# Properties

 Label 546.2.q.h.335.2 Level $546$ Weight $2$ Character 546.335 Analytic conductor $4.360$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Learn more

## Newspace parameters

 Level: $$N$$ $$=$$ $$546 = 2 \cdot 3 \cdot 7 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 546.q (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$4.35983195036$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\Q(\sqrt{-3}, \sqrt{-11})$$ Defining polynomial: $$x^{4} - x^{3} - 2 x^{2} - 3 x + 9$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 335.2 Root $$-1.18614 - 1.26217i$$ of defining polynomial Character $$\chi$$ $$=$$ 546.335 Dual form 546.2.q.h.251.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.500000 + 0.866025i) q^{2} +(0.500000 + 1.65831i) q^{3} +(-0.500000 + 0.866025i) q^{4} +0.792287i q^{5} +(-1.18614 + 1.26217i) q^{6} +(2.50000 - 0.866025i) q^{7} -1.00000 q^{8} +(-2.50000 + 1.65831i) q^{9} +O(q^{10})$$ $$q+(0.500000 + 0.866025i) q^{2} +(0.500000 + 1.65831i) q^{3} +(-0.500000 + 0.866025i) q^{4} +0.792287i q^{5} +(-1.18614 + 1.26217i) q^{6} +(2.50000 - 0.866025i) q^{7} -1.00000 q^{8} +(-2.50000 + 1.65831i) q^{9} +(-0.686141 + 0.396143i) q^{10} +(2.18614 + 3.78651i) q^{11} +(-1.68614 - 0.396143i) q^{12} +(-3.50000 - 0.866025i) q^{13} +(2.00000 + 1.73205i) q^{14} +(-1.31386 + 0.396143i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-2.18614 + 3.78651i) q^{17} +(-2.68614 - 1.33591i) q^{18} +(1.18614 - 2.05446i) q^{19} +(-0.686141 - 0.396143i) q^{20} +(2.68614 + 3.71277i) q^{21} +(-2.18614 + 3.78651i) q^{22} +(3.68614 - 2.12819i) q^{23} +(-0.500000 - 1.65831i) q^{24} +4.37228 q^{25} +(-1.00000 - 3.46410i) q^{26} +(-4.00000 - 3.31662i) q^{27} +(-0.500000 + 2.59808i) q^{28} +(2.18614 - 1.26217i) q^{29} +(-1.00000 - 0.939764i) q^{30} -6.74456 q^{31} +(0.500000 - 0.866025i) q^{32} +(-5.18614 + 5.51856i) q^{33} -4.37228 q^{34} +(0.686141 + 1.98072i) q^{35} +(-0.186141 - 2.99422i) q^{36} +(-10.1168 + 5.84096i) q^{37} +2.37228 q^{38} +(-0.313859 - 6.23711i) q^{39} -0.792287i q^{40} +(8.18614 - 4.72627i) q^{41} +(-1.87228 + 4.18265i) q^{42} +(2.00000 - 3.46410i) q^{43} -4.37228 q^{44} +(-1.31386 - 1.98072i) q^{45} +(3.68614 + 2.12819i) q^{46} -0.939764i q^{47} +(1.18614 - 1.26217i) q^{48} +(5.50000 - 4.33013i) q^{49} +(2.18614 + 3.78651i) q^{50} +(-7.37228 - 1.73205i) q^{51} +(2.50000 - 2.59808i) q^{52} -2.22938i q^{53} +(0.872281 - 5.12241i) q^{54} +(-3.00000 + 1.73205i) q^{55} +(-2.50000 + 0.866025i) q^{56} +(4.00000 + 0.939764i) q^{57} +(2.18614 + 1.26217i) q^{58} +(5.31386 + 3.06796i) q^{59} +(0.313859 - 1.33591i) q^{60} +(-4.50000 - 2.59808i) q^{61} +(-3.37228 - 5.84096i) q^{62} +(-4.81386 + 6.31084i) q^{63} +1.00000 q^{64} +(0.686141 - 2.77300i) q^{65} +(-7.37228 - 1.73205i) q^{66} +(10.1168 - 5.84096i) q^{67} +(-2.18614 - 3.78651i) q^{68} +(5.37228 + 5.04868i) q^{69} +(-1.37228 + 1.58457i) q^{70} +(-8.05842 + 13.9576i) q^{71} +(2.50000 - 1.65831i) q^{72} +10.7446 q^{73} +(-10.1168 - 5.84096i) q^{74} +(2.18614 + 7.25061i) q^{75} +(1.18614 + 2.05446i) q^{76} +(8.74456 + 7.57301i) q^{77} +(5.24456 - 3.39036i) q^{78} +9.62772 q^{79} +(0.686141 - 0.396143i) q^{80} +(3.50000 - 8.29156i) q^{81} +(8.18614 + 4.72627i) q^{82} -1.58457i q^{83} +(-4.55842 + 0.469882i) q^{84} +(-3.00000 - 1.73205i) q^{85} +4.00000 q^{86} +(3.18614 + 2.99422i) q^{87} +(-2.18614 - 3.78651i) q^{88} +(9.30298 - 5.37108i) q^{89} +(1.05842 - 2.12819i) q^{90} +(-9.50000 + 0.866025i) q^{91} +4.25639i q^{92} +(-3.37228 - 11.1846i) q^{93} +(0.813859 - 0.469882i) q^{94} +(1.62772 + 0.939764i) q^{95} +(1.68614 + 0.396143i) q^{96} +(0.372281 - 0.644810i) q^{97} +(6.50000 + 2.59808i) q^{98} +(-11.7446 - 5.84096i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q + 2q^{2} + 2q^{3} - 2q^{4} + q^{6} + 10q^{7} - 4q^{8} - 10q^{9} + O(q^{10})$$ $$4q + 2q^{2} + 2q^{3} - 2q^{4} + q^{6} + 10q^{7} - 4q^{8} - 10q^{9} + 3q^{10} + 3q^{11} - q^{12} - 14q^{13} + 8q^{14} - 11q^{15} - 2q^{16} - 3q^{17} - 5q^{18} - q^{19} + 3q^{20} + 5q^{21} - 3q^{22} + 9q^{23} - 2q^{24} + 6q^{25} - 4q^{26} - 16q^{27} - 2q^{28} + 3q^{29} - 4q^{30} - 4q^{31} + 2q^{32} - 15q^{33} - 6q^{34} - 3q^{35} + 5q^{36} - 6q^{37} - 2q^{38} - 7q^{39} + 27q^{41} + 4q^{42} + 8q^{43} - 6q^{44} - 11q^{45} + 9q^{46} - q^{48} + 22q^{49} + 3q^{50} - 18q^{51} + 10q^{52} - 8q^{54} - 12q^{55} - 10q^{56} + 16q^{57} + 3q^{58} + 27q^{59} + 7q^{60} - 18q^{61} - 2q^{62} - 25q^{63} + 4q^{64} - 3q^{65} - 18q^{66} + 6q^{67} - 3q^{68} + 10q^{69} + 6q^{70} - 15q^{71} + 10q^{72} + 20q^{73} - 6q^{74} + 3q^{75} - q^{76} + 12q^{77} - 2q^{78} + 50q^{79} - 3q^{80} + 14q^{81} + 27q^{82} - q^{84} - 12q^{85} + 16q^{86} + 7q^{87} - 3q^{88} - 3q^{89} - 13q^{90} - 38q^{91} - 2q^{93} + 9q^{94} + 18q^{95} + q^{96} - 10q^{97} + 26q^{98} - 24q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/546\mathbb{Z}\right)^\times$$.

