Properties

Label 546.2.q.g.335.2
Level $546$
Weight $2$
Character 546.335
Analytic conductor $4.360$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 335.2
Root \(-1.18614 - 1.26217i\) of defining polynomial
Character \(\chi\) \(=\) 546.335
Dual form 546.2.q.g.251.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 1.65831i) q^{3} +(-0.500000 + 0.866025i) q^{4} +2.52434i q^{5} +(-1.68614 + 0.396143i) q^{6} +(0.500000 + 2.59808i) q^{7} -1.00000 q^{8} +(-2.50000 - 1.65831i) q^{9} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 1.65831i) q^{3} +(-0.500000 + 0.866025i) q^{4} +2.52434i q^{5} +(-1.68614 + 0.396143i) q^{6} +(0.500000 + 2.59808i) q^{7} -1.00000 q^{8} +(-2.50000 - 1.65831i) q^{9} +(-2.18614 + 1.26217i) q^{10} +(-0.686141 - 1.18843i) q^{11} +(-1.18614 - 1.26217i) q^{12} +(3.50000 + 0.866025i) q^{13} +(-2.00000 + 1.73205i) q^{14} +(-4.18614 - 1.26217i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-0.686141 + 1.18843i) q^{17} +(0.186141 - 2.99422i) q^{18} +(1.68614 - 2.92048i) q^{19} +(-2.18614 - 1.26217i) q^{20} +(-4.55842 - 0.469882i) q^{21} +(0.686141 - 1.18843i) q^{22} +(0.813859 - 0.469882i) q^{23} +(0.500000 - 1.65831i) q^{24} -1.37228 q^{25} +(1.00000 + 3.46410i) q^{26} +(4.00000 - 3.31662i) q^{27} +(-2.50000 - 0.866025i) q^{28} +(-0.686141 + 0.396143i) q^{29} +(-1.00000 - 4.25639i) q^{30} -4.74456 q^{31} +(0.500000 - 0.866025i) q^{32} +(2.31386 - 0.543620i) q^{33} -1.37228 q^{34} +(-6.55842 + 1.26217i) q^{35} +(2.68614 - 1.33591i) q^{36} +(7.11684 - 4.10891i) q^{37} +3.37228 q^{38} +(-3.18614 + 5.37108i) q^{39} -2.52434i q^{40} +(-5.31386 + 3.06796i) q^{41} +(-1.87228 - 4.18265i) q^{42} +(2.00000 - 3.46410i) q^{43} +1.37228 q^{44} +(4.18614 - 6.31084i) q^{45} +(0.813859 + 0.469882i) q^{46} +4.25639i q^{47} +(1.68614 - 0.396143i) q^{48} +(-6.50000 + 2.59808i) q^{49} +(-0.686141 - 1.18843i) q^{50} +(-1.62772 - 1.73205i) q^{51} +(-2.50000 + 2.59808i) q^{52} +14.3537i q^{53} +(4.87228 + 1.80579i) q^{54} +(3.00000 - 1.73205i) q^{55} +(-0.500000 - 2.59808i) q^{56} +(4.00000 + 4.25639i) q^{57} +(-0.686141 - 0.396143i) q^{58} +(-8.18614 - 4.72627i) q^{59} +(3.18614 - 2.99422i) q^{60} +(4.50000 + 2.59808i) q^{61} +(-2.37228 - 4.10891i) q^{62} +(3.05842 - 7.32435i) q^{63} +1.00000 q^{64} +(-2.18614 + 8.83518i) q^{65} +(1.62772 + 1.73205i) q^{66} +(-7.11684 + 4.10891i) q^{67} +(-0.686141 - 1.18843i) q^{68} +(0.372281 + 1.58457i) q^{69} +(-4.37228 - 5.04868i) q^{70} +(0.558422 - 0.967215i) q^{71} +(2.50000 + 1.65831i) q^{72} +0.744563 q^{73} +(7.11684 + 