Properties

Label 546.2.q.h
Level $546$
Weight $2$
Character orbit 546.q
Analytic conductor $4.360$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [546,2,Mod(251,546)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("546.251"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(546, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,2,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} + (\beta_{3} - \beta_1 + 1) q^{3} + (\beta_{2} - 1) q^{4} + (\beta_{3} - \beta_{2} - \beta_1 + 1) q^{5} + (\beta_{3} + \beta_{2}) q^{6} + ( - \beta_{2} + 3) q^{7} - q^{8} + (\beta_{3} - \beta_1 - 2) q^{9}+ \cdots + ( - \beta_{3} + \beta_{2} + 5 \beta_1 - 8) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} + 2 q^{3} - 2 q^{4} + q^{6} + 10 q^{7} - 4 q^{8} - 10 q^{9} + 3 q^{10} + 3 q^{11} - q^{12} - 14 q^{13} + 8 q^{14} - 11 q^{15} - 2 q^{16} - 3 q^{17} - 5 q^{18} - q^{19} + 3 q^{20} + 5 q^{21}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 2\nu^{2} - 2\nu - 3 ) / 6 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 2\nu + 3 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -2\beta_{3} + 2\beta _1 + 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(-1\) \(-1\) \(1 - \beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
251.1
−1.18614 + 1.26217i
1.68614 0.396143i
1.68614 + 0.396143i
−1.18614 1.26217i
0.500000 0.866025i 0.500000 1.65831i −0.500000 0.866025i 0.792287i −1.18614 1.26217i 2.50000 + 0.866025i −1.00000 −2.50000 1.65831i −0.686141 0.396143i
251.2 0.500000 0.866025i 0.500000 + 1.65831i −0.500000 0.866025i 2.52434i 1.68614 + 0.396143i 2.50000 + 0.866025i −1.00000 −2.50000 + 1.65831i 2.18614 + 1.26217i
335.1 0.500000 + 0.866025i 0.500000 1.65831i −0.500000 + 0.866025i 2.52434i 1.68614 0.396143i 2.50000 0.866025i −1.00000 −2.50000 1.65831i 2.18614 1.26217i
335.2 0.500000 + 0.866025i 0.500000 + 1.65831i −0.500000 + 0.866025i 0.792287i −1.18614 + 1.26217i 2.50000 0.866025i −1.00000 −2.50000 + 1.65831i −0.686141 + 0.396143i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
273.u even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 546.2.q.h yes 4
3.b odd 2 1 546.2.q.f yes 4
7.b odd 2 1 546.2.q.g yes 4
13.e even 6 1 546.2.q.e 4
21.c even 2 1 546.2.q.e 4
39.h odd 6 1 546.2.q.g yes 4
91.t odd 6 1 546.2.q.f yes 4
273.u even 6 1 inner 546.2.q.h yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
546.2.q.e 4 13.e even 6 1
546.2.q.e 4 21.c even 2 1
546.2.q.f yes 4 3.b odd 2 1
546.2.q.f yes 4 91.t odd 6 1
546.2.q.g yes 4 7.b odd 2 1
546.2.q.g yes 4 39.h odd 6 1
546.2.q.h yes 4 1.a even 1 1 trivial
546.2.q.h yes 4 273.u even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(546, [\chi])\):

\( T_{5}^{4} + 7T_{5}^{2} + 4 \) Copy content Toggle raw display
\( T_{11}^{4} - 3T_{11}^{3} + 15T_{11}^{2} + 18T_{11} + 36 \) Copy content Toggle raw display
\( T_{17}^{4} + 3T_{17}^{3} + 15T_{17}^{2} - 18T_{17} + 36 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} - T + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} + 7T^{2} + 4 \) Copy content Toggle raw display
$7$ \( (T^{2} - 5 T + 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} - 3 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$13$ \( (T^{2} + 7 T + 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 3 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$19$ \( T^{4} + T^{3} + \cdots + 64 \) Copy content Toggle raw display
$23$ \( T^{4} - 9 T^{3} + \cdots + 16 \) Copy content Toggle raw display
$29$ \( T^{4} - 3 T^{3} + \cdots + 4 \) Copy content Toggle raw display
$31$ \( (T^{2} + 2 T - 32)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 6 T^{3} + \cdots + 9216 \) Copy content Toggle raw display
$41$ \( T^{4} - 27 T^{3} + \cdots + 3364 \) Copy content Toggle raw display
$43$ \( (T^{2} - 4 T + 16)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 19T^{2} + 16 \) Copy content Toggle raw display
$53$ \( T^{4} + 211T^{2} + 1024 \) Copy content Toggle raw display
$59$ \( T^{4} - 27 T^{3} + \cdots + 3364 \) Copy content Toggle raw display
$61$ \( (T^{2} + 9 T + 27)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} - 6 T^{3} + \cdots + 9216 \) Copy content Toggle raw display
$71$ \( T^{4} + 15 T^{3} + \cdots + 324 \) Copy content Toggle raw display
$73$ \( (T^{2} - 10 T - 8)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 25 T + 148)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 28T^{2} + 64 \) Copy content Toggle raw display
$89$ \( T^{4} + 3 T^{3} + \cdots + 17956 \) Copy content Toggle raw display
$97$ \( T^{4} + 10 T^{3} + \cdots + 64 \) Copy content Toggle raw display
show more
show less