# Properties

 Label 546.2.q.h.335.1 Level $546$ Weight $2$ Character 546.335 Analytic conductor $4.360$ Analytic rank $0$ Dimension $4$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$546 = 2 \cdot 3 \cdot 7 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 546.q (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$4.35983195036$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(\zeta_{6})$$ Coefficient field: $$\Q(\sqrt{-3}, \sqrt{-11})$$ Defining polynomial: $$x^{4} - x^{3} - 2 x^{2} - 3 x + 9$$ Coefficient ring: $$\Z[a_1, a_2, a_3]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 335.1 Root $$1.68614 + 0.396143i$$ of defining polynomial Character $$\chi$$ $$=$$ 546.335 Dual form 546.2.q.h.251.2

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.500000 + 0.866025i) q^{2} +(0.500000 - 1.65831i) q^{3} +(-0.500000 + 0.866025i) q^{4} -2.52434i q^{5} +(1.68614 - 0.396143i) q^{6} +(2.50000 - 0.866025i) q^{7} -1.00000 q^{8} +(-2.50000 - 1.65831i) q^{9} +O(q^{10})$$ $$q+(0.500000 + 0.866025i) q^{2} +(0.500000 - 1.65831i) q^{3} +(-0.500000 + 0.866025i) q^{4} -2.52434i q^{5} +(1.68614 - 0.396143i) q^{6} +(2.50000 - 0.866025i) q^{7} -1.00000 q^{8} +(-2.50000 - 1.65831i) q^{9} +(2.18614 - 1.26217i) q^{10} +(-0.686141 - 1.18843i) q^{11} +(1.18614 + 1.26217i) q^{12} +(-3.50000 - 0.866025i) q^{13} +(2.00000 + 1.73205i) q^{14} +(-4.18614 - 1.26217i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(0.686141 - 1.18843i) q^{17} +(0.186141 - 2.99422i) q^{18} +(-1.68614 + 2.92048i) q^{19} +(2.18614 + 1.26217i) q^{20} +(-0.186141 - 4.57879i) q^{21} +(0.686141 - 1.18843i) q^{22} +(0.813859 - 0.469882i) q^{23} +(-0.500000 + 1.65831i) q^{24} -1.37228 q^{25} +(-1.00000 - 3.46410i) q^{26} +(-4.00000 + 3.31662i) q^{27} +(-0.500000 + 2.59808i) q^{28} +(-0.686141 + 0.396143i) q^{29} +(-1.00000 - 4.25639i) q^{30} +4.74456 q^{31} +(0.500000 - 0.866025i) q^{32} +(-2.31386 + 0.543620i) q^{33} +1.37228 q^{34} +(-2.18614 - 6.31084i) q^{35} +(2.68614 - 1.33591i) q^{36} +(7.11684 - 4.10891i) q^{37} -3.37228 q^{38} +(-3.18614 + 5.37108i) q^{39} +2.52434i q^{40} +(5.31386 - 3.06796i) q^{41} +(3.87228 - 2.45060i) q^{42} +(2.00000 - 3.46410i) q^{43} +1.37228 q^{44} +(-4.18614 + 6.31084i) q^{45} +(0.813859 + 0.469882i) q^{46} -4.25639i q^{47} +(-1.68614 + 0.396143i) q^{48} +(5.50000 - 4.33013i) q^{49} +(-0.686141 - 1.18843i) q^{50} +(-1.62772 - 1.73205i) q^{51} +(2.50000 - 2.59808i) q^{52} +14.3537i q^{53} +(-4.87228 - 1.80579i) q^{54} +(-3.00000 + 1.73205i) q^{55} +(-2.50000 + 0.866025i) q^{56} +(4.00000 + 4.25639i) q^{57} +(-0.686141 - 0.396143i) q^{58} +(8.18614 + 4.72627i) q^{59} +(3.18614 - 2.99422i) q^{60} +(-4.50000 - 2.59808i) q^{61} +(2.37228 + 4.10891i) q^{62} +(-7.68614 - 1.98072i) q^{63} +1.00000 q^{64} +(-2.18614 + 8.83518i) q^{65} +(-1.62772 - 1.73205i) q^{66} +(-7.11684 + 4.10891i) q^{67} +(0.686141 + 1.18843i) q^{68} +(-0.372281 - 1.58457i) q^{69} +(4.37228 - 5.04868i) q^{70} +(0.558422 - 0.967215i) q^{71} +(2.50000 + 1.65831i) q^{72} -0.744563 q^{73} +(7.11684 + 4.10891i) q^{74} +(-0.686141 + 2.27567i) q^{75} +(-1.68614 - 2.92048i) q^{76} +(-2.74456 - 2.37686i) q^{77} +(-6.24456 - 0.0737384i) q^{78} +15.3723 q^{79} +(-2.18614 + 1.26217i) q^{80} +(3.50000 + 8.29156i) q^{81} +(5.31386 + 3.06796i) q^{82} +5.04868i q^{83} +(4.05842 + 2.12819i) q^{84} +(-3.00000 - 1.73205i) q^{85} +4.00000 q^{86} +(0.313859 + 1.33591i) q^{87} +(0.686141 + 1.18843i) q^{88} +(-10.8030 + 6.23711i) q^{89} +(-7.55842 - 0.469882i) q^{90} +(-9.50000 + 0.866025i) q^{91} +0.939764i q^{92} +(2.37228 - 7.86797i) q^{93} +(3.68614 - 2.12819i) q^{94} +(7.37228 + 4.25639i) q^{95} +(-1.18614 - 1.26217i) q^{96} +(-5.37228 + 9.30506i) q^{97} +(6.50000 + 2.59808i) q^{98} +(-0.255437 + 4.10891i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4q + 2q^{2} + 2q^{3} - 2q^{4} + q^{6} + 10q^{7} - 4q^{8} - 10q^{9} + O(q^{10})$$ $$4q + 2q^{2} + 2q^{3} - 2q^{4} + q^{6} + 10q^{7} - 4q^{8} - 10q^{9} + 3q^{10} + 3q^{11} - q^{12} - 14q^{13} + 8q^{14} - 11q^{15} - 2q^{16} - 3q^{17} - 5q^{18} - q^{19} + 3q^{20} + 5q^{21} - 3q^{22} + 9q^{23} - 2q^{24} + 6q^{25} - 4q^{26} - 16q^{27} - 2q^{28} + 3q^{29} - 4q^{30} - 4q^{31} + 2q^{32} - 15q^{33} - 6q^{34} - 3q^{35} + 5q^{36} - 6q^{37} - 2q^{38} - 7q^{39} + 27q^{41} + 4q^{42} + 8q^{43} - 6q^{44} - 11q^{45} + 9q^{46} - q^{48} + 22q^{49} + 3q^{50} - 18q^{51} + 10q^{52} - 8q^{54} - 12q^{55} - 10q^{56} + 16q^{57} + 3q^{58} + 27q^{59} + 7q^{60} - 18q^{61} - 2q^{62} - 25q^{63} + 4q^{64} - 3q^{65} - 18q^{66} + 6q^{67} - 3q^{68} + 10q^{69} + 6q^{70} - 15q^{71} + 10q^{72} + 20q^{73} - 6q^{74} + 3q^{75} - q^{76} + 12q^{77} - 2q^{78} + 50q^{79} - 3q^{80} + 14q^{81} + 27q^{82} - q^{84} - 12q^{85} + 16q^{86} + 7q^{87} - 3q^{88} - 3q^{89} - 13q^{90} - 38q^{91} - 2q^{93} + 9q^{94} + 18q^{95} + q^{96} - 10q^{97} + 26q^{98} - 24q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/546\mathbb{Z}\right)^\times$$.