4.10891i) q^{74} +(0.686141 - 2.27567i) q^{75} +(1.68614 + 2.92048i) q^{76} +(2.74456 - 2.37686i) q^{77} +(-6.24456 - 0.0737384i) q^{78} +15.3723 q^{79} +(2.18614 - 1.26217i) q^{80} +(3.50000 + 8.29156i) q^{81} +(-5.31386 - 3.06796i) q^{82} -5.04868i q^{83} +(2.68614 - 3.71277i) q^{84} +(-3.00000 - 1.73205i) q^{85} +4.00000 q^{86} +(-0.313859 - 1.33591i) q^{87} +(0.686141 + 1.18843i) q^{88} +(10.8030 - 6.23711i) q^{89} +(7.55842 + 0.469882i) q^{90} +(-0.500000 + 9.52628i) q^{91} +0.939764i q^{92} +(2.37228 - 7.86797i) q^{93} +(-3.68614 + 2.12819i) q^{94} +(7.37228 + 4.25639i) q^{95} +(1.18614 + 1.26217i) q^{96} +(5.37228 - 9.30506i) q^{97} +(-5.50000 - 4.33013i) q^{98} +(-0.255437 + 4.10891i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{2} - 2 q^{3} - 2 q^{4} - q^{6} + 2 q^{7} - 4 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{2} - 2 q^{3} - 2 q^{4} - q^{6} + 2 q^{7} - 4 q^{8} - 10 q^{9} - 3 q^{10} + 3 q^{11} + q^{12} + 14 q^{13} - 8 q^{14} - 11 q^{15} - 2 q^{16} + 3 q^{17} - 5 q^{18} + q^{19} - 3 q^{20} - q^{21} - 3 q^{22} + 9 q^{23} + 2 q^{24} + 6 q^{25} + 4 q^{26} + 16 q^{27} - 10 q^{28} + 3 q^{29} - 4 q^{30} + 4 q^{31} + 2 q^{32} + 15 q^{33} + 6 q^{34} - 9 q^{35} + 5 q^{36} - 6 q^{37} + 2 q^{38} - 7 q^{39} - 27 q^{41} + 4 q^{42} + 8 q^{43} - 6 q^{44} + 11 q^{45} + 9 q^{46} + q^{48} - 26 q^{49} + 3 q^{50} - 18 q^{51} - 10 q^{52} + 8 q^{54} + 12 q^{55} - 2 q^{56} + 16 q^{57} + 3 q^{58} - 27 q^{59} + 7 q^{60} + 18 q^{61} + 2 q^{62} - 5 q^{63} + 4 q^{64} - 3 q^{65} + 18 q^{66} + 6 q^{67} + 3 q^{68} - 10 q^{69} - 6 q^{70} - 15 q^{71} + 10 q^{72} - 20 q^{73} - 6 q^{74} - 3 q^{75} + q^{76} - 12 q^{77} - 2 q^{78} + 50 q^{79} + 3 q^{80} + 14 q^{81} - 27 q^{82} + 5 q^{84} - 12 q^{85} + 16 q^{86} - 7 q^{87} - 3 q^{88} + 3 q^{89} + 13 q^{90} - 2 q^{91} - 2 q^{93} - 9 q^{94} + 18 q^{95} - q^{96} + 10 q^{97} - 22 q^{98} - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) −0.500000 + 1.65831i −0.288675 + 0.957427i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 2.52434i 1.12892i 0.825461 + 0.564459i \(0.190915\pi\)
−0.825461 + 0.564459i \(0.809085\pi\)
\(6\) −1.68614 + 0.396143i −0.688364 + 0.161725i
\(7\) 0.500000 + 2.59808i 0.188982 + 0.981981i
\(8\) −1.00000 −0.353553
\(9\) −2.50000 1.65831i −0.833333 0.552771i
\(10\) −2.18614 + 1.26217i −0.691318 + 0.399133i
\(11\) −0.686141 1.18843i −0.206879 0.358325i 0.743851 0.668346i \(-0.232997\pi\)
−0.950730 + 0.310021i \(0.899664\pi\)
\(12\) −1.18614 1.26217i −0.342409 0.364357i
\(13\) 3.50000 + 0.866025i 0.970725 + 0.240192i