 $$n$$ $$157$$ $$365$$ $$379$$ $$\chi(n)$$ $$-1$$ $$-1$$ $$e\left(\frac{5}{6}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.500000 + 0.866025i 0.353553 + 0.612372i
$$3$$ 0.500000 + 1.65831i 0.288675 + 0.957427i
$$4$$ −0.500000 + 0.866025i −0.250000 + 0.433013i
$$5$$ 0.792287i 0.354322i 0.984182 + 0.177161i $$0.0566913\pi$$
−0.984182 + 0.177161i $$0.943309\pi$$
$$6$$ −1.18614 + 1.26217i −0.484240 + 0.515278i
$$7$$ 2.50000 0.866025i 0.944911 0.327327i
$$8$$ −1.00000 −0.353553
$$9$$ −2.50000 + 1.65831i −0.833333 + 0.552771i
$$10$$ −0.686141 + 0.396143i −0.216977 + 0.125272i
$$11$$ 2.18614 + 3.78651i 0.659146 + 1.14167i 0.980837 + 0.194830i $$0.0624155\pi$$
−0.321691 + 0.946845i $$0.604251\pi$$
$$12$$ −1.68614 0.396143i −0.486747 0.114357i
$$13$$ −3.50000 0.866025i −0.970725 0.240192i
$$14$$ 2.00000 + 1.73205i 0.534522 + 0.462910i
$$15$$ −1.31386 + 0.396143i −0.339237 + 0.102284i
$$16$$ −0.500000 0.866025i −0.125000 0.216506i
$$17$$ −2.18614 + 3.78651i −0.530217 + 0.918363i 0.469162 + 0.883112i $$0.344556\pi$$
−0.999379 + 0.0352504i $$0.988777\pi$$
$$18$$ −2.68614 1.33591i −0.633129 0.314876i
$$19$$ 1.18614 2.05446i 0.272119 0.471325i −0.697285 0.716794i $$-0.745609\pi$$
0.969404 + 0.245470i $$0.0789421\pi$$
$$20$$ −0.686141 0.396143i −0.153426 0.0885804i
$$21$$ 2.68614 + 3.71277i 0.586164 + 0.810192i
$$22$$ −2.18614 + 3.78651i −0.466087 + 0.807286i
$$23$$ 3.68614 2.12819i 0.768613 0.443759i −0.0637663 0.997965i $$-0.520311\pi$$
0.832380 + 0.554206i $$0.186978\pi$$
$$24$$ −0.500000 1.65831i −0.102062 0.338502i
$$25$$ 4.37228 0.874456
$$26$$ −1.00000 3.46410i −0.196116 0.679366i
$$27$$ −4.00000 3.31662i −0.769800 0.638285i
$$28$$ −0.500000 + 2.59808i −0.0944911 + 0.490990i
$$29$$ 2.18614 1.26217i 0.405956 0.234379i −0.283095 0.959092i $$-0.591361\pi$$
0.689051 + 0.724713i $$0.258028\pi$$
$$30$$ −1.00000 0.939764i −0.182574 0.171577i
$$31$$ −6.74456 −1.21136 −0.605680 0.795709i $$-0.707099\pi$$
−0.605680 + 0.795709i $$0.707099\pi$$
$$32$$ 0.500000 0.866025i 0.0883883 0.153093i
$$33$$ −5.18614 + 5.51856i −0.902791 + 0.960658i
$$34$$ −4.37228 −0.749840
$$35$$ 0.686141 + 1.98072i 0.115979 + 0.334802i
$$36$$ −0.186141 2.99422i −0.0310234 0.499037i
$$37$$ −10.1168 + 5.84096i −1.66320 + 0.960248i −0.692026 + 0.721873i $$0.743282\pi$$
−0.971173 + 0.238376i $$0.923385\pi$$
$$38$$ 2.37228 0.384835
$$39$$ −0.313859 6.23711i −0.0502577 0.998736i
$$40$$ 0.792287i 0.125272i
$$41$$ 8.18614 4.72627i 1.27846 0.738119i 0.301895 0.953341i $$-0.402381\pi$$
0.976565 + 0.215222i $$0.0690474\pi$$
$$42$$ −1.87228 + 4.18265i −0.288899 + 0.645397i
$$43$$ 2.00000 3.46410i 0.304997 0.528271i −0.672264 0.740312i $$-0.734678\pi$$
0.977261 + 0.212041i $$0.0680112\pi$$
$$44$$ −4.37228 −0.659146
$$45$$ −1.31386 1.98072i −0.195859 0.295268i
$$46$$ 3.68614 + 2.12819i 0.543492 + 0.313785i
$$47$$ 0.939764i 0.137079i −0.997648 0.0685393i $$-0.978166\pi$$
0.997648 0.0685393i $$-0.0218339\pi$$
$$48$$ 1.18614 1.26217i 0.171205 0.182178i
$$49$$ 5.50000 4.33013i 0.785714 0.618590i
$$50$$ 2.18614 + 3.78651i 0.309167 + 0.535493i
$$51$$ −7.37228 1.73205i −1.03233 0.242536i
$$52$$ 2.50000 2.59808i 0.346688 0.360288i
$$53$$ 2.22938i 0.306229i −0.988208 0.153115i $$-0.951070\pi$$
0.988208 0.153115i $$-0.0489304\pi$$
$$54$$ 0.872281 5.12241i 0.118702 0.697072i
$$55$$ −3.00000 + 1.73205i −0.404520 + 0.233550i
$$56$$ −2.50000 + 0.866025i −0.334077 + 0.115728i
$$57$$ 4.00000 + 0.939764i 0.529813 + 0.124475i
$$58$$ 2.18614 + 1.26217i 0.287054 + 0.165731i
$$59$$ 5.31386 + 3.06796i 0.691806 + 0.399414i 0.804288 0.594240i $$-0.202547\pi$$
−0.112483 + 0.993654i $$0.535880\pi$$
$$60$$ 0.313859 1.33591i 0.0405191 0.172465i
$$61$$ −4.50000 2.59808i −0.576166 0.332650i 0.183442 0.983030i $$-0.441276\pi$$
−0.759608 + 0.650381i $$0.774609\pi$$
$$62$$ −3.37228 5.84096i −0.428280 0.741803i
$$63$$ −4.81386 + 6.31084i −0.606489 + 0.795092i
$$64$$ 1.00000 0.125000
$$65$$ 0.686141 2.77300i 0.0851053 0.343949i
$$66$$ −7.37228 1.73205i −0.907465 0.213201i
$$67$$ 10.1168 5.84096i 1.23597 0.713587i 0.267701 0.963502i $$-0.413736\pi$$
0.968268 + 0.249915i $$0.0804026\pi$$
$$68$$ −2.18614 3.78651i −0.265108 0.459181i
$$69$$ 5.37228 + 5.04868i 0.646747 + 0.607789i
$$70$$ −1.37228 + 1.58457i −0.164019 + 0.189393i
$$71$$ −8.05842 + 13.9576i −0.956359 + 1.65646i −0.225131 + 0.974328i $$0.572281\pi$$
−0.731228 + 0.682133i $$0.761052\pi$$
$$72$$ 2.50000 1.65831i 0.294628 0.195434i
$$73$$ 10.7446 1.25756 0.628778 0.777585i $$-0.283555\pi$$
0.628778 + 0.777585i $$0.283555\pi$$
$$74$$ −10.1168 5.84096i −1.17606 0.678998i
$$75$$ 2.18614 + 7.25061i 0.252434 + 0.837228i
$$76$$ 1.18614 + 2.05446i 0.136060 + 0.235662i
$$77$$ 8.74456 + 7.57301i 0.996535 + 0.863025i
$$78$$ 5.24456 3.39036i 0.593830 0.383883i
$$79$$ 9.62772 1.08320 0.541601 0.840635i $$-0.317818\pi$$
0.541601 + 0.840635i $$0.317818\pi$$
$$80$$ 0.686141 0.396143i 0.0767129 0.0442902i
$$81$$ 3.50000 8.29156i 0.388889 0.921285i
$$82$$ 8.18614 + 4.72627i 0.904008 + 0.521929i
$$83$$ 1.58457i 0.173930i −0.996211 0.0869648i $$-0.972283\pi$$
0.996211 0.0869648i $$-0.0277168\pi$$
$$84$$ −4.55842 + 0.469882i −0.497365 + 0.0512683i
$$85$$ −3.00000 1.73205i −0.325396 0.187867i
$$86$$ 4.00000 0.431331
$$87$$ 3.18614 + 2.99422i 0.341590 + 0.321014i
$$88$$ −2.18614 3.78651i −0.233043 0.403643i
$$89$$ 9.30298 5.37108i 0.986114 0.569333i 0.0820038 0.996632i $$-0.473868\pi$$
0.904111 + 0.427299i $$0.140535\pi$$
$$90$$ 1.05842 2.12819i 0.111567 0.224331i
$$91$$ −9.50000 + 0.866025i −0.995871 + 0.0907841i
$$92$$ 4.25639i 0.443759i
$$93$$ −3.37228 11.1846i −0.349689 1.15979i
$$94$$ 0.813859 0.469882i 0.0839432 0.0484646i
$$95$$ 1.62772 + 0.939764i 0.167000 + 0.0964177i
$$96$$ 1.68614 + 0.396143i 0.172091 + 0.0404312i
$$97$$ 0.372281 0.644810i 0.0377994 0.0654706i −0.846507 0.532378i $$-0.821299\pi$$
0.884306 + 0.466907i $$0.154632\pi$$
$$98$$ 6.50000 + 2.59808i 0.656599 + 0.262445i
$$99$$ −11.7446 5.84096i −1.18037 0.587039i
$$100$$ −2.18614 + 3.78651i −0.218614 + 0.378651i
$$101$$ 7.37228 + 12.7692i 0.733569 + 1.27058i 0.955348 + 0.295482i $$0.0954804\pi$$
−0.221779 + 0.975097i $$0.571186\pi$$
$$102$$ −2.18614 7.25061i −0.216460 0.717917i
$$103$$ 8.21782i 0.809726i 0.914377 + 0.404863i $$0.132681\pi$$
−0.914377 + 0.404863i $$0.867319\pi$$