 $$n$$ $$157$$ $$365$$ $$379$$ $$\chi(n)$$ $$-1$$ $$-1$$ $$e\left(\frac{5}{6}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.500000 + 0.866025i 0.353553 + 0.612372i
$$3$$ 0.500000 1.65831i 0.288675 0.957427i
$$4$$ −0.500000 + 0.866025i −0.250000 + 0.433013i
$$5$$ 2.52434i 1.12892i −0.825461 0.564459i $$-0.809085\pi$$
0.825461 0.564459i $$-0.190915\pi$$
$$6$$ 1.68614 0.396143i 0.688364 0.161725i
$$7$$ 2.50000 0.866025i 0.944911 0.327327i
$$8$$ −1.00000 −0.353553
$$9$$ −2.50000 1.65831i −0.833333 0.552771i
$$10$$ 2.18614 1.26217i 0.691318 0.399133i
$$11$$ −0.686141 1.18843i −0.206879 0.358325i 0.743851 0.668346i $$-0.232997\pi$$
−0.950730 + 0.310021i $$0.899664\pi$$
$$12$$ 1.18614 + 1.26217i 0.342409 + 0.364357i
$$13$$ −3.50000 0.866025i −0.970725 0.240192i
$$14$$ 2.00000 + 1.73205i 0.534522 + 0.462910i
$$15$$ −4.18614 1.26217i −1.08086 0.325891i
$$16$$ −0.500000 0.866025i −0.125000 0.216506i
$$17$$ 0.686141 1.18843i 0.166414 0.288237i −0.770743 0.637146i $$-0.780115\pi$$
0.937156 + 0.348910i $$0.113448\pi$$
$$18$$ 0.186141 2.99422i 0.0438738 0.705744i
$$19$$ −1.68614 + 2.92048i −0.386827 + 0.670004i −0.992021 0.126074i $$-0.959762\pi$$
0.605194 + 0.796078i $$0.293096\pi$$
$$20$$ 2.18614 + 1.26217i 0.488836 + 0.282230i
$$21$$ −0.186141 4.57879i −0.0406192 0.999175i
$$22$$ 0.686141 1.18843i 0.146286 0.253374i
$$23$$ 0.813859 0.469882i 0.169701 0.0979772i −0.412744 0.910847i $$-0.635429\pi$$
0.582445 + 0.812870i $$0.302096\pi$$
$$24$$ −0.500000 + 1.65831i −0.102062 + 0.338502i
$$25$$ −1.37228 −0.274456
$$26$$ −1.00000 3.46410i −0.196116 0.679366i
$$27$$ −4.00000 + 3.31662i −0.769800 + 0.638285i
$$28$$ −0.500000 + 2.59808i −0.0944911 + 0.490990i
$$29$$ −0.686141 + 0.396143i −0.127413 + 0.0735620i −0.562352 0.826898i $$-0.690103\pi$$
0.434939 + 0.900460i $$0.356770\pi$$
$$30$$ −1.00000 4.25639i −0.182574 0.777107i
$$31$$ 4.74456 0.852149 0.426074 0.904688i $$-0.359896\pi$$
0.426074 + 0.904688i $$0.359896\pi$$
$$32$$ 0.500000 0.866025i 0.0883883 0.153093i
$$33$$ −2.31386 + 0.543620i −0.402791 + 0.0946322i
$$34$$ 1.37228 0.235344
$$35$$ −2.18614 6.31084i −0.369525 1.06673i
$$36$$ 2.68614 1.33591i 0.447690 0.222651i
$$37$$ 7.11684 4.10891i 1.17000 0.675501i 0.216321 0.976322i $$-0.430594\pi$$
0.953681 + 0.300821i $$0.0972608\pi$$
$$38$$ −3.37228 −0.547056
$$39$$ −3.18614 + 5.37108i −0.510191 + 0.860061i
$$40$$ 2.52434i 0.399133i
$$41$$ 5.31386 3.06796i 0.829885 0.479135i −0.0239280 0.999714i $$-0.507617\pi$$
0.853813 + 0.520579i $$0.174284\pi$$
$$42$$ 3.87228 2.45060i 0.597506 0.378136i
$$43$$ 2.00000 3.46410i 0.304997 0.528271i −0.672264 0.740312i $$-0.734678\pi$$
0.977261 + 0.212041i $$0.0680112\pi$$
$$44$$ 1.37228 0.206879
$$45$$ −4.18614 + 6.31084i −0.624033 + 0.940765i
$$46$$ 0.813859 + 0.469882i 0.119997 + 0.0692803i
$$47$$ 4.25639i 0.620858i −0.950597 0.310429i $$-0.899527\pi$$
0.950597 0.310429i $$-0.100473\pi$$
$$48$$ −1.68614 + 0.396143i −0.243373 + 0.0571784i
$$49$$ 5.50000 4.33013i 0.785714 0.618590i
$$50$$ −0.686141 1.18843i −0.0970349 0.168069i
$$51$$ −1.62772 1.73205i −0.227926 0.242536i
$$52$$ 2.50000 2.59808i 0.346688 0.360288i
$$53$$ 14.3537i 1.97164i 0.167813 + 0.985819i $$0.446330\pi$$
−0.167813 + 0.985819i $$0.553670\pi$$
$$54$$ −4.87228 1.80579i −0.663034 0.245737i
$$55$$ −3.00000 + 1.73205i −0.404520 + 0.233550i
$$56$$ −2.50000 + 0.866025i −0.334077 + 0.115728i
$$57$$ 4.00000 + 4.25639i 0.529813 + 0.563772i
$$58$$ −0.686141 0.396143i −0.0900947 0.0520162i
$$59$$ 8.18614 + 4.72627i 1.06574 + 0.615308i 0.927016 0.375022i $$-0.122365\pi$$
0.138729 + 0.990330i $$0.455698\pi$$
$$60$$ 3.18614 2.99422i 0.411329 0.386552i
$$61$$ −4.50000 2.59808i −0.576166 0.332650i 0.183442 0.983030i $$-0.441276\pi$$
−0.759608 + 0.650381i $$0.774609\pi$$
$$62$$ 2.37228 + 4.10891i 0.301280 + 0.521832i
$$63$$ −7.68614 1.98072i −0.968363 0.249547i
$$64$$ 1.00000 0.125000
$$65$$ −2.18614 + 8.83518i −0.271157 + 1.09587i
$$66$$ −1.62772 1.73205i −0.200358 0.213201i
$$67$$ −7.11684 + 4.10891i −0.869461 + 0.501983i −0.867169 0.498014i $$-0.834063\pi$$
−0.00229183 + 0.999997i $$0.500730\pi$$
$$68$$ 0.686141 + 1.18843i 0.0832068 + 0.144118i
$$69$$ −0.372281 1.58457i −0.0448174 0.190760i
$$70$$ 4.37228 5.04868i 0.522588 0.603432i
$$71$$ 0.558422 0.967215i 0.0662725 0.114787i −0.830985 0.556294i $$-0.812223\pi$$
0.897258 + 0.441507i $$0.145556\pi$$
$$72$$ 2.50000 + 1.65831i 0.294628 + 0.195434i
$$73$$ −0.744563 −0.0871445 −0.0435722 0.999050i $$-0.513874\pi$$
−0.0435722 + 0.999050i $$0.513874\pi$$
$$74$$ 7.11684 + 4.10891i 0.827316 + 0.477651i
$$75$$ −0.686141 + 2.27567i −0.0792287 + 0.262772i
$$76$$ −1.68614 2.92048i −0.193414 0.335002i
$$77$$ −2.74456 2.37686i −0.312772 0.270868i
$$78$$ −6.24456 0.0737384i −0.707057 0.00834923i
$$79$$ 15.3723 1.72952 0.864758 0.502188i $$-0.167472\pi$$
0.864758 + 0.502188i $$0.167472\pi$$
$$80$$ −2.18614 + 1.26217i −0.244418 + 0.141115i
$$81$$ 3.50000 + 8.29156i 0.388889 + 0.921285i
$$82$$ 5.31386 + 3.06796i 0.586818 + 0.338799i
$$83$$ 5.04868i 0.554164i 0.960846 + 0.277082i $$0.0893674\pi$$
−0.960846 + 0.277082i $$0.910633\pi$$
$$84$$ 4.05842 + 2.12819i 0.442810 + 0.232205i
$$85$$ −3.00000 1.73205i −0.325396 0.187867i
$$86$$ 4.00000 0.431331
$$87$$ 0.313859 + 1.33591i 0.0336493 + 0.143224i
$$88$$ 0.686141 + 1.18843i 0.0731428 + 0.126687i
$$89$$ −10.8030 + 6.23711i −1.14511 + 0.661132i −0.947692 0.319187i $$-0.896590\pi$$
−0.197422 + 0.980319i $$0.563257\pi$$
$$90$$ −7.55842 0.469882i −0.796728 0.0495299i
$$91$$ −9.50000 + 0.866025i −0.995871 + 0.0907841i
$$92$$ 0.939764i 0.0979772i
$$93$$ 2.37228 7.86797i 0.245994 0.815870i
$$94$$ 3.68614 2.12819i 0.380196 0.219506i
$$95$$ 7.37228 + 4.25639i 0.756380 + 0.436696i
$$96$$ −1.18614 1.26217i −0.121060 0.128820i
$$97$$ −5.37228 + 9.30506i −0.545473 + 0.944786i 0.453104 + 0.891457i $$0.350316\pi$$
−0.998577 + 0.0533287i $$0.983017\pi$$
$$98$$ 6.50000 + 2.59808i 0.656599 + 0.262445i
$$99$$ −0.255437 + 4.10891i −0.0256724 + 0.412961i
$$100$$ 0.686141 1.18843i 0.0686141 0.118843i
$$101$$ 1.62772 + 2.81929i 0.161964 + 0.280530i 0.935573 0.353133i $$-0.114884\pi$$
−0.773609 + 0.633663i $$0.781550\pi$$
$$102$$ 0.686141 2.27567i 0.0679380 0.225325i
$$103$$ 11.6819i 1.15105i −0.817783 0.575527i $$-0.804797\pi$$
0.817783 0.575527i $$-0.195203\pi$$