\(14\) −2.00000 + 1.73205i −0.534522 + 0.462910i
\(15\) −4.18614 1.26217i −1.08086 0.325891i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −0.686141 + 1.18843i −0.166414 + 0.288237i −0.937156 0.348910i \(-0.886552\pi\)
0.770743 + 0.637146i \(0.219885\pi\)
\(18\) 0.186141 2.99422i 0.0438738 0.705744i
\(19\) 1.68614 2.92048i 0.386827 0.670004i −0.605194 0.796078i \(-0.706904\pi\)
0.992021 + 0.126074i \(0.0402377\pi\)
\(20\) −2.18614 1.26217i −0.488836 0.282230i
\(21\) −4.55842 0.469882i −0.994729 0.102537i
\(22\) 0.686141 1.18843i 0.146286 0.253374i
\(23\) 0.813859 0.469882i 0.169701 0.0979772i −0.412744 0.910847i \(-0.635429\pi\)
0.582445 + 0.812870i \(0.302096\pi\)
\(24\) 0.500000 1.65831i 0.102062 0.338502i
\(25\) −1.37228 −0.274456
\(26\) 1.00000 + 3.46410i 0.196116 + 0.679366i
\(27\) 4.00000 3.31662i 0.769800 0.638285i
\(28\) −2.50000 0.866025i −0.472456 0.163663i
\(29\) −0.686141 + 0.396143i −0.127413 + 0.0735620i −0.562352 0.826898i \(-0.690103\pi\)
0.434939 + 0.900460i \(0.356770\pi\)
\(30\) −1.00000 4.25639i −0.182574 0.777107i
\(31\) −4.74456 −0.852149 −0.426074 0.904688i \(-0.640104\pi\)
−0.426074 + 0.904688i \(0.640104\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 2.31386 0.543620i 0.402791 0.0946322i
\(34\) −1.37228 −0.235344
\(35\) −6.55842 + 1.26217i −1.10858 + 0.213345i
\(36\) 2.68614 1.33591i 0.447690 0.222651i
\(37\) 7.11684 4.10891i 1.17000 0.675501i 0.216321 0.976322i \(-0.430594\pi\)
0.953681 + 0.300821i \(0.0972608\pi\)
\(38\) 3.37228 0.547056
\(39\) −3.18614 + 5.37108i −0.510191 + 0.860061i
\(40\) 2.52434i 0.399133i
\(41\) −5.31386 + 3.06796i −0.829885 + 0.479135i −0.853813 0.520579i \(-0.825716\pi\)
0.0239280 + 0.999714i \(0.492383\pi\)
\(42\) −1.87228 4.18265i −0.288899 0.645397i
\(43\) 2.00000 3.46410i 0.304997 0.528271i −0.672264 0.740312i \(-0.734678\pi\)
0.977261 + 0.212041i \(0.0680112\pi\)
\(44\) 1.37228 0.206879
\(45\) 4.18614 6.31084i 0.624033 0.940765i
\(46\) 0.813859 + 0.469882i 0.119997 + 0.0692803i
\(47\) 4.25639i 0.620858i 0.950597 + 0.310429i \(0.100473\pi\)
−0.950597 + 0.310429i \(0.899527\pi\)
\(48\) 1.68614 0.396143i 0.243373 0.0571784i
\(49\) −6.50000 + 2.59808i −0.928571 + 0.371154i
\(50\) −0.686141 1.18843i −0.0970349 0.168069i
\(51\) −1.62772 1.73205i −0.227926 0.242536i
\(52\) −2.50000 + 2.59808i −0.346688 + 0.360288i
\(53\) 14.3537i 1.97164i 0.167813 + 0.985819i \(0.446330\pi\)
−0.167813 + 0.985819i \(0.553670\pi\)
\(54\) 4.87228 + 1.80579i 0.663034 + 0.245737i
\(55\) 3.00000 1.73205i 0.404520 0.233550i