$$104$$ 3.50000 + 0.866025i 0.343203 + 0.0849208i
$$105$$ −2.94158 + 2.12819i −0.287069 + 0.207690i
$$106$$ 1.93070 1.11469i 0.187526 0.108268i
$$107$$ −0.813859 + 0.469882i −0.0786788 + 0.0454252i −0.538823 0.842419i $$-0.681131\pi$$
0.460144 + 0.887844i $$0.347798\pi$$
$$108$$ 4.87228 1.80579i 0.468835 0.173762i
$$109$$ 19.8997i 1.90605i −0.302891 0.953025i $$-0.597952\pi$$
0.302891 0.953025i $$-0.402048\pi$$
$$110$$ −3.00000 1.73205i −0.286039 0.165145i
$$111$$ −14.7446 13.8564i −1.39949 1.31519i
$$112$$ −2.00000 1.73205i −0.188982 0.163663i
$$113$$ 3.25544 + 1.87953i 0.306246 + 0.176811i 0.645245 0.763975i $$-0.276755\pi$$
−0.339000 + 0.940787i $$0.610089\pi$$
$$114$$ 1.18614 + 3.93398i 0.111092 + 0.368451i
$$115$$ 1.68614 + 2.92048i 0.157233 + 0.272336i
$$116$$ 2.52434i 0.234379i
$$117$$ 10.1861 3.63903i 0.941709 0.336428i
$$118$$ 6.13592i 0.564857i
$$119$$ −2.18614 + 11.3595i −0.200403 + 1.04133i
$$120$$ 1.31386 0.396143i 0.119938 0.0361628i
$$121$$ −4.05842 + 7.02939i −0.368947 + 0.639036i
$$122$$ 5.19615i 0.470438i
$$123$$ 11.9307 + 11.2120i 1.07576 + 1.01096i
$$124$$ 3.37228 5.84096i 0.302840 0.524534i
$$125$$ 7.42554i 0.664160i
$$126$$ −7.87228 1.01350i −0.701319 0.0902900i
$$127$$ 1.05842 + 1.83324i 0.0939198 + 0.162674i 0.909157 0.416453i $$-0.136727\pi$$
−0.815237 + 0.579127i $$0.803394\pi$$
$$128$$ 0.500000 + 0.866025i 0.0441942 + 0.0765466i
$$129$$ 6.74456 + 1.58457i 0.593826 + 0.139514i
$$130$$ 2.74456 0.792287i 0.240714 0.0694882i
$$131$$ −21.6060 −1.88772 −0.943861 0.330342i $$-0.892836\pi$$
−0.943861 + 0.330342i $$0.892836\pi$$
$$132$$ −2.18614 7.25061i −0.190279 0.631084i
$$133$$ 1.18614 6.16337i 0.102851 0.534432i
$$134$$ 10.1168 + 5.84096i 0.873962 + 0.504582i
$$135$$ 2.62772 3.16915i 0.226158 0.272757i
$$136$$ 2.18614 3.78651i 0.187460 0.324690i
$$137$$ 3.68614 6.38458i 0.314928 0.545472i −0.664494 0.747294i $$-0.731353\pi$$
0.979422 + 0.201822i $$0.0646862\pi$$
$$138$$ −1.68614 + 7.17687i −0.143534 + 0.610936i
$$139$$ 7.67527 + 4.43132i 0.651008 + 0.375859i 0.788842 0.614596i $$-0.210681\pi$$
−0.137835 + 0.990455i $$0.544014\pi$$
$$140$$ −2.05842 0.396143i −0.173968 0.0334802i
$$141$$ 1.55842 0.469882i 0.131243 0.0395712i
$$142$$ −16.1168 −1.35250
$$143$$ −4.37228 15.1460i −0.365629 1.26657i
$$144$$ 2.68614 + 1.33591i 0.223845 + 0.111326i
$$145$$ 1.00000 + 1.73205i 0.0830455 + 0.143839i
$$146$$ 5.37228 + 9.30506i 0.444613 + 0.770093i
$$147$$ 9.93070 + 6.95565i 0.819071 + 0.573693i
$$148$$ 11.6819i 0.960248i
$$149$$ −3.00000 + 5.19615i −0.245770 + 0.425685i −0.962348 0.271821i $$-0.912374\pi$$
0.716578 + 0.697507i $$0.245707\pi$$
$$150$$ −5.18614 + 5.51856i −0.423447 + 0.450588i
$$151$$ 16.8781i 1.37352i −0.726885 0.686759i $$-0.759033\pi$$
0.726885 0.686759i $$-0.240967\pi$$
$$152$$ −1.18614 + 2.05446i −0.0962087 + 0.166638i
$$153$$ −0.813859 13.0916i −0.0657966 1.05839i
$$154$$ −2.18614 + 11.3595i −0.176164 + 0.915376i
$$155$$ 5.34363i 0.429211i
$$156$$ 5.55842 + 2.84674i 0.445030 + 0.227922i
$$157$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$158$$ 4.81386 + 8.33785i 0.382970 + 0.663324i
$$159$$ 3.69702 1.11469i 0.293192 0.0884008i
$$160$$ 0.686141 + 0.396143i 0.0542442 + 0.0313179i
$$161$$ 7.37228 8.51278i 0.581017 0.670901i
$$162$$ 8.93070 1.11469i 0.701662 0.0875785i
$$163$$ −9.00000 5.19615i −0.704934 0.406994i 0.104248 0.994551i $$-0.466756\pi$$
−0.809183 + 0.587557i $$0.800090\pi$$
$$164$$ 9.45254i 0.738119i
$$165$$ −4.37228 4.10891i −0.340382 0.319878i
$$166$$ 1.37228 0.792287i 0.106510 0.0614934i
$$167$$ 5.74456 3.31662i 0.444528 0.256648i −0.260989 0.965342i $$-0.584049\pi$$
0.705516 + 0.708694i $$0.250715\pi$$
$$168$$ −2.68614 3.71277i −0.207240 0.286446i
$$169$$ 11.5000 + 6.06218i 0.884615 + 0.466321i
$$170$$ 3.46410i 0.265684i
$$171$$ 0.441578 + 7.10313i 0.0337683 + 0.543190i
$$172$$ 2.00000 + 3.46410i 0.152499 + 0.264135i
$$173$$ −0.941578 + 1.63086i −0.0715869 + 0.123992i −0.899597 0.436721i $$-0.856140\pi$$
0.828010 + 0.560713i $$0.189473\pi$$
$$174$$ −1.00000 + 4.25639i −0.0758098 + 0.322676i
$$175$$ 10.9307 3.78651i 0.826284 0.286233i
$$176$$ 2.18614 3.78651i 0.164787 0.285419i
$$177$$ −2.43070 + 10.3460i −0.182703 + 0.777654i
$$178$$ 9.30298 + 5.37108i 0.697288 + 0.402580i
$$179$$ −4.37228 + 2.52434i −0.326800 + 0.188678i −0.654419 0.756132i $$-0.727087\pi$$
0.327620 + 0.944810i $$0.393754\pi$$
$$180$$ 2.37228 0.147477i 0.176819 0.0109923i
$$181$$ 12.1244i 0.901196i 0.892727 + 0.450598i $$0.148789\pi$$
−0.892727 + 0.450598i $$0.851211\pi$$
$$182$$ −5.50000 7.79423i −0.407687 0.577747i
$$183$$ 2.05842 8.76144i 0.152163 0.647665i
$$184$$ −3.68614 + 2.12819i −0.271746 + 0.156893i
$$185$$ −4.62772 8.01544i −0.340237 0.589307i
$$186$$ 8.00000 8.51278i 0.586588 0.624187i
$$187$$ −19.1168 −1.39796
$$188$$ 0.813859 + 0.469882i 0.0593568 + 0.0342697i
$$189$$ −12.8723 4.82746i −0.936321 0.351146i
$$190$$ 1.87953i 0.136355i
$$191$$ −10.6277 6.13592i −0.768995 0.443979i 0.0635211 0.997980i $$-0.479767\pi$$
−0.832516 + 0.554001i $$0.813100\pi$$
$$192$$ 0.500000 + 1.65831i 0.0360844 + 0.119678i
$$193$$ 11.6168 6.70699i 0.836199 0.482780i −0.0197716 0.999805i $$-0.506294\pi$$
0.855970 + 0.517025i $$0.172961\pi$$
$$194$$ 0.744563 0.0534565
$$195$$ 4.94158 0.248667i 0.353874 0.0178074i
$$196$$ 1.00000 + 6.92820i 0.0714286 + 0.494872i
$$197$$ −12.3030 21.3094i −0.876551 1.51823i −0.855101 0.518462i $$-0.826505\pi$$
−0.0214504 0.999770i $$-0.506828\pi$$
$$198$$ −0.813859 13.0916i −0.0578385 0.930377i
$$199$$ 3.00000 + 1.73205i 0.212664 + 0.122782i 0.602549 0.798082i $$-0.294152\pi$$
−0.389885 + 0.920864i $$0.627485\pi$$
$$200$$ −4.37228 −0.309167
$$201$$ 14.7446 + 13.8564i 1.04000 + 0.977356i
$$202$$ −7.37228 + 12.7692i −0.518712 + 0.898435i
$$203$$ 4.37228 5.04868i 0.306874 0.354348i
$$204$$ 5.18614 5.51856i 0.363102 0.386376i
$$205$$ 3.74456 + 6.48577i 0.261532 + 0.452986i
$$206$$ −7.11684 + 4.10891i −0.495854 + 0.286281i
$$207$$ −5.68614 + 11.4333i −0.395214 + 0.794666i
$$208$$ 1.00000 + 3.46410i 0.0693375 + 0.240192i
$$209$$ 10.3723 0.717466
$$210$$ −3.31386 1.48338i −0.228678 0.102363i
$$211$$ −5.62772 9.74749i −0.387428 0.671045i 0.604675 0.796473i $$-0.293303\pi$$
−0.992103 + 0.125427i $$0.959970\pi$$
$$212$$ 1.93070 + 1.11469i 0.132601 + 0.0765574i