$$104$$ 3.50000 + 0.866025i 0.343203 + 0.0849208i
$$105$$ −11.5584 + 0.469882i −1.12799 + 0.0458558i
$$106$$ −12.4307 + 7.17687i −1.20738 + 0.697079i
$$107$$ −3.68614 + 2.12819i −0.356353 + 0.205740i −0.667480 0.744628i $$-0.732627\pi$$
0.311127 + 0.950368i $$0.399294\pi$$
$$108$$ −0.872281 5.12241i −0.0839353 0.492905i
$$109$$ 19.8997i 1.90605i 0.302891 + 0.953025i $$0.402048\pi$$
−0.302891 + 0.953025i $$0.597952\pi$$
$$110$$ −3.00000 1.73205i −0.286039 0.165145i
$$111$$ −3.25544 13.8564i −0.308992 1.31519i
$$112$$ −2.00000 1.73205i −0.188982 0.163663i
$$113$$ 14.7446 + 8.51278i 1.38705 + 0.800815i 0.992982 0.118266i $$-0.0377335\pi$$
0.394070 + 0.919081i $$0.371067\pi$$
$$114$$ −1.68614 + 5.59230i −0.157922 + 0.523767i
$$115$$ −1.18614 2.05446i −0.110608 0.191579i
$$116$$ 0.792287i 0.0735620i
$$117$$ 7.31386 + 7.96916i 0.676167 + 0.736749i
$$118$$ 9.45254i 0.870177i
$$119$$ 0.686141 3.56529i 0.0628984 0.326830i
$$120$$ 4.18614 + 1.26217i 0.382141 + 0.115220i
$$121$$ 4.55842 7.89542i 0.414402 0.717765i
$$122$$ 5.19615i 0.470438i
$$123$$ −2.43070 10.3460i −0.219169 0.932869i
$$124$$ −2.37228 + 4.10891i −0.213037 + 0.368991i
$$125$$ 9.15759i 0.819080i
$$126$$ −2.12772 7.64675i −0.189552 0.681227i
$$127$$ −7.55842 13.0916i −0.670701 1.16169i −0.977706 0.209981i $$-0.932660\pi$$
0.307004 0.951708i $$-0.400673\pi$$
$$128$$ 0.500000 + 0.866025i 0.0441942 + 0.0765466i
$$129$$ −4.74456 5.04868i −0.417735 0.444511i
$$130$$ −8.74456 + 2.52434i −0.766949 + 0.221399i
$$131$$ 18.6060 1.62561 0.812806 0.582535i $$-0.197939\pi$$
0.812806 + 0.582535i $$0.197939\pi$$
$$132$$ 0.686141 2.27567i 0.0597209 0.198072i
$$133$$ −1.68614 + 8.76144i −0.146207 + 0.759714i
$$134$$ −7.11684 4.10891i −0.614802 0.354956i
$$135$$ 8.37228 + 10.0974i 0.720571 + 0.869042i
$$136$$ −0.686141 + 1.18843i −0.0588361 + 0.101907i
$$137$$ 0.813859 1.40965i 0.0695327 0.120434i −0.829163 0.559007i $$-0.811183\pi$$
0.898696 + 0.438573i $$0.144516\pi$$
$$138$$ 1.18614 1.11469i 0.100971 0.0948889i
$$139$$ −18.1753 10.4935i −1.54161 0.890047i −0.998738 0.0502287i $$-0.984005\pi$$
−0.542868 0.839818i $$-0.682662\pi$$
$$140$$ 6.55842 + 1.26217i 0.554288 + 0.106673i
$$141$$ −7.05842 2.12819i −0.594426 0.179226i
$$142$$ 1.11684 0.0937235
$$143$$ 1.37228 + 4.75372i 0.114756 + 0.397526i
$$144$$ −0.186141 + 2.99422i −0.0155117 + 0.249518i
$$145$$ 1.00000 + 1.73205i 0.0830455 + 0.143839i
$$146$$ −0.372281 0.644810i −0.0308102 0.0533649i
$$147$$ −4.43070 11.2858i −0.365438 0.930836i
$$148$$ 8.21782i 0.675501i
$$149$$ −3.00000 + 5.19615i −0.245770 + 0.425685i −0.962348 0.271821i $$-0.912374\pi$$
0.716578 + 0.697507i $$0.245707\pi$$
$$150$$ −2.31386 + 0.543620i −0.188926 + 0.0443864i
$$151$$ 3.02167i 0.245900i 0.992413 + 0.122950i $$0.0392355\pi$$
−0.992413 + 0.122950i $$0.960765\pi$$
$$152$$ 1.68614 2.92048i 0.136764 0.236882i
$$153$$ −3.68614 + 1.83324i −0.298007 + 0.148209i
$$154$$ 0.686141 3.56529i 0.0552908 0.287299i
$$155$$ 11.9769i 0.962006i
$$156$$ −3.05842 5.44482i −0.244870 0.435934i
$$157$$ 0 0 1.00000 $$0$$
−1.00000 $$\pi$$
$$158$$ 7.68614 + 13.3128i 0.611477 + 1.05911i
$$159$$ 23.8030 + 7.17687i 1.88770 + 0.569163i
$$160$$ −2.18614 1.26217i −0.172830 0.0997832i
$$161$$ 1.62772 1.87953i 0.128282 0.148128i
$$162$$ −5.43070 + 7.17687i −0.426676 + 0.563868i
$$163$$ −9.00000 5.19615i −0.704934 0.406994i 0.104248 0.994551i $$-0.466756\pi$$
−0.809183 + 0.587557i $$0.800090\pi$$
$$164$$ 6.13592i 0.479135i
$$165$$ 1.37228 + 5.84096i 0.106832 + 0.454718i
$$166$$ −4.37228 + 2.52434i −0.339355 + 0.195927i
$$167$$ −5.74456 + 3.31662i −0.444528 + 0.256648i −0.705516 0.708694i $$-0.749285\pi$$
0.260989 + 0.965342i $$0.415951\pi$$
$$168$$ 0.186141 + 4.57879i 0.0143611 + 0.353262i
$$169$$ 11.5000 + 6.06218i 0.884615 + 0.466321i
$$170$$ 3.46410i 0.265684i
$$171$$ 9.05842 4.50506i 0.692715 0.344510i
$$172$$ 2.00000 + 3.46410i 0.152499 + 0.264135i
$$173$$ −9.55842 + 16.5557i −0.726713 + 1.25870i 0.231552 + 0.972823i $$0.425620\pi$$
−0.958265 + 0.285882i $$0.907714\pi$$
$$174$$ −1.00000 + 0.939764i −0.0758098 + 0.0712433i
$$175$$ −3.43070 + 1.18843i −0.259337 + 0.0898369i
$$176$$ −0.686141 + 1.18843i −0.0517198 + 0.0895813i
$$177$$ 11.9307 11.2120i 0.896767 0.842749i
$$178$$ −10.8030 6.23711i −0.809718 0.467491i
$$179$$ 1.37228 0.792287i 0.102569 0.0592183i −0.447838 0.894115i $$-0.647806\pi$$
0.550407 + 0.834896i $$0.314473\pi$$
$$180$$ −3.37228 6.78073i −0.251355 0.505406i
$$181$$ 12.1244i 0.901196i 0.892727 + 0.450598i $$0.148789\pi$$
−0.892727 + 0.450598i $$0.851211\pi$$
$$182$$ −5.50000 7.79423i −0.407687 0.577747i
$$183$$ −6.55842 + 6.16337i −0.484813 + 0.455609i
$$184$$ −0.813859 + 0.469882i −0.0599985 + 0.0346402i
$$185$$ −10.3723 17.9653i −0.762585 1.32084i
$$186$$ 8.00000 1.87953i 0.586588 0.137814i
$$187$$ −1.88316 −0.137710
$$188$$ 3.68614 + 2.12819i 0.268839 + 0.155215i
$$189$$ −7.12772 + 11.7557i −0.518465 + 0.855099i
$$190$$ 8.51278i 0.617582i
$$191$$ −16.3723 9.45254i −1.18466 0.683962i −0.227569 0.973762i $$-0.573078\pi$$
−0.957087 + 0.289800i $$0.906411\pi$$
$$192$$ 0.500000 1.65831i 0.0360844 0.119678i
$$193$$ −5.61684 + 3.24289i −0.404309 + 0.233428i −0.688342 0.725387i $$-0.741661\pi$$
0.284032 + 0.958815i $$0.408328\pi$$
$$194$$ −10.7446 −0.771415
$$195$$ 13.5584 + 8.04290i 0.970939 + 0.575964i
$$196$$ 1.00000 + 6.92820i 0.0714286 + 0.494872i
$$197$$ 7.80298 + 13.5152i 0.555940 + 0.962916i 0.997830 + 0.0658465i $$0.0209748\pi$$
−0.441890 + 0.897069i $$0.645692\pi$$
$$198$$ −3.68614 + 1.83324i −0.261963 + 0.130283i
$$199$$ 3.00000 + 1.73205i 0.212664 + 0.122782i 0.602549 0.798082i $$-0.294152\pi$$
−0.389885 + 0.920864i $$0.627485\pi$$
$$200$$ 1.37228 0.0970349
$$201$$ 3.25544 + 13.8564i 0.229621 + 0.977356i
$$202$$ −1.62772 + 2.81929i −0.114526 + 0.198365i
$$203$$ −1.37228 + 1.58457i −0.0963153 + 0.111215i
$$204$$ 2.31386 0.543620i 0.162003 0.0380610i
$$205$$ −7.74456 13.4140i −0.540904 0.936873i
$$206$$ 10.1168 5.84096i 0.704874 0.406959i
$$207$$ −2.81386 0.174928i −0.195577 0.0121584i
$$208$$ 1.00000 + 3.46410i 0.0693375 + 0.240192i
$$209$$ 4.62772 0.320106
$$210$$ −6.18614 9.77495i −0.426884 0.674535i
$$211$$ −11.3723 19.6974i −0.782900 1.35602i −0.930246 0.366938i $$-0.880406\pi$$
0.147345 0.989085i $$-0.452927\pi$$
$$212$$ −12.4307 7.17687i −0.853744 0.492909i