\(56\) −0.500000 2.59808i −0.0668153 0.347183i
\(57\) 4.00000 + 4.25639i 0.529813 + 0.563772i
\(58\) −0.686141 0.396143i −0.0900947 0.0520162i
\(59\) −8.18614 4.72627i −1.06574 0.615308i −0.138729 0.990330i \(-0.544302\pi\)
−0.927016 + 0.375022i \(0.877635\pi\)
\(60\) 3.18614 2.99422i 0.411329 0.386552i
\(61\) 4.50000 + 2.59808i 0.576166 + 0.332650i 0.759608 0.650381i \(-0.225391\pi\)
−0.183442 + 0.983030i \(0.558724\pi\)
\(62\) −2.37228 4.10891i −0.301280 0.521832i
\(63\) 3.05842 7.32435i 0.385325 0.922781i
\(64\) 1.00000 0.125000
\(65\) −2.18614 + 8.83518i −0.271157 + 1.09587i
\(66\) 1.62772 + 1.73205i 0.200358 + 0.213201i
\(67\) −7.11684 + 4.10891i −0.869461 + 0.501983i −0.867169 0.498014i \(-0.834063\pi\)
−0.00229183 + 0.999997i \(0.500730\pi\)
\(68\) −0.686141 1.18843i −0.0832068 0.144118i
\(69\) 0.372281 + 1.58457i 0.0448174 + 0.190760i
\(70\) −4.37228 5.04868i −0.522588 0.603432i
\(71\) 0.558422 0.967215i 0.0662725 0.114787i −0.830985 0.556294i \(-0.812223\pi\)
0.897258 + 0.441507i \(0.145556\pi\)
\(72\) 2.50000 + 1.65831i 0.294628 + 0.195434i
\(73\) 0.744563 0.0871445 0.0435722 0.999050i \(-0.486126\pi\)
0.0435722 + 0.999050i \(0.486126\pi\)
\(74\) 7.11684 + 4.10891i 0.827316 + 0.477651i
\(75\) 0.686141 2.27567i 0.0792287 0.262772i
\(76\) 1.68614 + 2.92048i 0.193414 + 0.335002i
\(77\) 2.74456 2.37686i 0.312772 0.270868i
\(78\) −6.24456 0.0737384i −0.707057 0.00834923i
\(79\) 15.3723 1.72952 0.864758 0.502188i \(-0.167472\pi\)
0.864758 + 0.502188i \(0.167472\pi\)
\(80\) 2.18614 1.26217i 0.244418 0.141115i
\(81\) 3.50000 + 8.29156i 0.388889 + 0.921285i
\(82\) −5.31386 3.06796i −0.586818 0.338799i
\(83\) 5.04868i 0.554164i −0.960846 0.277082i \(-0.910633\pi\)
0.960846 0.277082i \(-0.0893674\pi\)
\(84\) 2.68614 3.71277i 0.293082 0.405096i
\(85\) −3.00000 1.73205i −0.325396 0.187867i
\(86\) 4.00000 0.431331
\(87\) −0.313859 1.33591i −0.0336493 0.143224i
\(88\) 0.686141 + 1.18843i 0.0731428 + 0.126687i
\(89\) 10.8030 6.23711i 1.14511 0.661132i 0.197422 0.980319i \(-0.436743\pi\)
0.947692 + 0.319187i \(0.103410\pi\)
\(90\) 7.55842 + 0.469882i 0.796728 + 0.0495299i
\(91\) −0.500000 + 9.52628i −0.0524142 + 0.998625i
\(92\) 0.939764i 0.0979772i
\(93\) 2.37228 7.86797i 0.245994 0.815870i
\(94\) −3.68614 + 2.12819i −0.380196 + 0.219506i
\(95\) 7.37228 + 4.25639i 0.756380 + 0.436696i
\(96\) 1.18614 + 1.26217i 0.121060 + 0.128820i
\(97\) 5.37228 9.30506i 0.545473 0.944786i −0.453104 0.891457i \(-0.649684\pi\)
0.998577 0.0533287i \(-0.0169831\pi\)
\(98\) −5.50000 4.33013i −0.555584 0.437409i