$$213$$ −27.1753 6.38458i −1.86202 0.437464i
$$214$$ −0.813859 0.469882i −0.0556343 0.0321205i
$$215$$ 2.74456 + 1.58457i 0.187178 + 0.108067i
$$216$$ 4.00000 + 3.31662i 0.272166 + 0.225668i
$$217$$ −16.8614 + 5.84096i −1.14463 + 0.396510i
$$218$$ 17.2337 9.94987i 1.16721 0.673891i
$$219$$ 5.37228 + 17.8178i 0.363025 + 1.20402i
$$220$$ 3.46410i 0.233550i
$$221$$ 10.9307 11.3595i 0.735279 0.764124i
$$222$$ 4.62772 19.6974i 0.310592 1.32200i
$$223$$ −14.1168 24.4511i −0.945334 1.63737i −0.755082 0.655631i $$-0.772403\pi$$
−0.190252 0.981735i $$-0.560931\pi$$
$$224$$ 0.500000 2.59808i 0.0334077 0.173591i
$$225$$ −10.9307 + 7.25061i −0.728714 + 0.483374i
$$226$$ 3.75906i 0.250049i
$$227$$ −16.8030 9.70121i −1.11525 0.643892i −0.175068 0.984556i $$-0.556015\pi$$
−0.940185 + 0.340665i $$0.889348\pi$$
$$228$$ −2.81386 + 2.99422i −0.186352 + 0.198297i
$$229$$ −5.11684 −0.338131 −0.169065 0.985605i $$-0.554075\pi$$
−0.169065 + 0.985605i $$0.554075\pi$$
$$230$$ −1.68614 + 2.92048i −0.111181 + 0.192571i
$$231$$ −8.18614 + 18.2877i −0.538609 + 1.20324i
$$232$$ −2.18614 + 1.26217i −0.143527 + 0.0828654i
$$233$$ 4.84630i 0.317491i −0.987320 0.158746i $$-0.949255\pi$$
0.987320 0.158746i $$-0.0507450\pi$$
$$234$$ 8.24456 + 7.00194i 0.538964 + 0.457731i
$$235$$ 0.744563 0.0485699
$$236$$ −5.31386 + 3.06796i −0.345903 + 0.199707i
$$237$$ 4.81386 + 15.9658i 0.312694 + 1.03709i
$$238$$ −10.9307 + 3.78651i −0.708532 + 0.245443i
$$239$$ −15.6060 −1.00947 −0.504733 0.863275i $$-0.668409\pi$$
−0.504733 + 0.863275i $$0.668409\pi$$
$$240$$ 1.00000 + 0.939764i 0.0645497 + 0.0606615i
$$241$$ 6.37228 11.0371i 0.410475 0.710963i −0.584467 0.811418i $$-0.698696\pi$$
0.994942 + 0.100454i $$0.0320297\pi$$
$$242$$ −8.11684 −0.521770
$$243$$ 15.5000 + 1.65831i 0.994325 + 0.106381i
$$244$$ 4.50000 2.59808i 0.288083 0.166325i
$$245$$ 3.43070 + 4.35758i 0.219180 + 0.278395i
$$246$$ −3.74456 + 15.9383i −0.238745 + 1.01619i
$$247$$ −5.93070 + 6.16337i −0.377362 + 0.392166i
$$248$$ 6.74456 0.428280
$$249$$ 2.62772 0.792287i 0.166525 0.0502091i
$$250$$ −6.43070 + 3.71277i −0.406713 + 0.234816i
$$251$$ −8.05842 + 13.9576i −0.508643 + 0.880996i 0.491307 + 0.870987i $$0.336519\pi$$
−0.999950 + 0.0100091i $$0.996814\pi$$
$$252$$ −3.05842 7.32435i −0.192662 0.461390i
$$253$$ 16.1168 + 9.30506i 1.01326 + 0.585004i
$$254$$ −1.05842 + 1.83324i −0.0664113 + 0.115028i
$$255$$ 1.37228 5.84096i 0.0859356 0.365775i
$$256$$ −0.500000 + 0.866025i −0.0312500 + 0.0541266i
$$257$$ −2.44158 4.22894i −0.152301 0.263794i 0.779772 0.626064i $$-0.215335\pi$$
−0.932073 + 0.362270i $$0.882002\pi$$
$$258$$ 2.00000 + 6.63325i 0.124515 + 0.412968i
$$259$$ −20.2337 + 23.3639i −1.25726 + 1.45176i
$$260$$ 2.05842 + 1.98072i 0.127658 + 0.122839i
$$261$$ −3.37228 + 6.78073i −0.208739 + 0.419716i
$$262$$ −10.8030 18.7113i −0.667411 1.15599i
$$263$$ −19.5475 + 11.2858i −1.20535 + 0.695911i −0.961741 0.273961i $$-0.911666\pi$$
−0.243613 + 0.969873i $$0.578333\pi$$
$$264$$ 5.18614 5.51856i 0.319185 0.339644i
$$265$$ 1.76631 0.108504
$$266$$ 5.93070 2.05446i 0.363635 0.125967i
$$267$$ 13.5584 + 12.7417i 0.829762 + 0.779780i
$$268$$ 11.6819i 0.713587i
$$269$$ 0.430703 0.746000i 0.0262604 0.0454844i −0.852597 0.522570i $$-0.824973\pi$$
0.878857 + 0.477085i $$0.158307\pi$$
$$270$$ 4.05842 + 0.691097i 0.246988 + 0.0420588i
$$271$$ 2.00000 + 3.46410i 0.121491 + 0.210429i 0.920356 0.391082i $$-0.127899\pi$$
−0.798865 + 0.601511i $$0.794566\pi$$
$$272$$ 4.37228 0.265108
$$273$$ −6.18614 15.3210i −0.374402 0.927266i
$$274$$ 7.37228 0.445376
$$275$$ 9.55842 + 16.5557i 0.576395 + 0.998345i
$$276$$ −7.05842 + 2.12819i −0.424867 + 0.128102i
$$277$$ −6.74456 + 11.6819i −0.405241 + 0.701899i −0.994350 0.106155i $$-0.966146\pi$$
0.589108 + 0.808054i $$0.299479\pi$$
$$278$$ 8.86263i 0.531545i
$$279$$ 16.8614 11.1846i 1.00947 0.669604i
$$280$$ −0.686141 1.98072i −0.0410047 0.118371i
$$281$$ −14.7446 −0.879587 −0.439793 0.898099i $$-0.644948\pi$$
−0.439793 + 0.898099i $$0.644948\pi$$
$$282$$ 1.18614 + 1.11469i 0.0706336 + 0.0663789i
$$283$$ 2.05842 1.18843i 0.122360 0.0706449i −0.437571 0.899184i $$-0.644161\pi$$
0.559931 + 0.828539i $$0.310828\pi$$
$$284$$ −8.05842 13.9576i −0.478179 0.828231i
$$285$$ −0.744563 + 3.16915i −0.0441041 + 0.187724i
$$286$$ 10.9307 11.3595i 0.646346 0.671703i
$$287$$ 16.3723 18.9051i 0.966425 1.11593i
$$288$$ 0.186141 + 2.99422i 0.0109684 + 0.176436i
$$289$$ −1.05842 1.83324i −0.0622601 0.107838i
$$290$$ −1.00000 + 1.73205i −0.0587220 + 0.101710i
$$291$$ 1.25544 + 0.294954i 0.0735950 + 0.0172905i
$$292$$ −5.37228 + 9.30506i −0.314389 + 0.544538i
$$293$$ 3.25544 + 1.87953i 0.190185 + 0.109803i 0.592069 0.805887i $$-0.298311\pi$$
−0.401884 + 0.915690i $$0.631645\pi$$
$$294$$ −1.05842 + 12.0781i −0.0617284 + 0.704407i
$$295$$ −2.43070 + 4.21010i −0.141521 + 0.245122i
$$296$$ 10.1168 5.84096i 0.588030 0.339499i
$$297$$ 3.81386 22.3966i 0.221303 1.29958i
$$298$$ −6.00000 −0.347571
$$299$$ −14.7446 + 4.25639i −0.852700 + 0.246153i
$$300$$ −7.37228 1.73205i −0.425639 0.100000i
$$301$$ 2.00000 10.3923i 0.115278 0.599002i
$$302$$ 14.6168 8.43904i 0.841105 0.485612i
$$303$$ −17.4891 + 18.6101i −1.00472 + 1.06912i
$$304$$ −2.37228 −0.136060
$$305$$ 2.05842 3.56529i 0.117865 0.204148i
$$306$$ 10.9307 7.25061i 0.624867 0.414490i
$$307$$ −21.2337 −1.21187 −0.605935 0.795514i $$-0.707201\pi$$
−0.605935 + 0.795514i $$0.707201\pi$$
$$308$$ −10.9307 + 3.78651i −0.622835 + 0.215756i
$$309$$ −13.6277 + 4.10891i −0.775254 + 0.233748i
$$310$$ 4.62772 2.67181i 0.262837 0.151749i
$$311$$ 10.3723 0.588158 0.294079 0.955781i $$-0.404987\pi$$
0.294079 + 0.955781i $$0.404987\pi$$
$$312$$ 0.313859 + 6.23711i 0.0177688 + 0.353107i
$$313$$ 13.8564i 0.783210i −0.920133 0.391605i $$-0.871920\pi$$
0.920133 0.391605i $$-0.128080\pi$$
$$314$$ 0 0
$$315$$ −5.00000 3.81396i −0.281718 0.214892i
$$316$$ −4.81386 + 8.33785i −0.270801 + 0.469041i
$$317$$ −15.2554 −0.856831 −0.428415 0.903582i $$-0.640928\pi$$
−0.428415 + 0.903582i $$0.640928\pi$$
$$318$$ 2.81386 + 2.64436i 0.157793 + 0.148289i
$$319$$ 9.55842 + 5.51856i 0.535169 + 0.308980i
$$320$$ 0.792287i 0.0442902i
$$321$$ −1.18614 1.11469i −0.0662039 0.0622160i
$$322$$ 11.0584 + 2.12819i 0.616262 + 0.118600i
$$323$$ 5.18614 + 8.98266i 0.288565 + 0.499809i
