 1.35538 0.0842594i
\(667\) 5.37228 9.30506i 0.208016 0.360294i
\(668\) 6.63325i 0.256648i
\(669\) 33.4891 35.6357i 1.29476 1.37776i
\(670\) −4.62772 + 8.01544i −0.178784 + 0.309664i
\(671\) 22.7190i 0.877059i
\(672\) 4.55842 0.469882i 0.175845 0.0181261i
\(673\) 4.18614 + 7.25061i 0.161364 + 0.279490i 0.935358 0.353702i \(-0.115077\pi\)
−0.773994 + 0.633193i \(0.781744\pi\)
\(674\) −5.30298 9.18504i −0.204263 0.353794i
\(675\) −17.4891 14.5012i −0.673157 0.558152i
\(676\) −11.0000 + 6.92820i −0.423077 + 0.266469i
\(677\) 1.37228 0.0527411 0.0263705 0.999652i \(-0.491605\pi\)
0.0263705 + 0.999652i \(0.491605\pi\)
\(678\) −6.23369 + 1.87953i −0.239403 + 0.0721828i
\(679\) 0.372281 1.93443i 0.0142868 0.0742366i
\(680\) 3.00000 + 1.73205i 0.115045 + 0.0664211i
\(681\) 7.68614 32.7152i 0.294534 1.25365i
\(682\) 14.7446 25.5383i 0.564598 0.977913i
\(683\) −6.86141 + 11.8843i −0.262544 + 0.454740i −0.966917 0.255090i \(-0.917895\pi\)
0.704373 + 0.709830i \(0.251228\pi\)
\(684\) −6.37228 3.16915i −0.243650 0.121175i
\(685\) 5.05842 + 2.92048i 0.193272 + 0.111586i
\(686\) 18.5000 + 0.866025i 0.706333 + 0.0330650i
\(687\) −2.55842 8.48533i −0.0976099 0.323735i
\(688\) −4.00000 −0.152499
\(689\) −1.93070 + 7.80284i −0.0735539 + 0.297265i
\(690\) −5.68614 1.33591i −0.216468 0.0508571i
\(691\) −10.9416 18.9514i −0.416237 0.720944i 0.579320 0.815100i \(-0.303318\pi\)
−0.995557 + 0.0941560i \(0.969985\pi\)
\(692\) −0.941578 1.63086i −0.0357934 0.0619960i
\(693\) −34.4198 4.43132i −1.30750 0.168332i
\(694\) 20.8395i 0.791057i
\(695\) −3.51087 + 6.08101i −0.133175 + 0.230666i
\(696\) −3.18614 2.99422i −0.120770 0.113496i
\(697\) 41.3292i 1.56545i
\(698\) −10.0584 + 17.4217i −0.380717 + 0.659421i
\(699\) 8.03667 2.42315i 0.303975 0.0916519i
\(700\) −2.18614 + 11.3595i −0.0826284 + 0.429350i
\(701\) 45.3832i 1.71410i 0.515234 + 0.857049i \(0.327705\pi\)
−0.515234 + 0.857049i \(0.672295\pi\)
\(702\) −7.48913 + 17.1730i −0.282659 + 0.648154i
\(703\) 27.7128i 1.04521i
\(704\) 2.18614 + 3.78651i 0.0823933 + 0.142709i
\(705\) 0.372281 + 1.23472i 0.0140209 + 0.0465022i
\(706\) −25.3723 14.6487i −0.954898 0.551311i
\(707\) 29.4891 + 25.5383i 1.10905 + 0.960468i
\(708\) −7.74456 7.27806i −0.291058 0.273526i
\(709\) −22.8832 13.2116i −0.859395 0.496172i 0.00441467 0.999990i \(-0.498595\pi\)
−0.863810 + 0.503818i \(0.831928\pi\)
\(710\) 12.7692i 0.479218i
\(711\) −24.0693 + 15.9658i −0.902669 + 0.598763i
\(712\) −9.30298 + 5.37108i −0.348644 + 0.201290i
\(713\) −24.8614 + 14.3537i −0.931067 + 0.537552i
\(714\) −11.7446 16.2333i −0.439529 0.607515i
\(715\) 12.0000 3.46410i 0.448775 0.129550i
\(716\) 5.04868i 0.188678i
\(717\) −7.80298 25.8796i −0.291408 0.966490i
\(718\) 8.31386 + 14.4000i 0.310270 + 0.537404i
\(719\) 12.5584 21.7518i 0.468350 0.811206i −0.530996 0.847375i \(-0.678182\pi\)
0.999346 + 0.0361684i \(0.0115153\pi\)
\(720\) −1.05842 + 2.12819i −0.0394451 + 0.0793131i