\(99\) −0.255437 + 4.10891i −0.0256724 + 0.412961i
\(100\) 0.686141 1.18843i 0.0686141 0.118843i
\(101\) −1.62772 2.81929i −0.161964 0.280530i 0.773609 0.633663i \(-0.218450\pi\)
−0.935573 + 0.353133i \(0.885116\pi\)
\(102\) 0.686141 2.27567i 0.0679380 0.225325i
\(103\) 11.6819i 1.15105i 0.817783 + 0.575527i \(0.195203\pi\)
−0.817783 + 0.575527i \(0.804797\pi\)
\(104\) −3.50000 0.866025i −0.343203 0.0849208i
\(105\) 1.18614 11.5070i 0.115755 1.12297i
\(106\) −12.4307 + 7.17687i −1.20738 + 0.697079i
\(107\) −3.68614 + 2.12819i −0.356353 + 0.205740i −0.667480 0.744628i \(-0.732627\pi\)
0.311127 + 0.950368i \(0.399294\pi\)
\(108\) 0.872281 + 5.12241i 0.0839353 + 0.492905i
\(109\) 19.8997i 1.90605i 0.302891 + 0.953025i \(0.402048\pi\)
−0.302891 + 0.953025i \(0.597952\pi\)
\(110\) 3.00000 + 1.73205i 0.286039 + 0.165145i
\(111\) 3.25544 + 13.8564i 0.308992 + 1.31519i
\(112\) 2.00000 1.73205i 0.188982 0.163663i
\(113\) 14.7446 + 8.51278i 1.38705 + 0.800815i 0.992982 0.118266i \(-0.0377335\pi\)
0.394070 + 0.919081i \(0.371067\pi\)
\(114\) −1.68614 + 5.59230i −0.157922 + 0.523767i
\(115\) 1.18614 + 2.05446i 0.110608 + 0.191579i
\(116\) 0.792287i 0.0735620i
\(117\) −7.31386 7.96916i −0.676167 0.736749i
\(118\) 9.45254i 0.870177i
\(119\) −3.43070 1.18843i −0.314492 0.108943i
\(120\) 4.18614 + 1.26217i 0.382141 + 0.115220i
\(121\) 4.55842 7.89542i 0.414402 0.717765i
\(122\) 5.19615i 0.470438i
\(123\) −2.43070 10.3460i −0.219169 0.932869i
\(124\) 2.37228 4.10891i 0.213037 0.368991i
\(125\) 9.15759i 0.819080i
\(126\) 7.87228 1.01350i 0.701319 0.0902900i
\(127\) −7.55842 13.0916i −0.670701 1.16169i −0.977706 0.209981i \(-0.932660\pi\)
0.307004 0.951708i \(-0.400673\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 4.74456 + 5.04868i 0.417735 + 0.444511i
\(130\) −8.74456 + 2.52434i −0.766949 + 0.221399i
\(131\) −18.6060 −1.62561 −0.812806 0.582535i \(-0.802061\pi\)
−0.812806 + 0.582535i \(0.802061\pi\)
\(132\) −0.686141 + 2.27567i −0.0597209 + 0.198072i
\(133\) 8.43070 + 2.92048i 0.731035 + 0.253238i
\(134\) −7.11684 4.10891i −0.614802 0.354956i
\(135\) 8.37228 + 10.0974i 0.720571 + 0.869042i
\(136\) 0.686141 1.18843i 0.0588361 0.101907i
\(137\) 0.813859 1.40965i 0.0695327 0.120434i −0.829163 0.559007i \(-0.811183\pi\)
0.898696 + 0.438573i \(0.144516\pi\)
\(138\) −1.18614 + 1.11469i −0.100971 + 0.0948889i
\(139\) 18.1753 + 10.4935i 1.54161 + 0.890047i 0.998738 + 0.0502287i \(0.0159950\pi\)
0.542868 + 0.839818i \(0.317338\pi\)
\(140\) 2.18614 6.31084i 0.184763 0.533364i