$$213$$ −1.32473 1.40965i −0.0907693 0.0965873i
$$214$$ −3.68614 2.12819i −0.251979 0.145480i
$$215$$ −8.74456 5.04868i −0.596374 0.344317i
$$216$$ 4.00000 3.31662i 0.272166 0.225668i
$$217$$ 11.8614 4.10891i 0.805205 0.278931i
$$218$$ −17.2337 + 9.94987i −1.16721 + 0.673891i
$$219$$ −0.372281 + 1.23472i −0.0251564 + 0.0834345i
$$220$$ 3.46410i 0.233550i
$$221$$ −3.43070 + 3.56529i −0.230774 + 0.239827i
$$222$$ 10.3723 9.74749i 0.696142 0.654209i
$$223$$ 3.11684 + 5.39853i 0.208719 + 0.361512i 0.951311 0.308232i $$-0.0997372\pi$$
−0.742592 + 0.669744i $$0.766404\pi$$
$$224$$ 0.500000 2.59808i 0.0334077 0.173591i
$$225$$ 3.43070 + 2.27567i 0.228714 + 0.151711i
$$226$$ 17.0256i 1.13252i
$$227$$ 3.30298 + 1.90698i 0.219227 + 0.126571i 0.605592 0.795775i $$-0.292936\pi$$
−0.386365 + 0.922346i $$0.626270\pi$$
$$228$$ −5.68614 + 1.33591i −0.376574 + 0.0884726i
$$229$$ 12.1168 0.800704 0.400352 0.916362i $$-0.368888\pi$$
0.400352 + 0.916362i $$0.368888\pi$$
$$230$$ 1.18614 2.05446i 0.0782118 0.135467i
$$231$$ −5.31386 + 3.36291i −0.349626 + 0.221263i
$$232$$ 0.686141 0.396143i 0.0450473 0.0260081i
$$233$$ 28.0627i 1.83845i −0.393737 0.919223i $$-0.628818\pi$$
0.393737 0.919223i $$-0.371182\pi$$
$$234$$ −3.24456 + 10.3186i −0.212104 + 0.674546i
$$235$$ −10.7446 −0.700898
$$236$$ −8.18614 + 4.72627i −0.532872 + 0.307654i
$$237$$ 7.68614 25.4920i 0.499268 1.65589i
$$238$$ 3.43070 1.18843i 0.222379 0.0770345i
$$239$$ 24.6060 1.59163 0.795814 0.605541i $$-0.207043\pi$$
0.795814 + 0.605541i $$0.207043\pi$$
$$240$$ 1.00000 + 4.25639i 0.0645497 + 0.274749i
$$241$$ 0.627719 1.08724i 0.0404349 0.0700353i −0.845100 0.534609i $$-0.820459\pi$$
0.885535 + 0.464573i $$0.153792\pi$$
$$242$$ 9.11684 0.586053
$$243$$ 15.5000 1.65831i 0.994325 0.106381i
$$244$$ 4.50000 2.59808i 0.288083 0.166325i
$$245$$ −10.9307 13.8839i −0.698337 0.887007i
$$246$$ 7.74456 7.27806i 0.493775 0.464032i
$$247$$ 8.43070 8.76144i 0.536433 0.557477i
$$248$$ −4.74456 −0.301280
$$249$$ 8.37228 + 2.52434i 0.530572 + 0.159973i
$$250$$ 7.93070 4.57879i 0.501582 0.289588i
$$251$$ 0.558422 0.967215i 0.0352473 0.0610501i −0.847864 0.530214i $$-0.822111\pi$$
0.883111 + 0.469164i $$0.155445\pi$$
$$252$$ 5.55842 5.66603i 0.350148 0.356927i
$$253$$ −1.11684 0.644810i −0.0702154 0.0405389i
$$254$$ 7.55842 13.0916i 0.474258 0.821438i
$$255$$ −4.37228 + 4.10891i −0.273803 + 0.257310i
$$256$$ −0.500000 + 0.866025i −0.0312500 + 0.0541266i
$$257$$ −11.0584 19.1537i −0.689805 1.19478i −0.971901 0.235392i $$-0.924363\pi$$
0.282095 0.959386i $$-0.408971\pi$$
$$258$$ 2.00000 6.63325i 0.124515 0.412968i
$$259$$ 14.2337 16.4356i 0.884438 1.02126i
$$260$$ −6.55842 6.31084i −0.406736 0.391382i
$$261$$ 2.37228 + 0.147477i 0.146841 + 0.00912859i
$$262$$ 9.30298 + 16.1132i 0.574740 + 0.995479i
$$263$$ 12.0475 6.95565i 0.742884 0.428904i −0.0802332 0.996776i $$-0.525567\pi$$
0.823117 + 0.567872i $$0.192233\pi$$
$$264$$ 2.31386 0.543620i 0.142408 0.0334575i
$$265$$ 36.2337 2.22582
$$266$$ −8.43070 + 2.92048i −0.516920 + 0.179066i
$$267$$ 4.94158 + 21.0333i 0.302420 + 1.28722i
$$268$$ 8.21782i 0.501983i
$$269$$ −13.9307 + 24.1287i −0.849370 + 1.47115i 0.0324014 + 0.999475i $$0.489684\pi$$
−0.881771 + 0.471677i $$0.843649\pi$$
$$270$$ −4.55842 + 12.2993i −0.277417 + 0.748511i
$$271$$ 2.00000 + 3.46410i 0.121491 + 0.210429i 0.920356 0.391082i $$-0.127899\pi$$
−0.798865 + 0.601511i $$0.794566\pi$$
$$272$$ −1.37228 −0.0832068
$$273$$ −3.31386 + 16.1870i −0.200564 + 0.979681i
$$274$$ 1.62772 0.0983341
$$275$$ 0.941578 + 1.63086i 0.0567793 + 0.0983446i
$$276$$ 1.55842 + 0.469882i 0.0938060 + 0.0282836i
$$277$$ 4.74456 8.21782i 0.285073 0.493761i −0.687554 0.726133i $$-0.741315\pi$$
0.972627 + 0.232372i $$0.0746488\pi$$
$$278$$ 20.9870i 1.25872i
$$279$$ −11.8614 7.86797i −0.710124 0.471043i
$$280$$ 2.18614 + 6.31084i 0.130647 + 0.377145i
$$281$$ −3.25544 −0.194203 −0.0971016 0.995274i $$-0.530957\pi$$
−0.0971016 + 0.995274i $$0.530957\pi$$
$$282$$ −1.68614 7.17687i −0.100408 0.427376i
$$283$$ −6.55842 + 3.78651i −0.389858 + 0.225084i −0.682098 0.731260i $$-0.738932\pi$$
0.292241 + 0.956345i $$0.405599\pi$$
$$284$$ 0.558422 + 0.967215i 0.0331362 + 0.0573937i
$$285$$ 10.7446 10.0974i 0.636453 0.598115i
$$286$$ −3.43070 + 3.56529i −0.202862 + 0.210820i
$$287$$ 10.6277 12.2718i 0.627334 0.724383i
$$288$$ −2.68614 + 1.33591i −0.158282 + 0.0787191i
$$289$$ 7.55842 + 13.0916i 0.444613 + 0.770092i
$$290$$ −1.00000 + 1.73205i −0.0587220 + 0.101710i
$$291$$ 12.7446 + 13.5615i 0.747099 + 0.794986i
$$292$$ 0.372281 0.644810i 0.0217861 0.0377347i
$$293$$ 14.7446 + 8.51278i 0.861387 + 0.497322i 0.864476 0.502673i $$-0.167650\pi$$
−0.00308982 + 0.999995i $$0.500984\pi$$
$$294$$ 7.55842 9.47999i 0.440816 0.552884i
$$295$$ 11.9307 20.6646i 0.694632 1.20314i
$$296$$ −7.11684 + 4.10891i −0.413658 + 0.238826i
$$297$$ 6.68614 + 2.47805i 0.387969 + 0.143791i
$$298$$ −6.00000 −0.347571
$$299$$ −3.25544 + 0.939764i −0.188267 + 0.0543479i
$$300$$ −1.62772 1.73205i −0.0939764 0.100000i
$$301$$ 2.00000 10.3923i 0.115278 0.599002i
$$302$$ −2.61684 + 1.51084i −0.150582 + 0.0869388i
$$303$$ 5.48913 1.28962i 0.315342 0.0740868i
$$304$$ 3.37228 0.193414
$$305$$ −6.55842 + 11.3595i −0.375534 + 0.650444i
$$306$$ −3.43070 2.27567i −0.196120 0.130091i
$$307$$ 13.2337 0.755286 0.377643 0.925951i $$-0.376735\pi$$
0.377643 + 0.925951i $$0.376735\pi$$
$$308$$ 3.43070 1.18843i 0.195482 0.0677171i
$$309$$ −19.3723 5.84096i −1.10205 0.332281i
$$310$$ 10.3723 5.98844i 0.589106 0.340121i
$$311$$ 4.62772 0.262414 0.131207 0.991355i $$-0.458115\pi$$
0.131207 + 0.991355i $$0.458115\pi$$
$$312$$ 3.18614 5.37108i 0.180380 0.304078i
$$313$$ 13.8564i 0.783210i −0.920133 0.391605i $$-0.871920\pi$$
0.920133 0.391605i $$-0.128080\pi$$
$$314$$ 0 0
$$315$$ −5.00000 + 19.4024i −0.281718 + 1.09320i
$$316$$ −7.68614 + 13.3128i −0.432379 + 0.748903i
$$317$$ −26.7446 −1.50212 −0.751062 0.660232i $$-0.770458\pi$$
−0.751062 + 0.660232i $$0.770458\pi$$
$$318$$ 5.68614 + 24.2024i 0.318863 + 1.35720i
$$319$$ 0.941578 + 0.543620i 0.0527182 + 0.0304369i
$$320$$ 2.52434i 0.141115i
$$321$$ 1.68614 + 7.17687i 0.0941112 + 0.400574i
$$322$$ 2.44158 + 0.469882i 0.136064 + 0.0261855i
$$323$$ 2.31386 + 4.00772i 0.128747 + 0.222996i