$$324$$ 5.43070 + 7.17687i 0.301706 + 0.398715i
$$325$$ −15.3030 3.78651i −0.848857 0.210038i
$$326$$ 10.3923i 0.575577i
$$327$$ 33.0000 9.94987i 1.82490 0.550229i
$$328$$ −8.18614 + 4.72627i −0.452004 + 0.260965i
$$329$$ −0.813859 2.34941i −0.0448695 0.129527i
$$330$$ 1.37228 5.84096i 0.0755416 0.321534i
$$331$$ −1.88316 1.08724i −0.103508 0.0597602i 0.447353 0.894358i $$-0.352367\pi$$
−0.550860 + 0.834598i $$0.685700\pi$$
$$332$$ 1.37228 + 0.792287i 0.0753137 + 0.0434824i
$$333$$ 15.6060 31.3793i 0.855202 1.71957i
$$334$$ 5.74456 + 3.31662i 0.314328 + 0.181478i
$$335$$ 4.62772 + 8.01544i 0.252839 + 0.437930i
$$336$$ 1.87228 4.18265i 0.102141 0.228182i
$$337$$ −10.6060 −0.577744 −0.288872 0.957368i $$-0.593280\pi$$
−0.288872 + 0.957368i $$0.593280\pi$$
$$338$$ 0.500000 + 12.9904i 0.0271964 + 0.706584i
$$339$$ −1.48913 + 6.33830i −0.0808782 + 0.344249i
$$340$$ 3.00000 1.73205i 0.162698 0.0939336i
$$341$$ −14.7446 25.5383i −0.798463 1.38298i
$$342$$ −5.93070 + 3.93398i −0.320696 + 0.212725i
$$343$$ 10.0000 15.5885i 0.539949 0.841698i
$$344$$ −2.00000 + 3.46410i −0.107833 + 0.186772i
$$345$$ −4.00000 + 4.25639i −0.215353 + 0.229156i
$$346$$ −1.88316 −0.101239
$$347$$ 18.0475 + 10.4198i 0.968843 + 0.559362i 0.898883 0.438188i $$-0.144380\pi$$
0.0699597 + 0.997550i $$0.477713\pi$$
$$348$$ −4.18614 + 1.26217i −0.224401 + 0.0676594i
$$349$$ 10.0584 + 17.4217i 0.538415 + 0.932562i 0.998990 + 0.0449411i $$0.0143100\pi$$
−0.460575 + 0.887621i $$0.652357\pi$$
$$350$$ 8.74456 + 7.57301i 0.467417 + 0.404795i
$$351$$ 11.1277 + 15.0723i 0.593954 + 0.804499i
$$352$$ 4.37228 0.233043
$$353$$ −25.3723 + 14.6487i −1.35043 + 0.779671i −0.988310 0.152460i $$-0.951280\pi$$
−0.362121 + 0.932131i $$0.617947\pi$$
$$354$$ −10.1753 + 3.06796i −0.540809 + 0.163060i
$$355$$ −11.0584 6.38458i −0.586920 0.338858i
$$356$$ 10.7422i 0.569333i
$$357$$ −19.9307 + 2.05446i −1.05484 + 0.108733i
$$358$$ −4.37228 2.52434i −0.231082 0.133415i
$$359$$ 16.6277 0.877577 0.438789 0.898590i $$-0.355408\pi$$
0.438789 + 0.898590i $$0.355408\pi$$
$$360$$ 1.31386 + 1.98072i 0.0692465 + 0.104393i
$$361$$ 6.68614 + 11.5807i 0.351902 + 0.609512i
$$362$$ −10.5000 + 6.06218i −0.551868 + 0.318621i
$$363$$ −13.6861 3.21543i −0.718336 0.168767i
$$364$$ 4.00000 8.66025i 0.209657 0.453921i
$$365$$ 8.51278i 0.445579i
$$366$$ 8.61684 2.59808i 0.450410 0.135804i
$$367$$ −26.2337 + 15.1460i −1.36939 + 0.790616i −0.990850 0.134970i $$-0.956906\pi$$
−0.378538 + 0.925586i $$0.623573\pi$$
$$368$$ −3.68614 2.12819i −0.192153 0.110940i
$$369$$ −12.6277 + 25.3909i −0.657373 + 1.32180i
$$370$$ 4.62772 8.01544i 0.240584 0.416703i
$$371$$ −1.93070 5.57346i −0.100237 0.289360i
$$372$$ 11.3723 + 2.67181i 0.589625 + 0.138527i
$$373$$ −4.00000 + 6.92820i −0.207112 + 0.358729i −0.950804 0.309794i $$-0.899740\pi$$
0.743691 + 0.668523i $$0.233073\pi$$
$$374$$ −9.55842 16.5557i −0.494254 0.856073i
$$375$$ −12.3139 + 3.71277i −0.635885 + 0.191727i
$$376$$ 0.939764i 0.0484646i
$$377$$ −8.74456 + 2.52434i −0.450368 + 0.130010i
$$378$$ −2.25544 13.5615i −0.116007 0.697526i
$$379$$ −4.88316 + 2.81929i −0.250831 + 0.144817i −0.620145 0.784487i $$-0.712926\pi$$
0.369314 + 0.929305i $$0.379593\pi$$
$$380$$ −1.62772 + 0.939764i −0.0835002 + 0.0482089i
$$381$$ −2.51087 + 2.67181i −0.128636 + 0.136881i
$$382$$ 12.2718i 0.627882i
$$383$$ −13.0693 7.54556i −0.667810 0.385560i 0.127436 0.991847i $$-0.459325\pi$$
−0.795246 + 0.606287i $$0.792658\pi$$
$$384$$ −1.18614 + 1.26217i −0.0605300 + 0.0644098i
$$385$$ −6.00000 + 6.92820i −0.305788 + 0.353094i
$$386$$ 11.6168 + 6.70699i 0.591282 + 0.341377i
$$387$$ 0.744563 + 11.9769i 0.0378482 + 0.608819i
$$388$$ 0.372281 + 0.644810i 0.0188997 + 0.0327353i
$$389$$ 29.2974i 1.48544i −0.669604 0.742718i $$-0.733536\pi$$
0.669604 0.742718i $$-0.266464\pi$$
$$390$$ 2.68614 + 4.15520i 0.136018 + 0.210407i
$$391$$ 18.6101i 0.941155i
$$392$$ −5.50000 + 4.33013i −0.277792 + 0.218704i
$$393$$ −10.8030 35.8294i −0.544938 1.80736i
$$394$$ 12.3030 21.3094i 0.619815 1.07355i
$$395$$ 7.62792i 0.383802i
$$396$$ 10.9307 7.25061i 0.549289 0.364357i
$$397$$ −1.12772 + 1.95327i −0.0565986 + 0.0980316i −0.892936 0.450183i $$-0.851359\pi$$
0.836338 + 0.548214i $$0.184692\pi$$
$$398$$ 3.46410i 0.173640i
$$399$$ 10.8139 1.11469i 0.541370 0.0558044i
$$400$$ −2.18614 3.78651i −0.109307 0.189325i
$$401$$ 5.74456 + 9.94987i 0.286870 + 0.496873i 0.973061 0.230548i $$-0.0740520\pi$$
−0.686191 + 0.727421i $$0.740719\pi$$
$$402$$ −4.62772 + 19.6974i −0.230810 + 0.982415i
$$403$$ 23.6060 + 5.84096i 1.17590 + 0.290959i
$$404$$ −14.7446 −0.733569
$$405$$ 6.56930 + 2.77300i 0.326431 + 0.137792i
$$406$$ 6.55842 + 1.26217i 0.325489 + 0.0626404i
$$407$$ −44.2337 25.5383i −2.19258 1.26589i
$$408$$ 7.37228 + 1.73205i 0.364982 + 0.0857493i
$$409$$ 10.7446 18.6101i 0.531284 0.920212i −0.468049 0.883703i $$-0.655043\pi$$
0.999333 0.0365091i $$-0.0116238\pi$$
$$410$$ −3.74456 + 6.48577i −0.184931 + 0.320309i
$$411$$ 12.4307 + 2.92048i 0.613161 + 0.144057i
$$412$$ −7.11684 4.10891i −0.350622 0.202432i
$$413$$ 15.9416 + 3.06796i 0.784434 + 0.150964i
$$414$$ −12.7446 + 0.792287i −0.626361 + 0.0389388i
$$415$$ 1.25544 0.0616270
$$416$$ −2.50000 + 2.59808i −0.122573 + 0.127381i
$$417$$ −3.51087 + 14.9436i −0.171928 + 0.731794i
$$418$$ 5.18614 + 8.98266i 0.253662 + 0.439356i
$$419$$ 2.74456 + 4.75372i 0.134081 + 0.232235i 0.925246 0.379368i $$-0.123859\pi$$
−0.791165 + 0.611602i $$0.790525\pi$$
$$420$$ −0.372281 3.61158i −0.0181655 0.176227i
$$421$$ 26.8280i 1.30751i −0.756704 0.653757i $$-0.773192\pi$$
0.756704 0.653757i $$-0.226808\pi$$
$$422$$ 5.62772 9.74749i 0.273953 0.474501i
$$423$$ 1.55842 + 2.34941i 0.0757731 + 0.114232i
$$424$$ 2.22938i 0.108268i
$$425$$ −9.55842 + 16.5557i −0.463652 + 0.803068i
$$426$$ −8.05842 26.7268i −0.390432 1.29492i
$$427$$ −13.5000 2.59808i −0.653311 0.125730i
$$428$$ 0.939764i 0.0454252i
$$429$$ 22.9307 14.8236i 1.10710 0.715691i
$$430$$ 3.16915i 0.152830i
$$431$$ 12.6861 + 21.9730i 0.611070 + 1.05840i 0.991060 + 0.133414i $$0.0425939\pi$$
−0.379991 + 0.924990i $$0.624073\pi$$
$$432$$ −0.872281 + 5.12241i −0.0419677 + 0.246452i
$$433$$ 21.3505 + 12.3267i 1.02604 + 0.592385i 0.915848 0.401525i $$-0.131520\pi$$
0.110193 + 0.993910i $$0.464853\pi$$
$$434$$ −13.4891 11.6819i −0.647499 0.560750i