\(141\) −7.05842 2.12819i −0.594426 0.179226i
\(142\) 1.11684 0.0937235
\(143\) −1.37228 4.75372i −0.114756 0.397526i
\(144\) −0.186141 + 2.99422i −0.0155117 + 0.249518i
\(145\) −1.00000 1.73205i −0.0830455 0.143839i
\(146\) 0.372281 + 0.644810i 0.0308102 + 0.0533649i
\(147\) −1.05842 12.0781i −0.0872972 0.996182i
\(148\) 8.21782i 0.675501i
\(149\) −3.00000 + 5.19615i −0.245770 + 0.425685i −0.962348 0.271821i \(-0.912374\pi\)
0.716578 + 0.697507i \(0.245707\pi\)
\(150\) 2.31386 0.543620i 0.188926 0.0443864i
\(151\) 3.02167i 0.245900i 0.992413 + 0.122950i \(0.0392355\pi\)
−0.992413 + 0.122950i \(0.960765\pi\)
\(152\) −1.68614 + 2.92048i −0.136764 + 0.236882i
\(153\) 3.68614 1.83324i 0.298007 0.148209i
\(154\) 3.43070 + 1.18843i 0.276454 + 0.0957665i
\(155\) 11.9769i 0.962006i
\(156\) −3.05842 5.44482i −0.244870 0.435934i
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) 7.68614 + 13.3128i 0.611477 + 1.05911i
\(159\) −23.8030 7.17687i −1.88770 0.569163i
\(160\) 2.18614 + 1.26217i 0.172830 + 0.0997832i
\(161\) 1.62772 + 1.87953i 0.128282 + 0.148128i
\(162\) −5.43070 + 7.17687i −0.426676 + 0.563868i
\(163\) −9.00000 5.19615i −0.704934 0.406994i 0.104248 0.994551i \(-0.466756\pi\)
−0.809183 + 0.587557i \(0.800090\pi\)
\(164\) 6.13592i 0.479135i
\(165\) 1.37228 + 5.84096i 0.106832 + 0.454718i
\(166\) 4.37228 2.52434i 0.339355 0.195927i
\(167\) 5.74456 3.31662i 0.444528 0.256648i −0.260989 0.965342i \(-0.584049\pi\)
0.705516 + 0.708694i \(0.250715\pi\)
\(168\) 4.55842 + 0.469882i 0.351690 + 0.0362522i
\(169\) 11.5000 + 6.06218i 0.884615 + 0.466321i
\(170\) 3.46410i 0.265684i
\(171\) −9.05842 + 4.50506i −0.692715 + 0.344510i
\(172\) 2.00000 + 3.46410i 0.152499 + 0.264135i
\(173\) 9.55842 16.5557i 0.726713 1.25870i −0.231552 0.972823i \(-0.574380\pi\)
0.958265 0.285882i \(-0.0922865\pi\)
\(174\) 1.00000 0.939764i 0.0758098 0.0712433i
\(175\) −0.686141 3.56529i −0.0518674 0.269511i
\(176\) −0.686141 + 1.18843i −0.0517198 + 0.0895813i
\(177\) 11.9307 11.2120i 0.896767 0.842749i
\(178\) 10.8030 + 6.23711i 0.809718 + 0.467491i
\(179\) 1.37228 0.792287i 0.102569 0.0592183i −0.447838 0.894115i \(-0.647806\pi\)
0.550407 + 0.834896i \(0.314473\pi\)
\(180\) 3.37228 + 6.78073i 0.251355 + 0.505406i
\(181\) 12.1244i 0.901196i −0.892727 0.450598i \(-0.851211\pi\)
0.892727 0.450598i \(-0.148789\pi\)
\(182\) −8.50000 + 4.33013i −0.630062 + 0.320970i
\(183\) −6.55842 + 6.16337i −0.484813 + 0.455609i
\(184\) −0.813859 + 0.469882i −0.0599985 + 0.0346402i
\(185\) 10.3723 + 17.9653i 0.762585 + 1.32084i