$$324$$ −8.93070 1.11469i −0.496150 0.0619273i
$$325$$ 4.80298 + 1.18843i 0.266422 + 0.0659223i
$$326$$ 10.3923i 0.575577i
$$327$$ 33.0000 + 9.94987i 1.82490 + 0.550229i
$$328$$ −5.31386 + 3.06796i −0.293409 + 0.169400i
$$329$$ −3.68614 10.6410i −0.203224 0.586656i
$$330$$ −4.37228 + 4.10891i −0.240686 + 0.226188i
$$331$$ −19.1168 11.0371i −1.05076 0.606655i −0.127896 0.991788i $$-0.540822\pi$$
−0.922861 + 0.385133i $$0.874156\pi$$
$$332$$ −4.37228 2.52434i −0.239960 0.138541i
$$333$$ −24.6060 1.52967i −1.34840 0.0838255i
$$334$$ −5.74456 3.31662i −0.314328 0.181478i
$$335$$ 10.3723 + 17.9653i 0.566698 + 0.981550i
$$336$$ −3.87228 + 2.45060i −0.211250 + 0.133691i
$$337$$ 29.6060 1.61274 0.806370 0.591411i $$-0.201429\pi$$
0.806370 + 0.591411i $$0.201429\pi$$
$$338$$ 0.500000 + 12.9904i 0.0271964 + 0.706584i
$$339$$ 21.4891 20.1947i 1.16713 1.09683i
$$340$$ 3.00000 1.73205i 0.162698 0.0939336i
$$341$$ −3.25544 5.63858i −0.176292 0.305346i
$$342$$ 8.43070 + 5.59230i 0.455880 + 0.302397i
$$343$$ 10.0000 15.5885i 0.539949 0.841698i
$$344$$ −2.00000 + 3.46410i −0.107833 + 0.186772i
$$345$$ −4.00000 + 0.939764i −0.215353 + 0.0505952i
$$346$$ −19.1168 −1.02773
$$347$$ −13.5475 7.82168i −0.727270 0.419890i 0.0901523 0.995928i $$-0.471265\pi$$
−0.817423 + 0.576038i $$0.804598\pi$$
$$348$$ −1.31386 0.396143i −0.0704303 0.0212355i
$$349$$ 1.44158 + 2.49689i 0.0771659 + 0.133655i 0.902026 0.431682i $$-0.142080\pi$$
−0.824860 + 0.565337i $$0.808746\pi$$
$$350$$ −2.74456 2.37686i −0.146703 0.127049i
$$351$$ 16.8723 8.14409i 0.900576 0.434699i
$$352$$ −1.37228 −0.0731428
$$353$$ −19.6277 + 11.3321i −1.04468 + 0.603145i −0.921155 0.389197i $$-0.872753\pi$$
−0.123523 + 0.992342i $$0.539419\pi$$
$$354$$ 15.6753 + 4.72627i 0.833131 + 0.251198i
$$355$$ −2.44158 1.40965i −0.129586 0.0748162i
$$356$$ 12.4742i 0.661132i
$$357$$ −5.56930 2.92048i −0.294758 0.154568i
$$358$$ 1.37228 + 0.792287i 0.0725273 + 0.0418737i
$$359$$ 22.3723 1.18076 0.590382 0.807124i $$-0.298977\pi$$
0.590382 + 0.807124i $$0.298977\pi$$
$$360$$ 4.18614 6.31084i 0.220629 0.332611i
$$361$$ 3.81386 + 6.60580i 0.200729 + 0.347674i
$$362$$ −10.5000 + 6.06218i −0.551868 + 0.318621i
$$363$$ −10.8139 11.5070i −0.567580 0.603961i
$$364$$ 4.00000 8.66025i 0.209657 0.453921i
$$365$$ 1.87953i 0.0983790i
$$366$$ −8.61684 2.59808i −0.450410 0.135804i
$$367$$ 8.23369 4.75372i 0.429795 0.248142i −0.269464 0.963010i $$-0.586847\pi$$
0.699259 + 0.714868i $$0.253513\pi$$
$$368$$ −0.813859 0.469882i −0.0424254 0.0244943i
$$369$$ −18.3723 1.14214i −0.956423 0.0594576i
$$370$$ 10.3723 17.9653i 0.539229 0.933972i
$$371$$ 12.4307 + 35.8843i 0.645370 + 1.86302i
$$372$$ 5.62772 + 5.98844i 0.291784 + 0.310486i
$$373$$ −4.00000 + 6.92820i −0.207112 + 0.358729i −0.950804 0.309794i $$-0.899740\pi$$
0.743691 + 0.668523i $$0.233073\pi$$
$$374$$ −0.941578 1.63086i −0.0486878 0.0843298i
$$375$$ −15.1861 4.57879i −0.784209 0.236448i
$$376$$ 4.25639i 0.219506i
$$377$$ 2.74456 0.792287i 0.141352 0.0408049i
$$378$$ −13.7446 0.294954i −0.706944 0.0151708i
$$379$$ −22.1168 + 12.7692i −1.13607 + 0.655908i −0.945453 0.325757i $$-0.894381\pi$$
−0.190613 + 0.981665i $$0.561047\pi$$
$$380$$ −7.37228 + 4.25639i −0.378190 + 0.218348i
$$381$$ −25.4891 + 5.98844i −1.30585 + 0.306797i
$$382$$ 18.9051i 0.967268i
$$383$$ −27.4307 15.8371i −1.40164 0.809239i −0.407082 0.913392i $$-0.633454\pi$$
−0.994561 + 0.104152i $$0.966787\pi$$
$$384$$ 1.68614 0.396143i 0.0860455 0.0202156i
$$385$$ −6.00000 + 6.92820i −0.305788 + 0.353094i
$$386$$ −5.61684 3.24289i −0.285890 0.165059i
$$387$$ −10.7446 + 5.34363i −0.546177 + 0.271632i
$$388$$ −5.37228 9.30506i −0.272736 0.472393i
$$389$$ 22.6641i 1.14912i −0.818463 0.574559i $$-0.805174\pi$$
0.818463 0.574559i $$-0.194826\pi$$
$$390$$ −0.186141 + 15.7634i −0.00942560 + 0.798210i
$$391$$ 1.28962i 0.0652189i
$$392$$ −5.50000 + 4.33013i −0.277792 + 0.218704i
$$393$$ 9.30298 30.8545i 0.469273 1.55640i
$$394$$ −7.80298 + 13.5152i −0.393109 + 0.680884i
$$395$$ 38.8048i 1.95248i
$$396$$ −3.43070 2.27567i −0.172399 0.114357i
$$397$$ −6.87228 + 11.9031i −0.344910 + 0.597401i −0.985337 0.170617i $$-0.945424\pi$$
0.640427 + 0.768019i $$0.278757\pi$$
$$398$$ 3.46410i 0.173640i
$$399$$ 13.6861 + 7.17687i 0.685164 + 0.359293i
$$400$$ 0.686141 + 1.18843i 0.0343070 + 0.0594215i
$$401$$ −5.74456 9.94987i −0.286870 0.496873i 0.686191 0.727421i $$-0.259281\pi$$
−0.973061 + 0.230548i $$0.925948\pi$$
$$402$$ −10.3723 + 9.74749i −0.517322 + 0.486161i
$$403$$ −16.6060 4.10891i −0.827202 0.204679i
$$404$$ −3.25544 −0.161964
$$405$$ 20.9307 8.83518i 1.04006 0.439024i
$$406$$ −2.05842 0.396143i −0.102158 0.0196603i
$$407$$ −9.76631 5.63858i −0.484098 0.279494i
$$408$$ 1.62772 + 1.73205i 0.0805841 + 0.0857493i
$$409$$ −0.744563 + 1.28962i −0.0368163 + 0.0637676i −0.883846 0.467777i $$-0.845055\pi$$
0.847030 + 0.531545i $$0.178388\pi$$
$$410$$ 7.74456 13.4140i 0.382477 0.662469i
$$411$$ −1.93070 2.05446i −0.0952346 0.101339i
$$412$$ 10.1168 + 5.84096i 0.498421 + 0.287764i
$$413$$ 24.5584 + 4.72627i 1.20844 + 0.232565i
$$414$$ −1.25544 2.52434i −0.0617014 0.124064i
$$415$$ 12.7446 0.625606
$$416$$ −2.50000 + 2.59808i −0.122573 + 0.127381i
$$417$$ −26.4891 + 24.8935i −1.29718 + 1.21904i
$$418$$ 2.31386 + 4.00772i 0.113175 + 0.196024i
$$419$$ −8.74456 15.1460i −0.427200 0.739932i 0.569423 0.822045i $$-0.307167\pi$$
−0.996623 + 0.0821127i $$0.973833\pi$$
$$420$$ 5.37228 10.2448i 0.262140 0.499896i
$$421$$ 12.9715i 0.632194i 0.948727 + 0.316097i $$0.102373\pi$$
−0.948727 + 0.316097i $$0.897627\pi$$
$$422$$ 11.3723 19.6974i 0.553594 0.958853i
$$423$$ −7.05842 + 10.6410i −0.343192 + 0.517382i
$$424$$ 14.3537i 0.697079i
$$425$$ −0.941578 + 1.63086i −0.0456732 + 0.0791084i
$$426$$ 0.558422 1.85208i 0.0270556 0.0897334i
$$427$$ −13.5000 2.59808i −0.653311 0.125730i
$$428$$ 4.25639i 0.205740i
$$429$$ 8.56930 + 0.101190i 0.413730 + 0.00488549i
$$430$$ 10.0974i 0.486938i
$$431$$ 9.81386 + 16.9981i 0.472717 + 0.818770i 0.999512 0.0312223i $$-0.00993997\pi$$
−0.526795 + 0.849992i $$0.676607\pi$$
$$432$$ 4.87228 + 1.80579i 0.234418 + 0.0868811i
$$433$$ −30.3505 17.5229i −1.45855 0.842096i −0.459613 0.888119i $$-0.652012\pi$$
−0.998940 + 0.0460230i $$0.985345\pi$$
$$434$$ 9.48913 + 8.21782i 0.455493 + 0.394468i