$$435$$ −2.37228 + 2.52434i −0.113742 + 0.121033i
$$436$$ 17.2337 + 9.94987i 0.825344 + 0.476513i
$$437$$ 10.0974i 0.483022i
$$438$$ −12.7446 + 13.5615i −0.608959 + 0.647991i
$$439$$ 21.3505 12.3267i 1.01901 0.588323i 0.105190 0.994452i $$-0.466455\pi$$
0.913816 + 0.406129i $$0.133122\pi$$
$$440$$ 3.00000 1.73205i 0.143019 0.0825723i
$$441$$ −6.56930 + 19.9460i −0.312824 + 0.949811i
$$442$$ 15.3030 + 3.78651i 0.727889 + 0.180106i
$$443$$ 7.86797i 0.373818i −0.982377 0.186909i $$-0.940153\pi$$
0.982377 0.186909i $$-0.0598470\pi$$
$$444$$ 19.3723 5.84096i 0.919368 0.277200i
$$445$$ 4.25544 + 7.37063i 0.201727 + 0.349402i
$$446$$ 14.1168 24.4511i 0.668452 1.15779i
$$447$$ −10.1168 2.37686i −0.478510 0.112422i
$$448$$ 2.50000 0.866025i 0.118114 0.0409159i
$$449$$ 19.8030 34.2998i 0.934561 1.61871i 0.159145 0.987255i $$-0.449126\pi$$
0.775416 0.631451i $$-0.217540\pi$$
$$450$$ −11.7446 5.84096i −0.553644 0.275346i
$$451$$ 35.7921 + 20.6646i 1.68538 + 0.973057i
$$452$$ −3.25544 + 1.87953i −0.153123 + 0.0884055i
$$453$$ 27.9891 8.43904i 1.31504 0.396501i
$$454$$ 19.4024i 0.910600i
$$455$$ −0.686141 7.52673i −0.0321668 0.352858i
$$456$$ −4.00000 0.939764i −0.187317 0.0440085i
$$457$$ 9.17527 5.29734i 0.429201 0.247799i −0.269805 0.962915i $$-0.586959\pi$$
0.699006 + 0.715116i $$0.253626\pi$$
$$458$$ −2.55842 4.43132i −0.119547 0.207062i
$$459$$ 21.3030 7.89542i 0.994338 0.368527i
$$460$$ −3.37228 −0.157233
$$461$$ 27.4307 + 15.8371i 1.27758 + 0.737608i 0.976402 0.215961i $$-0.0692884\pi$$
0.301173 + 0.953569i $$0.402622\pi$$
$$462$$ −19.9307 + 2.05446i −0.927260 + 0.0955819i
$$463$$ 10.8347i 0.503533i 0.967788 + 0.251766i $$0.0810115\pi$$
−0.967788 + 0.251766i $$0.918989\pi$$
$$464$$ −2.18614 1.26217i −0.101489 0.0585947i
$$465$$ 8.86141 2.67181i 0.410938 0.123902i
$$466$$ 4.19702 2.42315i 0.194423 0.112250i
$$467$$ −25.3723 −1.17409 −0.587045 0.809555i $$-0.699709\pi$$
−0.587045 + 0.809555i $$0.699709\pi$$
$$468$$ −1.94158 + 10.6410i −0.0897495 + 0.491879i
$$469$$ 20.2337 23.3639i 0.934305 1.07884i
$$470$$ 0.372281 + 0.644810i 0.0171721 + 0.0297429i
$$471$$ 0 0
$$472$$ −5.31386 3.06796i −0.244590 0.141214i
$$473$$ 17.4891 0.804151
$$474$$ −11.4198 + 12.1518i −0.524530 + 0.558151i
$$475$$ 5.18614 8.98266i 0.237956 0.412153i
$$476$$ −8.74456 7.57301i −0.400806 0.347108i
$$477$$ 3.69702 + 5.57346i 0.169275 + 0.255191i
$$478$$ −7.80298 13.5152i −0.356900 0.618169i
$$479$$ −2.69702 + 1.55712i −0.123230 + 0.0711467i −0.560348 0.828257i $$-0.689333\pi$$
0.437118 + 0.899404i $$0.355999\pi$$
$$480$$ −0.313859 + 1.33591i −0.0143257 + 0.0609755i
$$481$$ 40.4674 11.6819i 1.84515 0.532650i
$$482$$ 12.7446 0.580499
$$483$$ 17.8030 + 7.96916i 0.810064 + 0.362609i
$$484$$ −4.05842 7.02939i −0.184474 0.319518i
$$485$$ 0.510875 + 0.294954i 0.0231976 + 0.0133932i
$$486$$ 6.31386 + 14.2525i 0.286402 + 0.646509i
$$487$$ −26.6168 15.3672i −1.20612 0.696356i −0.244214 0.969721i $$-0.578530\pi$$
−0.961910 + 0.273365i $$0.911863\pi$$
$$488$$ 4.50000 + 2.59808i 0.203705 + 0.117609i
$$489$$ 4.11684 17.5229i 0.186170 0.792412i
$$490$$ −2.05842 + 5.14987i −0.0929900 + 0.232647i
$$491$$ −6.60597 + 3.81396i −0.298123 + 0.172122i −0.641599 0.767040i $$-0.721729\pi$$
0.343476 + 0.939161i $$0.388396\pi$$
$$492$$ −15.6753 + 4.72627i −0.706696 + 0.213077i
$$493$$ 11.0371i 0.497087i
$$494$$ −8.30298 2.05446i −0.373569 0.0924343i
$$495$$ 4.62772 9.30506i 0.208000 0.418232i
$$496$$ 3.37228 + 5.84096i 0.151420 + 0.262267i
$$497$$ −8.05842 + 41.8728i −0.361470 + 1.87825i
$$498$$ 2.00000 + 1.87953i 0.0896221 + 0.0842236i
$$499$$ 16.4356i 0.735761i −0.929873 0.367880i $$-0.880084\pi$$
0.929873 0.367880i $$-0.119916\pi$$
$$500$$ −6.43070 3.71277i −0.287590 0.166040i
$$501$$ 8.37228 + 7.86797i 0.374046 + 0.351515i
$$502$$ −16.1168 −0.719330
$$503$$ 11.4891 19.8997i 0.512275 0.887286i −0.487624 0.873054i $$-0.662136\pi$$
0.999899 0.0142322i $$-0.00453039\pi$$
$$504$$ 4.81386 6.31084i 0.214426 0.281107i
$$505$$ −10.1168 + 5.84096i −0.450194 + 0.259919i
$$506$$ 18.6101i 0.827321i
$$507$$ −4.30298 + 22.1017i −0.191102 + 0.981570i
$$508$$ −2.11684 −0.0939198
$$509$$ −20.3139 + 11.7282i −0.900396 + 0.519844i −0.877329 0.479890i $$-0.840677\pi$$
−0.0230673 + 0.999734i $$0.507343\pi$$
$$510$$ 5.74456 1.73205i 0.254374 0.0766965i
$$511$$ 26.8614 9.30506i 1.18828 0.411632i
$$512$$ −1.00000 −0.0441942
$$513$$ −11.5584 + 4.28384i −0.510317 + 0.189136i
$$514$$ 2.44158 4.22894i 0.107693 0.186530i
$$515$$ −6.51087 −0.286903
$$516$$ −4.74456 + 5.04868i −0.208868 + 0.222256i
$$517$$ 3.55842 2.05446i 0.156499 0.0903549i
$$518$$ −30.3505 5.84096i −1.33353 0.256637i
$$519$$ −3.17527 0.746000i −0.139379 0.0327458i
$$520$$ −0.686141 + 2.77300i −0.0300893 + 0.121604i
$$521$$ 1.11684 0.0489298 0.0244649 0.999701i $$-0.492212\pi$$
0.0244649 + 0.999701i $$0.492212\pi$$
$$522$$ −7.55842 + 0.469882i −0.330823 + 0.0205662i
$$523$$ 7.50000 4.33013i 0.327952 0.189343i −0.326979 0.945031i $$-0.606031\pi$$
0.654932 + 0.755688i $$0.272697\pi$$
$$524$$ 10.8030 18.7113i 0.471931 0.817408i
$$525$$ 11.7446 + 16.2333i 0.512575 + 0.708478i
$$526$$ −19.5475 11.2858i −0.852314 0.492083i
$$527$$ 14.7446 25.5383i 0.642283 1.11247i
$$528$$ 7.37228 + 1.73205i 0.320837 + 0.0753778i
$$529$$ −2.44158 + 4.22894i −0.106156 + 0.183867i
$$530$$ 0.883156 + 1.52967i 0.0383618 + 0.0664447i
$$531$$ −18.3723 + 1.14214i −0.797289 + 0.0495648i
$$532$$ 4.74456 + 4.10891i 0.205703 + 0.178144i
$$533$$ −32.7446 + 9.45254i −1.41832 + 0.409435i
$$534$$ −4.25544 + 18.1128i −0.184151 + 0.783817i
$$535$$ −0.372281 0.644810i −0.0160951 0.0278776i
$$536$$ −10.1168 + 5.84096i −0.436981 + 0.252291i
$$537$$ −6.37228 5.98844i −0.274984 0.258420i
$$538$$ 0.861407 0.0371379
$$539$$ 28.4198 + 11.3595i 1.22413 + 0.489289i
$$540$$ 1.43070 + 3.86025i 0.0615677 + 0.166119i
$$541$$ 1.28962i 0.0554451i −0.999616 0.0277226i $$-0.991175\pi$$
0.999616 0.0277226i $$-0.00882549\pi$$
$$542$$ −2.00000 + 3.46410i −0.0859074 + 0.148796i
$$543$$ −20.1060 + 6.06218i −0.862830 + 0.260153i
$$544$$ 2.18614 + 3.78651i 0.0937300 + 0.162345i
$$545$$ 15.7663 0.675355
$$546$$ 10.1753 13.0178i 0.435461 0.557112i
$$547$$ 8.51087 0.363899 0.181949 0.983308i $$-0.441759\pi$$
0.181949 + 0.983308i $$0.441759\pi$$
$$548$$ 3.68614 + 6.38458i 0.157464 + 0.272736i