\(186\) 8.00000 1.87953i 0.586588 0.137814i
\(187\) 1.88316 0.137710
\(188\) −3.68614 2.12819i −0.268839 0.155215i
\(189\) 10.6168 + 8.73399i 0.772262 + 0.635304i
\(190\) 8.51278i 0.617582i
\(191\) −16.3723 9.45254i −1.18466 0.683962i −0.227569 0.973762i \(-0.573078\pi\)
−0.957087 + 0.289800i \(0.906411\pi\)
\(192\) −0.500000 + 1.65831i −0.0360844 + 0.119678i
\(193\) −5.61684 + 3.24289i −0.404309 + 0.233428i −0.688342 0.725387i \(-0.741661\pi\)
0.284032 + 0.958815i \(0.408328\pi\)
\(194\) 10.7446 0.771415
\(195\) −13.5584 8.04290i −0.970939 0.575964i
\(196\) 1.00000 6.92820i 0.0714286 0.494872i
\(197\) 7.80298 + 13.5152i 0.555940 + 0.962916i 0.997830 + 0.0658465i \(0.0209748\pi\)
−0.441890 + 0.897069i \(0.645692\pi\)
\(198\) −3.68614 + 1.83324i −0.261963 + 0.130283i
\(199\) −3.00000 1.73205i −0.212664 0.122782i 0.389885 0.920864i \(-0.372515\pi\)
−0.602549 + 0.798082i \(0.705848\pi\)
\(200\) 1.37228 0.0970349
\(201\) −3.25544 13.8564i −0.229621 0.977356i
\(202\) 1.62772 2.81929i 0.114526 0.198365i
\(203\) −1.37228 1.58457i −0.0963153 0.111215i
\(204\) 2.31386 0.543620i 0.162003 0.0380610i
\(205\) −7.74456 13.4140i −0.540904 0.936873i
\(206\) −10.1168 + 5.84096i −0.704874 + 0.406959i
\(207\) −2.81386 0.174928i −0.195577 0.0121584i
\(208\) −1.00000 3.46410i −0.0693375 0.240192i
\(209\) −4.62772 −0.320106
\(210\) 10.5584 4.72627i 0.728600 0.326144i
\(211\) −11.3723 19.6974i −0.782900 1.35602i −0.930246 0.366938i \(-0.880406\pi\)
0.147345 0.989085i \(-0.452927\pi\)
\(212\) −12.4307 7.17687i −0.853744 0.492909i
\(213\) 1.32473 + 1.40965i 0.0907693 + 0.0965873i
\(214\) −3.68614 2.12819i −0.251979 0.145480i
\(215\) 8.74456 + 5.04868i 0.596374 + 0.344317i
\(216\) −4.00000 + 3.31662i −0.272166 + 0.225668i
\(217\) −2.37228 12.3267i −0.161041 0.836793i
\(218\) −17.2337 + 9.94987i −1.16721 + 0.673891i
\(219\) −0.372281 + 1.23472i −0.0251564 + 0.0834345i
\(220\) 3.46410i 0.233550i
\(221\) −3.43070 + 3.56529i −0.230774 + 0.239827i
\(222\) −10.3723 + 9.74749i −0.696142 + 0.654209i
\(223\) −3.11684 5.39853i −0.208719 0.361512i 0.742592 0.669744i \(-0.233596\pi\)
−0.951311 + 0.308232i \(0.900263\pi\)
\(224\) 2.50000 + 0.866025i 0.167038 + 0.0578638i
\(225\) 3.43070 + 2.27567i 0.228714 + 0.151711i
\(226\) 17.0256i 1.13252i
\(227\) −3.30298 1.90698i −0.219227 0.126571i 0.386365 0.922346i \(-0.373730\pi\)
−0.605592 + 0.795775i \(0.707064\pi\)
\(228\) −5.68614 + 1.33591i −0.376574 + 0.0884726i
\(229\) −12.1168 −0.800704 −0.400352 0.916362i \(-0.631112\pi\)
−0.400352 + 0.916362i \(0.631112\pi\)