$$435$$ 3.37228 0.792287i 0.161689 0.0379873i
$$436$$ −17.2337 9.94987i −0.825344 0.476513i
$$437$$ 3.16915i 0.151601i
$$438$$ −1.25544 + 0.294954i −0.0599871 + 0.0140934i
$$439$$ −30.3505 + 17.5229i −1.44855 + 0.836322i −0.998395 0.0566279i $$-0.981965\pi$$
−0.450157 + 0.892950i $$0.648632\pi$$
$$440$$ 3.00000 1.73205i 0.143019 0.0825723i
$$441$$ −20.9307 + 1.70460i −0.996700 + 0.0811714i
$$442$$ −4.80298 1.18843i −0.228455 0.0565279i
$$443$$ 11.1846i 0.531396i −0.964056 0.265698i $$-0.914398\pi$$
0.964056 0.265698i $$-0.0856024\pi$$
$$444$$ 13.6277 + 4.10891i 0.646743 + 0.195000i
$$445$$ 15.7446 + 27.2704i 0.746364 + 1.29274i
$$446$$ −3.11684 + 5.39853i −0.147587 + 0.255628i
$$447$$ 7.11684 + 7.57301i 0.336615 + 0.358191i
$$448$$ 2.50000 0.866025i 0.118114 0.0409159i
$$449$$ −0.302985 + 0.524785i −0.0142987 + 0.0247661i −0.873086 0.487566i $$-0.837885\pi$$
0.858788 + 0.512332i $$0.171218\pi$$
$$450$$ −0.255437 + 4.10891i −0.0120414 + 0.193696i
$$451$$ −7.29211 4.21010i −0.343372 0.198246i
$$452$$ −14.7446 + 8.51278i −0.693526 + 0.400407i
$$453$$ 5.01087 + 1.51084i 0.235431 + 0.0709852i
$$454$$ 3.81396i 0.178998i
$$455$$ 2.18614 + 23.9812i 0.102488 + 1.12426i
$$456$$ −4.00000 4.25639i −0.187317 0.199324i
$$457$$ −16.6753 + 9.62747i −0.780036 + 0.450354i −0.836443 0.548054i $$-0.815369\pi$$
0.0564070 + 0.998408i $$0.482036\pi$$
$$458$$ 6.05842 + 10.4935i 0.283091 + 0.490329i
$$459$$ 1.19702 + 7.02939i 0.0558719 + 0.328104i
$$460$$ 2.37228 0.110608
$$461$$ 13.0693 + 7.54556i 0.608698 + 0.351432i 0.772456 0.635069i $$-0.219028\pi$$
−0.163758 + 0.986501i $$0.552362\pi$$
$$462$$ −5.56930 2.92048i −0.259107 0.135873i
$$463$$ 30.7345i 1.42835i 0.699966 + 0.714176i $$0.253199\pi$$
−0.699966 + 0.714176i $$0.746801\pi$$
$$464$$ 0.686141 + 0.396143i 0.0318533 + 0.0183905i
$$465$$ −19.8614 5.98844i −0.921051 0.277707i
$$466$$ 24.3030 14.0313i 1.12581 0.649989i
$$467$$ −19.6277 −0.908263 −0.454131 0.890935i $$-0.650050\pi$$
−0.454131 + 0.890935i $$0.650050\pi$$
$$468$$ −10.5584 + 2.34941i −0.488063 + 0.108601i
$$469$$ −14.2337 + 16.4356i −0.657251 + 0.758928i
$$470$$ −5.37228 9.30506i −0.247805 0.429211i
$$471$$ 0 0
$$472$$ −8.18614 4.72627i −0.376798 0.217544i
$$473$$ −5.48913 −0.252390
$$474$$ 25.9198 6.08963i 1.19054 0.279706i
$$475$$ 2.31386 4.00772i 0.106167 0.183887i
$$476$$ 2.74456 + 2.37686i 0.125797 + 0.108943i
$$477$$ 23.8030 35.8843i 1.08986 1.64303i
$$478$$ 12.3030 + 21.3094i 0.562725 + 0.974669i
$$479$$ −22.8030 + 13.1653i −1.04189 + 0.601538i −0.920369 0.391050i $$-0.872112\pi$$
−0.121526 + 0.992588i $$0.538779\pi$$
$$480$$ −3.18614 + 2.99422i −0.145427 + 0.136667i
$$481$$ −28.4674 + 8.21782i −1.29800 + 0.374701i
$$482$$ 1.25544 0.0571836
$$483$$ −2.30298 3.63903i −0.104789 0.165582i
$$484$$ 4.55842 + 7.89542i 0.207201 + 0.358883i
$$485$$ 23.4891 + 13.5615i 1.06659 + 0.615794i
$$486$$ 9.18614 + 12.5942i 0.416692 + 0.571286i
$$487$$ −9.38316 5.41737i −0.425191 0.245484i 0.272105 0.962268i $$-0.412280\pi$$
−0.697296 + 0.716783i $$0.745614\pi$$
$$488$$ 4.50000 + 2.59808i 0.203705 + 0.117609i
$$489$$ −13.1168 + 12.3267i −0.593164 + 0.557434i
$$490$$ 6.55842 16.4082i 0.296279 0.741247i
$$491$$ 33.6060 19.4024i 1.51662 0.875619i 0.516807 0.856102i $$-0.327121\pi$$
0.999810 0.0195166i $$-0.00621272\pi$$
$$492$$ 10.1753 + 3.06796i 0.458736 + 0.138314i
$$493$$ 1.08724i 0.0489669i
$$494$$ 11.8030 + 2.92048i 0.531041 + 0.131399i
$$495$$ 10.3723 + 0.644810i 0.466199 + 0.0289821i
$$496$$ −2.37228 4.10891i −0.106519 0.184496i
$$497$$ 0.558422 2.90165i 0.0250486 0.130157i
$$498$$ 2.00000 + 8.51278i 0.0896221 + 0.381467i
$$499$$ 23.3639i 1.04591i 0.852360 + 0.522955i $$0.175170\pi$$
−0.852360 + 0.522955i $$0.824830\pi$$
$$500$$ 7.93070 + 4.57879i 0.354672 + 0.204770i
$$501$$ 2.62772 + 11.1846i 0.117398 + 0.499691i
$$502$$ 1.11684 0.0498472
$$503$$ −11.4891 + 19.8997i −0.512275 + 0.887286i 0.487624 + 0.873054i $$0.337864\pi$$
−0.999899 + 0.0142322i $$0.995470\pi$$
$$504$$ 7.68614 + 1.98072i 0.342368 + 0.0882282i
$$505$$ 7.11684 4.10891i 0.316695 0.182844i
$$506$$ 1.28962i 0.0573306i
$$507$$ 15.8030 16.0395i 0.701835 0.712339i
$$508$$ 15.1168 0.670701
$$509$$ −23.1861 + 13.3865i −1.02771 + 0.593347i −0.916327 0.400431i $$-0.868861\pi$$
−0.111381 + 0.993778i $$0.535527\pi$$
$$510$$ −5.74456 1.73205i −0.254374 0.0766965i
$$511$$ −1.86141 + 0.644810i −0.0823438 + 0.0285247i
$$512$$ −1.00000 −0.0441942
$$513$$ −2.94158 17.2742i −0.129874 0.762675i
$$514$$ 11.0584 19.1537i 0.487766 0.844836i
$$515$$ −29.4891 −1.29945
$$516$$ 6.74456 1.58457i 0.296913 0.0697570i
$$517$$ −5.05842 + 2.92048i −0.222469 + 0.128443i
$$518$$ 21.3505 + 4.10891i 0.938089 + 0.180535i
$$519$$ 22.6753 + 24.1287i 0.995334 + 1.05913i
$$520$$ 2.18614 8.83518i 0.0958686 0.387448i
$$521$$ −16.1168 −0.706092 −0.353046 0.935606i $$-0.614854\pi$$
−0.353046 + 0.935606i $$0.614854\pi$$
$$522$$ 1.05842 + 2.12819i 0.0463259 + 0.0931485i
$$523$$ 7.50000 4.33013i 0.327952 0.189343i −0.326979 0.945031i $$-0.606031\pi$$
0.654932 + 0.755688i $$0.272697\pi$$
$$524$$ −9.30298 + 16.1132i −0.406403 + 0.703910i
$$525$$ 0.255437 + 6.28339i 0.0111482 + 0.274230i
$$526$$ 12.0475 + 6.95565i 0.525298 + 0.303281i
$$527$$ 3.25544 5.63858i 0.141809 0.245621i
$$528$$ 1.62772 + 1.73205i 0.0708374 + 0.0753778i
$$529$$ −11.0584 + 19.1537i −0.480801 + 0.832772i
$$530$$ 18.1168 + 31.3793i 0.786945 + 1.36303i
$$531$$ −12.6277 25.3909i −0.547996 1.10187i
$$532$$ −6.74456 5.84096i −0.292414 0.253238i
$$533$$ −21.2554 + 6.13592i −0.920675 + 0.265776i
$$534$$ −15.7446 + 14.7962i −0.681334 + 0.640293i
$$535$$ 5.37228 + 9.30506i 0.232264 + 0.402293i
$$536$$ 7.11684 4.10891i 0.307401 0.177478i
$$537$$ −0.627719 2.67181i −0.0270881 0.115297i
$$538$$ −27.8614 −1.20119
$$539$$ −8.91983 3.56529i −0.384204 0.153568i
$$540$$ −12.9307 + 2.20193i −0.556449 + 0.0947561i
$$541$$ 18.6101i 0.800112i 0.916491 + 0.400056i $$0.131009\pi$$
−0.916491 + 0.400056i $$0.868991\pi$$
$$542$$ −2.00000 + 3.46410i −0.0859074 + 0.148796i
$$543$$ 20.1060 + 6.06218i 0.862830 + 0.260153i
$$544$$ −0.686141 1.18843i −0.0294180 0.0509535i
$$545$$ 50.2337 2.15177
$$546$$ −15.6753 + 5.22360i −0.670839 + 0.223550i
$$547$$ 31.4891 1.34638 0.673189 0.739471i $$-0.264924\pi$$
0.673189 + 0.739471i $$0.264924\pi$$