$$549$$ 15.5584 0.967215i 0.664017 0.0412797i
$$550$$ −9.55842 + 16.5557i −0.407572 + 0.705936i
$$551$$ 5.98844i 0.255116i
$$552$$ −5.37228 5.04868i −0.228659 0.214886i
$$553$$ 24.0693 8.33785i 1.02353 0.354561i
$$554$$ −13.4891 −0.573098
$$555$$ 10.9783 11.6819i 0.466001 0.495870i
$$556$$ −7.67527 + 4.43132i −0.325504 + 0.187930i
$$557$$ 12.3030 + 21.3094i 0.521294 + 0.902908i 0.999693 + 0.0247655i $$0.00788391\pi$$
−0.478399 + 0.878143i $$0.658783\pi$$
$$558$$ 18.1168 + 9.01011i 0.766947 + 0.381428i
$$559$$ −10.0000 + 10.3923i −0.422955 + 0.439548i
$$560$$ 1.37228 1.58457i 0.0579895 0.0669605i
$$561$$ −9.55842 31.7017i −0.403557 1.33845i
$$562$$ −7.37228 12.7692i −0.310981 0.538635i
$$563$$ 18.0000 31.1769i 0.758610 1.31395i −0.184950 0.982748i $$-0.559212\pi$$
0.943560 0.331202i $$-0.107454\pi$$
$$564$$ −0.372281 + 1.58457i −0.0156759 + 0.0667226i
$$565$$ −1.48913 + 2.57924i −0.0626480 + 0.108509i
$$566$$ 2.05842 + 1.18843i 0.0865219 + 0.0499535i
$$567$$ 1.56930 23.7600i 0.0659043 0.997826i
$$568$$ 8.05842 13.9576i 0.338124 0.585648i
$$569$$ −29.6644 + 17.1267i −1.24360 + 0.717990i −0.969824 0.243804i $$-0.921605\pi$$
−0.273772 + 0.961795i $$0.588271\pi$$
$$570$$ −3.11684 + 0.939764i −0.130550 + 0.0393624i
$$571$$ −9.48913 −0.397108 −0.198554 0.980090i $$-0.563624\pi$$
−0.198554 + 0.980090i $$0.563624\pi$$
$$572$$ 15.3030 + 3.78651i 0.639850 + 0.158322i
$$573$$ 4.86141 20.6920i 0.203088 0.864422i
$$574$$ 24.5584 + 4.72627i 1.02505 + 0.197271i
$$575$$ 16.1168 9.30506i 0.672119 0.388048i
$$576$$ −2.50000 + 1.65831i −0.104167 + 0.0690963i
$$577$$ 5.76631 0.240055 0.120027 0.992771i $$-0.461702\pi$$
0.120027 + 0.992771i $$0.461702\pi$$
$$578$$ 1.05842 1.83324i 0.0440246 0.0762528i
$$579$$ 16.9307 + 15.9109i 0.703616 + 0.661233i
$$580$$ −2.00000 −0.0830455
$$581$$ −1.37228 3.96143i −0.0569318 0.164348i
$$582$$ 0.372281 + 1.23472i 0.0154316 + 0.0511807i
$$583$$ 8.44158 4.87375i 0.349614 0.201850i
$$584$$ −10.7446 −0.444613
$$585$$ 2.88316 + 8.07035i 0.119204 + 0.333668i
$$586$$ 3.75906i 0.155285i
$$587$$ −37.5475 + 21.6781i −1.54975 + 0.894750i −0.551593 + 0.834113i $$0.685980\pi$$
−0.998160 + 0.0606372i $$0.980687\pi$$
$$588$$ −10.9891 + 5.12241i −0.453184 + 0.211245i
$$589$$ −8.00000 + 13.8564i −0.329634 + 0.570943i
$$590$$ −4.86141 −0.200141
$$591$$ 29.1861 31.0569i 1.20056 1.27751i
$$592$$ 10.1168 + 5.84096i 0.415800 + 0.240062i
$$593$$ 3.11425i 0.127887i −0.997954 0.0639434i $$-0.979632\pi$$
0.997954 0.0639434i $$-0.0203677\pi$$
$$594$$ 21.3030 7.89542i 0.874072 0.323953i
$$595$$ −9.00000 1.73205i −0.368964 0.0710072i
$$596$$ −3.00000 5.19615i −0.122885 0.212843i
$$597$$ −1.37228 + 5.84096i −0.0561637 + 0.239055i
$$598$$ −11.0584 10.6410i −0.452213 0.435142i
$$599$$ 22.5716i 0.922249i −0.887335 0.461125i $$-0.847446\pi$$
0.887335 0.461125i $$-0.152554\pi$$
$$600$$ −2.18614 7.25061i −0.0892488 0.296005i
$$601$$ −37.1168 + 21.4294i −1.51403 + 0.874124i −0.514163 + 0.857693i $$0.671897\pi$$
−0.999865 + 0.0164316i $$0.994769\pi$$
$$602$$ 10.0000 3.46410i 0.407570 0.141186i
$$603$$ −15.6060 + 31.3793i −0.635524 + 1.27786i
$$604$$ 14.6168 + 8.43904i 0.594751 + 0.343380i
$$605$$ −5.56930 3.21543i −0.226424 0.130726i
$$606$$ −24.8614 5.84096i −1.00993 0.237273i
$$607$$ −30.3505 17.5229i −1.23189 0.711232i −0.264466 0.964395i $$-0.585196\pi$$
−0.967424 + 0.253163i $$0.918529\pi$$
$$608$$ −1.18614 2.05446i −0.0481044 0.0833192i
$$609$$ 10.5584 + 4.72627i 0.427849 + 0.191518i
$$610$$ 4.11684 0.166686
$$611$$ −0.813859 + 3.28917i −0.0329252 + 0.133066i
$$612$$ 11.7446 + 5.84096i 0.474746 + 0.236107i
$$613$$ −8.23369 + 4.75372i −0.332556 + 0.192001i −0.656975 0.753912i $$-0.728164\pi$$
0.324420 + 0.945913i $$0.394831\pi$$
$$614$$ −10.6168 18.3889i −0.428461 0.742116i
$$615$$ −8.88316 + 9.45254i −0.358203 + 0.381163i
$$616$$ −8.74456 7.57301i −0.352328 0.305125i
$$617$$ 16.8030 29.1036i 0.676463 1.17167i −0.299576 0.954072i $$-0.596845\pi$$
0.976039 0.217595i $$-0.0698213\pi$$
$$618$$ −10.3723 9.74749i −0.417234 0.392102i
$$619$$ 33.4674 1.34517 0.672584 0.740021i $$-0.265184\pi$$
0.672584 + 0.740021i $$0.265184\pi$$
$$620$$ 4.62772 + 2.67181i 0.185854 + 0.107303i
$$621$$ −21.8030 3.71277i −0.874924 0.148988i
$$622$$ 5.18614 + 8.98266i 0.207945 + 0.360172i
$$623$$ 18.6060 21.4843i 0.745432 0.860751i
$$624$$ −5.24456 + 3.39036i −0.209951 + 0.135723i
$$625$$ 15.9783 0.639130
$$626$$ 12.0000 6.92820i 0.479616 0.276907i
$$627$$ 5.18614 + 17.2005i 0.207115 + 0.686921i
$$628$$ 0 0
$$629$$ 51.0767i 2.03656i
$$630$$ 0.802985 6.23711i 0.0319917 0.248492i
$$631$$ −28.5000 16.4545i −1.13457 0.655043i −0.189488 0.981883i $$-0.560683\pi$$
−0.945080 + 0.326841i $$0.894016\pi$$
$$632$$ −9.62772 −0.382970
$$633$$ 13.3505 14.2063i 0.530636 0.564648i
$$634$$ −7.62772 13.2116i −0.302935 0.524700i
$$635$$ −1.45245 + 0.838574i −0.0576388 + 0.0332778i
$$636$$ −0.883156 + 3.75906i −0.0350194 + 0.149056i
$$637$$ −23.0000 + 10.3923i −0.911293 + 0.411758i
$$638$$ 11.0371i 0.436964i
$$639$$ −3.00000 48.2574i −0.118678 1.90903i
$$640$$ −0.686141 + 0.396143i −0.0271221 + 0.0156589i
$$641$$ 23.6644 + 13.6626i 0.934687 + 0.539642i 0.888291 0.459281i $$-0.151893\pi$$
0.0463963 + 0.998923i $$0.485226\pi$$
$$642$$ 0.372281 1.58457i 0.0146928 0.0625381i
$$643$$ 1.61684 2.80046i 0.0637621 0.110439i −0.832382 0.554202i $$-0.813023\pi$$
0.896144 + 0.443763i $$0.146357\pi$$
$$644$$ 3.68614 + 10.6410i 0.145254 + 0.419313i
$$645$$ −1.25544 + 5.34363i −0.0494328 + 0.210405i
$$646$$ −5.18614 + 8.98266i −0.204046 + 0.353418i
$$647$$ 19.9307 + 34.5210i 0.783557 + 1.35716i 0.929857 + 0.367920i $$0.119930\pi$$
−0.146301 + 0.989240i $$0.546737\pi$$
$$648$$ −3.50000 + 8.29156i −0.137493 + 0.325723i
$$649$$ 26.8280i 1.05309i
$$650$$ −4.37228 15.1460i −0.171495 0.594076i
$$651$$ −18.1168 25.0410i −0.710055 0.981434i
$$652$$ 9.00000 5.19615i 0.352467 0.203497i
$$653$$ −9.04755 + 5.22360i −0.354058 + 0.204415i −0.666471 0.745531i $$-0.732196\pi$$
0.312413 + 0.949946i $$0.398863\pi$$
$$654$$ 25.1168 + 23.6039i 0.982146 + 0.922986i
$$655$$ 17.1181i 0.668861i
$$656$$ −8.18614 4.72627i −0.319615 0.184530i
$$657$$ −26.8614 + 17.8178i −1.04796 + 0.695140i
$$658$$ 1.62772 1.87953i 0.0634551 0.0732716i
$$659$$ 37.1644 + 21.4569i 1.44772 + 0.835841i 0.998345 0.0575028i $$-0.0183138\pi$$