\(721\) 7.11684 + 20.5446i 0.265045 + 0.765119i
\(722\) −6.68614 + 11.5807i −0.248832 + 0.430990i
\(723\) 21.4891 + 5.04868i 0.799189 + 0.187762i
\(724\) −10.5000 6.06218i −0.390229 0.225299i
\(725\) 9.55842 5.51856i 0.354991 0.204954i
\(726\) −4.05842 13.4603i −0.150622 0.499557i
\(727\) 28.1176i 1.04282i −0.853305 0.521412i \(-0.825406\pi\)
0.853305 0.521412i \(-0.174594\pi\)
\(728\) 9.50000 0.866025i 0.352093 0.0320970i
\(729\) 5.00000 + 26.5330i 0.185185 + 0.982704i
\(730\) −7.37228 + 4.25639i −0.272860 + 0.157536i
\(731\) 8.74456 + 15.1460i 0.323429 + 0.560196i
\(732\) 6.55842 + 6.16337i 0.242406 + 0.227805i
\(733\) 43.7446 1.61574 0.807871 0.589359i \(-0.200620\pi\)
0.807871 + 0.589359i \(0.200620\pi\)
\(734\) −26.2337 15.1460i −0.968303 0.559050i
\(735\) −5.51087 + 7.86797i −0.203272 + 0.290214i
\(736\) 4.25639i 0.156893i
\(737\) 44.2337 + 25.5383i 1.62937 + 0.940717i
\(738\) −28.3030 + 1.75950i −1.04185 + 0.0647682i
\(739\) −34.1168 + 19.6974i −1.25501 + 0.724579i −0.972100 0.234567i \(-0.924633\pi\)
−0.282909 + 0.959147i \(0.591299\pi\)
\(740\) 9.25544 0.340237
\(741\) −13.1861 6.75327i −0.484405 0.248088i
\(742\) 3.86141 4.45877i 0.141757 0.163687i
\(743\) 1.62772 + 2.81929i 0.0597152 + 0.103430i 0.894338 0.447393i \(-0.147647\pi\)
−0.834622 + 0.550823i \(0.814314\pi\)
\(744\) 3.37228 + 11.1846i 0.123634 + 0.410047i
\(745\) −4.11684 2.37686i −0.150829 0.0870814i
\(746\) −8.00000 −0.292901
\(747\) 2.62772 + 3.96143i 0.0961432 + 0.144941i
\(748\) 9.55842 16.5557i 0.349491 0.605335i
\(749\) −1.62772 + 1.87953i −0.0594755 + 0.0686764i
\(750\) −9.37228 8.80773i −0.342227 0.321613i
\(751\) 0.500000 + 0.866025i 0.0182453 + 0.0316017i 0.875004 0.484116i \(-0.160859\pi\)
−0.856759 + 0.515718i \(0.827525\pi\)
\(752\) −0.813859 + 0.469882i −0.0296784 + 0.0171348i
\(753\) −27.1753 6.38458i −0.990322 0.232667i
\(754\) −6.55842 6.31084i −0.238844 0.229827i
\(755\) 13.3723 0.486667
\(756\) 10.6168 8.73399i 0.386131 0.317652i
\(757\) 8.86141 + 15.3484i 0.322073 + 0.557847i 0.980916 0.194434i \(-0.0622869\pi\)
−0.658842 + 0.752281i \(0.728954\pi\)
\(758\) −4.88316 2.81929i −0.177364 0.102401i
\(759\) −7.37228 + 31.3793i −0.267597 + 1.13900i
\(760\) −1.62772 0.939764i −0.0590436 0.0340888i
\(761\) 3.25544 + 1.87953i 0.118010 + 0.0681328i 0.557843 0.829947i \(-0.311629\pi\)
−0.439833 + 0.898079i \(0.644963\pi\)
\(762\) −3.56930 0.838574i −0.129302 0.0303783i
\(763\) −17.2337 49.7494i −0.623901 1.80105i
\(764\) 10.6277 6.13592i 0.384497 0.221990i
\(765\) 10.3723 0.644810i 0.375011 0.0233132i
\(766\) 15.0911i 0.545264i
\(767\) −15.9416 15.3398i −0.575617 0.553888i
\(768\) −1.68614 0.396143i −0.0608434 0.0142946i
\(769\) 12.1168 + 20.9870i 0.436945 + 0.756810i 0.997452 0.0713391i \(-0.0227273\pi\)
−0.560508 + 0.828149i \(0.689394\pi\)
\(770\) −9.00000 1.73205i −0.324337 0.0624188i
\(771\) 5.79211 6.16337i 0.208598 0.221968i
\(772\) 13.4140i 0.482780i
\(773\)