$$548$$ 0.813859 + 1.40965i 0.0347663 + 0.0602171i
$$549$$ 6.94158 + 13.9576i 0.296259 + 0.595696i
$$550$$ −0.941578 + 1.63086i −0.0401490 + 0.0695401i
$$551$$ 2.67181i 0.113823i
$$552$$ 0.372281 + 1.58457i 0.0158453 + 0.0674439i
$$553$$ 38.4307 13.3128i 1.63424 0.566117i
$$554$$ 9.48913 0.403154
$$555$$ −34.9783 + 8.21782i −1.48474 + 0.348827i
$$556$$ 18.1753 10.4935i 0.770803 0.445023i
$$557$$ −7.80298 13.5152i −0.330623 0.572656i 0.652011 0.758209i $$-0.273926\pi$$
−0.982634 + 0.185553i $$0.940592\pi$$
$$558$$ 0.883156 14.2063i 0.0373870 0.601399i
$$559$$ −10.0000 + 10.3923i −0.422955 + 0.439548i
$$560$$ −4.37228 + 5.04868i −0.184763 + 0.213345i
$$561$$ −0.941578 + 3.12286i −0.0397535 + 0.131847i
$$562$$ −1.62772 2.81929i −0.0686612 0.118925i
$$563$$ 18.0000 31.1769i 0.758610 1.31395i −0.184950 0.982748i $$-0.559212\pi$$
0.943560 0.331202i $$-0.107454\pi$$
$$564$$ 5.37228 5.04868i 0.226214 0.212588i
$$565$$ 21.4891 37.2203i 0.904054 1.56587i
$$566$$ −6.55842 3.78651i −0.275671 0.159159i
$$567$$ 15.9307 + 17.6978i 0.669027 + 0.743238i
$$568$$ −0.558422 + 0.967215i −0.0234309 + 0.0405835i
$$569$$ 19.1644 11.0646i 0.803413 0.463851i −0.0412501 0.999149i $$-0.513134\pi$$
0.844663 + 0.535298i $$0.179801\pi$$
$$570$$ 14.1168 + 4.25639i 0.591290 + 0.178281i
$$571$$ 13.4891 0.564502 0.282251 0.959341i $$-0.408919\pi$$
0.282251 + 0.959341i $$0.408919\pi$$
$$572$$ −4.80298 1.18843i −0.200823 0.0496908i
$$573$$ −23.8614 + 22.4241i −0.996825 + 0.936780i
$$574$$ 15.9416 + 3.06796i 0.665389 + 0.128054i
$$575$$ −1.11684 + 0.644810i −0.0465756 + 0.0268904i
$$576$$ −2.50000 1.65831i −0.104167 0.0690963i
$$577$$ 40.2337 1.67495 0.837475 0.546475i $$-0.184031\pi$$
0.837475 + 0.546475i $$0.184031\pi$$
$$578$$ −7.55842 + 13.0916i −0.314389 + 0.544538i
$$579$$ 2.56930 + 10.9359i 0.106776 + 0.454482i
$$580$$ −2.00000 −0.0830455
$$581$$ 4.37228 + 12.6217i 0.181393 + 0.523636i
$$582$$ −5.37228 + 17.8178i −0.222688 + 0.738573i
$$583$$ 17.0584 9.84868i 0.706488 0.407891i
$$584$$ 0.744563 0.0308102
$$585$$ 20.1168 18.4627i 0.831729 0.763337i
$$586$$ 17.0256i 0.703319i
$$587$$ −5.95245 + 3.43665i −0.245684 + 0.141846i −0.617786 0.786346i $$-0.711970\pi$$
0.372102 + 0.928192i $$0.378637\pi$$
$$588$$ 11.9891 + 1.80579i 0.494423 + 0.0744695i
$$589$$ −8.00000 + 13.8564i −0.329634 + 0.570943i
$$590$$ 23.8614 0.982359
$$591$$ 26.3139 6.18220i 1.08241 0.254302i
$$592$$ −7.11684 4.10891i −0.292500 0.168875i
$$593$$ 26.3306i 1.08127i −0.841258 0.540634i $$-0.818184\pi$$
0.841258 0.540634i $$-0.181816\pi$$
$$594$$ 1.19702 + 7.02939i 0.0491141 + 0.288419i
$$595$$ −9.00000 1.73205i −0.368964 0.0710072i
$$596$$ −3.00000 5.19615i −0.122885 0.212843i
$$597$$ 4.37228 4.10891i 0.178946 0.168167i
$$598$$ −2.44158 2.34941i −0.0998435 0.0960745i
$$599$$ 13.9113i 0.568401i 0.958765 + 0.284200i $$0.0917281\pi$$
−0.958765 + 0.284200i $$0.908272\pi$$
$$600$$ 0.686141 2.27567i 0.0280116 0.0929039i
$$601$$ −19.8832 + 11.4795i −0.811051 + 0.468260i −0.847321 0.531082i $$-0.821786\pi$$
0.0362698 + 0.999342i $$0.488452\pi$$
$$602$$ 10.0000 3.46410i 0.407570 0.141186i
$$603$$ 24.6060 + 1.52967i 1.00203 + 0.0622930i
$$604$$ −2.61684 1.51084i −0.106478 0.0614750i
$$605$$ −19.9307 11.5070i −0.810298 0.467826i
$$606$$ 3.86141 + 4.10891i 0.156859 + 0.166913i
$$607$$ 21.3505 + 12.3267i 0.866591 + 0.500327i 0.866214 0.499673i $$-0.166547\pi$$
0.000377344 1.00000i $$0.499880\pi$$
$$608$$ 1.68614 + 2.92048i 0.0683820 + 0.118441i
$$609$$ 1.94158 + 3.06796i 0.0786767 + 0.124320i
$$610$$ −13.1168 −0.531085
$$611$$ −3.68614 + 14.8974i −0.149125 + 0.602683i
$$612$$ 0.255437 4.10891i 0.0103254 0.166093i
$$613$$ 26.2337 15.1460i 1.05957 0.611742i 0.134256 0.990947i $$-0.457136\pi$$
0.925313 + 0.379204i $$0.123802\pi$$
$$614$$ 6.61684 + 11.4607i 0.267034 + 0.462517i
$$615$$ −26.1168 + 6.13592i −1.05313 + 0.247424i
$$616$$ 2.74456 + 2.37686i 0.110582 + 0.0957665i
$$617$$ −3.30298 + 5.72094i −0.132973 + 0.230316i −0.924821 0.380402i $$-0.875786\pi$$
0.791848 + 0.610718i $$0.209119\pi$$
$$618$$ −4.62772 19.6974i −0.186154 0.792344i
$$619$$ −35.4674 −1.42555 −0.712777 0.701391i $$-0.752563\pi$$
−0.712777 + 0.701391i $$0.752563\pi$$
$$620$$ 10.3723 + 5.98844i 0.416561 + 0.240502i
$$621$$ −1.69702 + 4.57879i −0.0680989 + 0.183741i
$$622$$ 2.31386 + 4.00772i 0.0927773 + 0.160695i
$$623$$ −21.6060 + 24.9484i −0.865625 + 0.999538i
$$624$$ 6.24456 + 0.0737384i 0.249983 + 0.00295190i
$$625$$ −29.9783 −1.19913
$$626$$ 12.0000 6.92820i 0.479616 0.276907i
$$627$$ 2.31386 7.67420i 0.0924066 0.306478i
$$628$$ 0 0
$$629$$ 11.2772i 0.449650i
$$630$$ −19.3030 + 5.37108i −0.769049 + 0.213989i
$$631$$ −28.5000 16.4545i −1.13457 0.655043i −0.189488 0.981883i $$-0.560683\pi$$
−0.945080 + 0.326841i $$0.894016\pi$$
$$632$$ −15.3723 −0.611477
$$633$$ −38.3505 + 9.01011i −1.52430 + 0.358120i
$$634$$ −13.3723 23.1615i −0.531081 0.919860i
$$635$$ −33.0475 + 19.0800i −1.31145 + 0.757167i
$$636$$ −18.1168 + 17.0256i −0.718380 + 0.675107i
$$637$$ −23.0000 + 10.3923i −0.911293 + 0.411758i
$$638$$ 1.08724i 0.0430443i
$$639$$ −3.00000 + 1.49200i −0.118678 + 0.0590226i
$$640$$ 2.18614 1.26217i 0.0864148 0.0498916i
$$641$$ −25.1644 14.5287i −0.993934 0.573848i −0.0874859 0.996166i $$-0.527883\pi$$
−0.906448 + 0.422318i $$0.861217\pi$$
$$642$$ −5.37228 + 5.04868i −0.212027 + 0.199255i
$$643$$ −15.6168 + 27.0492i −0.615868 + 1.06672i 0.374363 + 0.927282i $$0.377861\pi$$
−0.990232 + 0.139433i $$0.955472\pi$$
$$644$$ 0.813859 + 2.34941i 0.0320706 + 0.0925797i
$$645$$ −12.7446 + 11.9769i −0.501817 + 0.471589i
$$646$$ −2.31386 + 4.00772i −0.0910376 + 0.157682i
$$647$$ 5.56930 + 9.64630i 0.218952 + 0.379235i 0.954488 0.298250i $$-0.0964030\pi$$
−0.735536 + 0.677486i $$0.763070\pi$$
$$648$$ −3.50000 8.29156i −0.137493 0.325723i
$$649$$ 12.9715i 0.509178i
$$650$$ 1.37228 + 4.75372i 0.0538253 + 0.186456i
$$651$$ −0.883156 21.7244i −0.0346136 0.851445i
$$652$$ 9.00000 5.19615i 0.352467 0.203497i
$$653$$ 22.5475 13.0178i 0.882354 0.509427i 0.0109200 0.999940i $$-0.496524\pi$$
0.871434 + 0.490513i $$0.163191\pi$$
$$654$$ 7.88316 + 33.5538i 0.308256 + 1.31206i
$$655$$ 46.9678i 1.83518i
$$656$$ −5.31386 3.06796i −0.207471 0.119784i
$$657$$ 1.86141 + 1.23472i 0.0726204 + 0.0481709i
$$658$$ 7.37228 8.51278i 0.287401 0.331863i