0.449374 + 0.893344i $$0.351647\pi$$
$$660$$ 5.74456 1.73205i 0.223607 0.0674200i
$$661$$ 10.5693 + 18.3066i 0.411098 + 0.712043i 0.995010 0.0997743i $$-0.0318121\pi$$
−0.583912 + 0.811817i $$0.698479\pi$$
$$662$$ 2.17448i 0.0845136i
$$663$$ 24.3030 + 12.4468i 0.943850 + 0.483392i
$$664$$ 1.58457i 0.0614934i
$$665$$ 4.88316 + 0.939764i 0.189361 + 0.0364425i
$$666$$ 34.9783 2.17448i 1.35538 0.0842594i
$$667$$ 5.37228 9.30506i 0.208016 0.360294i
$$668$$ 6.63325i 0.256648i
$$669$$ 33.4891 35.6357i 1.29476 1.37776i
$$670$$ −4.62772 + 8.01544i −0.178784 + 0.309664i
$$671$$ 22.7190i 0.877059i
$$672$$ 4.55842 0.469882i 0.175845 0.0181261i
$$673$$ 4.18614 + 7.25061i 0.161364 + 0.279490i 0.935358 0.353702i $$-0.115077\pi$$
−0.773994 + 0.633193i $$0.781744\pi$$
$$674$$ −5.30298 9.18504i −0.204263 0.353794i
$$675$$ −17.4891 14.5012i −0.673157 0.558152i
$$676$$ −11.0000 + 6.92820i −0.423077 + 0.266469i
$$677$$ 1.37228 0.0527411 0.0263705 0.999652i $$-0.491605\pi$$
0.0263705 + 0.999652i $$0.491605\pi$$
$$678$$ −6.23369 + 1.87953i −0.239403 + 0.0721828i
$$679$$ 0.372281 1.93443i 0.0142868 0.0742366i
$$680$$ 3.00000 + 1.73205i 0.115045 + 0.0664211i
$$681$$ 7.68614 32.7152i 0.294534 1.25365i
$$682$$ 14.7446 25.5383i 0.564598 0.977913i
$$683$$ −6.86141 + 11.8843i −0.262544 + 0.454740i −0.966917 0.255090i $$-0.917895\pi$$
0.704373 + 0.709830i $$0.251228\pi$$
$$684$$ −6.37228 3.16915i −0.243650 0.121175i
$$685$$ 5.05842 + 2.92048i 0.193272 + 0.111586i
$$686$$ 18.5000 + 0.866025i 0.706333 + 0.0330650i
$$687$$ −2.55842 8.48533i −0.0976099 0.323735i
$$688$$ −4.00000 −0.152499
$$689$$ −1.93070 + 7.80284i −0.0735539 + 0.297265i
$$690$$ −5.68614 1.33591i −0.216468 0.0508571i
$$691$$ −10.9416 18.9514i −0.416237 0.720944i 0.579320 0.815100i $$-0.303318\pi$$
−0.995557 + 0.0941560i $$0.969985\pi$$
$$692$$ −0.941578 1.63086i −0.0357934 0.0619960i
$$693$$ −34.4198 4.43132i −1.30750 0.168332i
$$694$$ 20.8395i 0.791057i
$$695$$ −3.51087 + 6.08101i −0.133175 + 0.230666i
$$696$$ −3.18614 2.99422i −0.120770 0.113496i
$$697$$ 41.3292i 1.56545i
$$698$$ −10.0584 + 17.4217i −0.380717 + 0.659421i
$$699$$ 8.03667 2.42315i 0.303975 0.0916519i
$$700$$ −2.18614 + 11.3595i −0.0826284 + 0.429350i
$$701$$ 45.3832i 1.71410i 0.515234 + 0.857049i $$0.327705\pi$$
−0.515234 + 0.857049i $$0.672295\pi$$
$$702$$ −7.48913 + 17.1730i −0.282659 + 0.648154i
$$703$$ 27.7128i 1.04521i
$$704$$ 2.18614 + 3.78651i 0.0823933 + 0.142709i
$$705$$ 0.372281 + 1.23472i 0.0140209 + 0.0465022i
$$706$$ −25.3723 14.6487i −0.954898 0.551311i
$$707$$ 29.4891 + 25.5383i 1.10905 + 0.960468i
$$708$$ −7.74456 7.27806i −0.291058 0.273526i
$$709$$ −22.8832 13.2116i −0.859395 0.496172i 0.00441467 0.999990i $$-0.498595\pi$$
−0.863810 + 0.503818i $$0.831928\pi$$
$$710$$ 12.7692i 0.479218i
$$711$$ −24.0693 + 15.9658i −0.902669 + 0.598763i
$$712$$ −9.30298 + 5.37108i −0.348644 + 0.201290i
$$713$$ −24.8614 + 14.3537i −0.931067 + 0.537552i
$$714$$ −11.7446 16.2333i −0.439529 0.607515i
$$715$$ 12.0000 3.46410i 0.448775 0.129550i
$$716$$ 5.04868i 0.188678i
$$717$$ −7.80298 25.8796i −0.291408 0.966490i
$$718$$ 8.31386 + 14.4000i 0.310270 + 0.537404i
$$719$$ 12.5584 21.7518i 0.468350 0.811206i −0.530996 0.847375i $$-0.678182\pi$$
0.999346 + 0.0361684i $$0.0115153\pi$$
$$720$$ −1.05842 + 2.12819i −0.0394451 + 0.0793131i
$$721$$ 7.11684 + 20.5446i 0.265045 + 0.765119i
$$722$$ −6.68614 + 11.5807i −0.248832 + 0.430990i
$$723$$ 21.4891 + 5.04868i 0.799189 + 0.187762i
$$724$$ −10.5000 6.06218i −0.390229 0.225299i
$$725$$ 9.55842 5.51856i 0.354991 0.204954i
$$726$$ −4.05842 13.4603i −0.150622 0.499557i
$$727$$ 28.1176i 1.04282i −0.853305 0.521412i $$-0.825406\pi$$
0.853305 0.521412i $$-0.174594\pi$$
$$728$$ 9.50000 0.866025i 0.352093 0.0320970i
$$729$$ 5.00000 + 26.5330i 0.185185 + 0.982704i
$$730$$ −7.37228 + 4.25639i −0.272860 + 0.157536i
$$731$$ 8.74456 + 15.1460i 0.323429 + 0.560196i
$$732$$ 6.55842 + 6.16337i 0.242406 + 0.227805i
$$733$$ 43.7446 1.61574 0.807871 0.589359i $$-0.200620\pi$$
0.807871 + 0.589359i $$0.200620\pi$$
$$734$$ −26.2337 15.1460i −0.968303 0.559050i
$$735$$ −5.51087 + 7.86797i −0.203272 + 0.290214i
$$736$$ 4.25639i 0.156893i
$$737$$ 44.2337 + 25.5383i 1.62937 + 0.940717i
$$738$$ −28.3030 + 1.75950i −1.04185 + 0.0647682i
$$739$$ −34.1168 + 19.6974i −1.25501 + 0.724579i −0.972100 0.234567i $$-0.924633\pi$$
−0.282909 + 0.959147i $$0.591299\pi$$
$$740$$ 9.25544 0.340237
$$741$$ −13.1861 6.75327i −0.484405 0.248088i
$$742$$ 3.86141 4.45877i 0.141757 0.163687i
$$743$$ 1.62772 + 2.81929i 0.0597152 + 0.103430i 0.894338 0.447393i $$-0.147647\pi$$
−0.834622 + 0.550823i $$0.814314\pi$$
$$744$$ 3.37228 + 11.1846i 0.123634 + 0.410047i
$$745$$ −4.11684 2.37686i −0.150829 0.0870814i
$$746$$ −8.00000 −0.292901
$$747$$ 2.62772 + 3.96143i 0.0961432 + 0.144941i
$$748$$ 9.55842 16.5557i 0.349491 0.605335i
$$749$$ −1.62772 + 1.87953i −0.0594755 + 0.0686764i
$$750$$ −9.37228 8.80773i −0.342227 0.321613i
$$751$$ 0.500000 + 0.866025i 0.0182453 + 0.0316017i 0.875004 0.484116i $$-0.160859\pi$$
−0.856759 + 0.515718i $$0.827525\pi$$
$$752$$ −0.813859 + 0.469882i −0.0296784 + 0.0171348i
$$753$$ −27.1753 6.38458i −0.990322 0.232667i
$$754$$ −6.55842 6.31084i −0.238844 0.229827i
$$755$$ 13.3723 0.486667
$$756$$ 10.6168 8.73399i 0.386131 0.317652i
$$757$$ 8.86141 + 15.3484i 0.322073 + 0.557847i 0.980916 0.194434i $$-0.0622869\pi$$
−0.658842 + 0.752281i $$0.728954\pi$$
$$758$$ −4.88316 2.81929i −0.177364 0.102401i
$$759$$ −7.37228 + 31.3793i −0.267597 + 1.13900i
$$760$$ −1.62772 0.939764i −0.0590436 0.0340888i
$$761$$ 3.25544 + 1.87953i 0.118010 + 0.0681328i 0.557843 0.829947i $$-0.311629\pi$$
−0.439833 + 0.898079i $$0.644963\pi$$
$$762$$ −3.56930 0.838574i −0.129302 0.0303783i
$$763$$ −17.2337 49.7494i −0.623901 1.80105i
$$764$$ 10.6277 6.13592i 0.384497 0.221990i
$$765$$ 10.3723 0.644810i 0.375011 0.0233132i
$$766$$ 15.0911i 0.545264i
$$767$$ −15.9416 15.3398i −0.575617 0.553888i
$$768$$ −1.68614 0.396143i −0.0608434 0.0142946i
$$769$$ 12.1168 + 20.9870i 0.436945 + 0.756810i 0.997452 0.0713391i $$-0.0227273\pi$$
−0.560508 + 0.828149i $$0.689394\pi$$
$$770$$ −9.00000 1.73205i −0.324337 0.0624188i
$$771$$ 5.79211 6.16337i 0.208598 0.221968i
$$772$$ 13.4140i 0.482780i
$$773$$