$$659$$ −11.6644 6.73444i −0.454380 0.262337i 0.255298 0.966862i $$-0.417826\pi$$
−0.709678 + 0.704526i $$0.751160\pi$$
$$660$$ −5.74456 1.73205i −0.223607 0.0674200i
$$661$$ 24.9307 + 43.1812i 0.969692 + 1.67956i 0.696443 + 0.717613i $$0.254765\pi$$
0.273249 + 0.961943i $$0.411902\pi$$
$$662$$ 22.0742i 0.857939i
$$663$$ 4.19702 + 7.47182i 0.162999 + 0.290182i
$$664$$ 5.04868i 0.195927i
$$665$$ 22.1168 + 4.25639i 0.857654 + 0.165056i
$$666$$ −10.9783 22.0742i −0.425399 0.855359i
$$667$$ −0.372281 + 0.644810i −0.0144148 + 0.0249671i
$$668$$ 6.63325i 0.256648i
$$669$$ 10.5109 2.46943i 0.406374 0.0954739i
$$670$$ −10.3723 + 17.9653i −0.400716 + 0.694061i
$$671$$ 7.13058i 0.275273i
$$672$$ −4.05842 2.12819i −0.156557 0.0820969i
$$673$$ 1.31386 + 2.27567i 0.0506456 + 0.0877207i 0.890237 0.455498i $$-0.150539\pi$$
−0.839591 + 0.543219i $$0.817205\pi$$
$$674$$ 14.8030 + 25.6395i 0.570190 + 0.987597i
$$675$$ 5.48913 4.55134i 0.211277 0.175181i
$$676$$ −11.0000 + 6.92820i −0.423077 + 0.266469i
$$677$$ −4.37228 −0.168040 −0.0840202 0.996464i $$-0.526776\pi$$
−0.0840202 + 0.996464i $$0.526776\pi$$
$$678$$ 28.2337 + 8.51278i 1.08431 + 0.326931i
$$679$$ −5.37228 + 27.9152i −0.206169 + 1.07129i
$$680$$ 3.00000 + 1.73205i 0.115045 + 0.0664211i
$$681$$ 4.81386 4.52389i 0.184467 0.173356i
$$682$$ 3.25544 5.63858i 0.124657 0.215912i
$$683$$ 21.8614 37.8651i 0.836503 1.44887i −0.0562969 0.998414i $$-0.517929\pi$$
0.892800 0.450452i $$-0.148737\pi$$
$$684$$ −0.627719 + 10.0974i −0.0240014 + 0.386082i
$$685$$ −3.55842 2.05446i −0.135960 0.0784967i
$$686$$ 18.5000 + 0.866025i 0.706333 + 0.0330650i
$$687$$ 6.05842 20.0935i 0.231143 0.766615i
$$688$$ −4.00000 −0.152499
$$689$$ 12.4307 50.2381i 0.473572 1.91392i
$$690$$ −2.81386 2.99422i −0.107122 0.113988i
$$691$$ −19.5584 33.8762i −0.744037 1.28871i −0.950643 0.310286i $$-0.899575\pi$$
0.206606 0.978424i $$-0.433758\pi$$
$$692$$ −9.55842 16.5557i −0.363357 0.629352i
$$693$$ 2.91983 + 10.4935i 0.110915 + 0.398615i
$$694$$ 15.6434i 0.593814i
$$695$$ −26.4891 + 45.8805i −1.00479 + 1.74035i
$$696$$ −0.313859 1.33591i −0.0118968 0.0506374i
$$697$$ 8.42020i 0.318938i
$$698$$ −1.44158 + 2.49689i −0.0545645 + 0.0945085i
$$699$$ −46.5367 14.0313i −1.76018 0.530714i
$$700$$ 0.686141 3.56529i 0.0259337 0.134755i
$$701$$ 22.1668i 0.837229i 0.908164 + 0.418614i $$0.137484\pi$$
−0.908164 + 0.418614i $$0.862516\pi$$
$$702$$ 15.4891 + 10.5398i 0.584599 + 0.397798i
$$703$$ 27.7128i 1.04521i
$$704$$ −0.686141 1.18843i −0.0258599 0.0447907i
$$705$$ −5.37228 + 17.8178i −0.202332 + 0.671059i
$$706$$ −19.6277 11.3321i −0.738699 0.426488i
$$707$$ 6.51087 + 5.63858i 0.244867 + 0.212061i
$$708$$ 3.74456 + 15.9383i 0.140729 + 0.598999i
$$709$$ −40.1168 23.1615i −1.50662 0.869847i −0.999970 0.00769505i $$-0.997551\pi$$
−0.506649 0.862152i $$-0.669116\pi$$
$$710$$ 2.81929i 0.105806i
$$711$$ −38.4307 25.4920i −1.44126 0.956026i
$$712$$ 10.8030 6.23711i 0.404859 0.233745i
$$713$$ 3.86141 2.22938i 0.144611 0.0834911i
$$714$$ −0.255437 6.28339i −0.00955950 0.235150i
$$715$$ 12.0000 3.46410i 0.448775 0.129550i
$$716$$ 1.58457i 0.0592183i
$$717$$ 12.3030 40.8044i 0.459463 1.52387i
$$718$$ 11.1861 + 19.3750i 0.417463 + 0.723067i
$$719$$ 3.94158 6.82701i 0.146996 0.254605i −0.783120 0.621871i $$-0.786373\pi$$
0.930116 + 0.367266i $$0.119706\pi$$
$$720$$ 7.55842 + 0.469882i 0.281686 + 0.0175115i
$$721$$ −10.1168 29.2048i −0.376771 1.08764i
$$722$$ −3.81386 + 6.60580i −0.141937 + 0.245842i
$$723$$ −1.48913 1.58457i −0.0553812 0.0589309i
$$724$$ −10.5000 6.06218i −0.390229 0.225299i
$$725$$ 0.941578 0.543620i 0.0349693 0.0201896i
$$726$$ 4.55842 15.1186i 0.169179 0.561103i
$$727$$ 31.5817i 1.17130i 0.810564 + 0.585650i $$0.199161\pi$$
−0.810564 + 0.585650i $$0.800839\pi$$
$$728$$ 9.50000 0.866025i 0.352093 0.0320970i
$$729$$ 5.00000 26.5330i 0.185185 0.982704i
$$730$$ −1.62772 + 0.939764i −0.0602446 + 0.0347822i
$$731$$ −2.74456 4.75372i −0.101511 0.175823i
$$732$$ −2.05842 8.76144i −0.0760815 0.323832i
$$733$$ 32.2554 1.19138 0.595691 0.803214i $$-0.296878\pi$$
0.595691 + 0.803214i $$0.296878\pi$$
$$734$$ 8.23369 + 4.75372i 0.303911 + 0.175463i
$$735$$ −28.4891 + 11.1846i −1.05084 + 0.412550i
$$736$$ 0.939764i 0.0346402i
$$737$$ 9.76631 + 5.63858i 0.359747 + 0.207700i
$$738$$ −8.19702 16.4819i −0.301736 0.606708i
$$739$$ −16.8832 + 9.74749i −0.621057 + 0.358567i −0.777280 0.629154i $$-0.783401\pi$$
0.156223 + 0.987722i $$0.450068\pi$$
$$740$$ 20.7446 0.762585
$$741$$ −10.3139 18.3615i −0.378889 0.674525i
$$742$$ −24.8614 + 28.7075i −0.912691 + 1.05388i
$$743$$ 7.37228 + 12.7692i 0.270463 + 0.468455i 0.968980 0.247138i $$-0.0794900\pi$$
−0.698518 + 0.715593i $$0.746157\pi$$
$$744$$ −2.37228 + 7.86797i −0.0869721 + 0.288454i
$$745$$ 13.1168 + 7.57301i 0.480564 + 0.277454i
$$746$$ −8.00000 −0.292901
$$747$$ 8.37228 12.6217i 0.306326 0.461803i
$$748$$ 0.941578 1.63086i 0.0344275 0.0596302i
$$749$$ −7.37228 + 8.51278i −0.269377 + 0.311050i
$$750$$ −3.62772 15.4410i −0.132466 0.563825i
$$751$$ 0.500000 + 0.866025i 0.0182453 + 0.0316017i 0.875004 0.484116i $$-0.160859\pi$$
−0.856759 + 0.515718i $$0.827525\pi$$
$$752$$ −3.68614 + 2.12819i −0.134420 + 0.0776073i
$$753$$ −1.32473 1.40965i −0.0482760 0.0513703i
$$754$$ 2.05842 + 1.98072i 0.0749633 + 0.0721335i
$$755$$ 7.62772 0.277601
$$756$$ −6.61684 12.0506i −0.240652 0.438277i
$$757$$ −19.8614 34.4010i −0.721875 1.25032i −0.960247 0.279150i $$-0.909947\pi$$
0.238372 0.971174i $$-0.423386\pi$$
$$758$$ −22.1168 12.7692i −0.803320 0.463797i
$$759$$ −1.62772 + 1.52967i −0.0590824 + 0.0555235i
$$760$$ −7.37228 4.25639i −0.267421 0.154395i
$$761$$ 14.7446 + 8.51278i 0.534490 + 0.308588i 0.742843 0.669466i $$-0.233477\pi$$
−0.208353 + 0.978054i $$0.566810\pi$$
$$762$$ −17.9307 19.0800i −0.649561 0.691196i
$$763$$ 17.2337 + 49.7494i 0.623901 + 1.80105i
$$764$$ 16.3723 9.45254i 0.592328 0.341981i
$$765$$ 4.62772 + 9.30506i 0.167316 + 0.336425i
$$766$$ 31.6742i 1.14444i
$$767$$ −24.5584 23.6314i −0.886753 0.853279i
$$768$$ 1.18614 + 1.26217i 0.0428012 + 0.0455446i
$$769$$ −5.11684 8.86263i −0.184518 0.319595i 0.758896 0.651212i $$-0.225739\pi$$
−0.943414 + 0.331617i $$0.892406\pi$$
$$770$$ −9.00000 1.73205i −0.324337 0.0624188i
$$771$$ −37.2921 + 8.76144i −1.34304 + 0.315536i
$$772$$ 6.48577i 0.233428i