\(230\) −1.18614 + 2.05446i −0.0782118 + 0.135467i
\(231\) 2.56930 + 5.73977i 0.169047 + 0.377649i
\(232\) 0.686141 0.396143i 0.0450473 0.0260081i
\(233\) 28.0627i 1.83845i −0.393737 0.919223i \(-0.628818\pi\)
0.393737 0.919223i \(-0.371182\pi\)
\(234\) 3.24456 10.3186i 0.212104 0.674546i
\(235\) −10.7446 −0.700898
\(236\) 8.18614 4.72627i 0.532872 0.307654i
\(237\) −7.68614 + 25.4920i −0.499268 + 1.65589i
\(238\) −0.686141 3.56529i −0.0444759 0.231104i
\(239\) 24.6060 1.59163 0.795814 0.605541i \(-0.207043\pi\)
0.795814 + 0.605541i \(0.207043\pi\)
\(240\) 1.00000 + 4.25639i 0.0645497 + 0.274749i
\(241\) −0.627719 + 1.08724i −0.0404349 + 0.0700353i −0.885535 0.464573i \(-0.846208\pi\)
0.845100 + 0.534609i \(0.179541\pi\)
\(242\) 9.11684 0.586053
\(243\) −15.5000 + 1.65831i −0.994325 + 0.106381i
\(244\) −4.50000 + 2.59808i −0.288083 + 0.166325i
\(245\) −6.55842 16.4082i −0.419002 1.04828i
\(246\) 7.74456 7.27806i 0.493775 0.464032i
\(247\) 8.43070 8.76144i 0.536433 0.557477i
\(248\) 4.74456 0.301280
\(249\) 8.37228 + 2.52434i 0.530572 + 0.159973i
\(250\) −7.93070 + 4.57879i −0.501582 + 0.289588i
\(251\) −0.558422 + 0.967215i −0.0352473 + 0.0610501i −0.883111 0.469164i \(-0.844555\pi\)
0.847864 + 0.530214i \(0.177889\pi\)
\(252\) 4.81386 + 6.31084i 0.303245 + 0.397546i
\(253\) −1.11684 0.644810i −0.0702154 0.0405389i
\(254\) 7.55842 13.0916i 0.474258 0.821438i
\(255\) 4.37228 4.10891i 0.273803 0.257310i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 11.0584 + 19.1537i 0.689805 + 1.19478i 0.971901 + 0.235392i \(0.0756373\pi\)
−0.282095 + 0.959386i \(0.591029\pi\)
\(258\) −2.00000 + 6.63325i −0.124515 + 0.412968i
\(259\) 14.2337 + 16.4356i 0.884438 + 1.02126i
\(260\) −6.55842 6.31084i −0.406736 0.391382i
\(261\) 2.37228 + 0.147477i 0.146841 + 0.00912859i
\(262\) −9.30298 16.1132i −0.574740 0.995479i
\(263\) 12.0475 6.95565i 0.742884 0.428904i −0.0802332 0.996776i \(-0.525567\pi\)
0.823117 + 0.567872i \(0.192233\pi\)
\(264\) −2.31386 + 0.543620i −0.142408 + 0.0334575i
\(265\) −36.2337 −2.22582
\(266\) 1.68614 + 8.76144i 0.103384 + 0.537199i
\(267\) 4.94158 + 21.0333i 0.302420 + 1.28722i
\(268\) 8.21782i 0.501983i
\(269\) 13.9307 24.1287i 0.849370 1.47115i −0.0324014 0.999475i \(-0.510316\pi\)
0.881771 0.471677i \(-0.156351\pi\)
\(270\) −4.55842 + 12.2993i −0.277417 + 0.748511i
\(271\) −2.00000 3.46410i −0.121491 0.210429i 0.798865 0.601511i \(-0.205434\pi\)
−0.920356 + 0.391082i \(0.872101\pi\)
\(272\) 1.37228 0.0832068
\(273\) −15.5475 5.59230i −0.940980 0.338461i
\(274\) 1.62772 0.0983341
\(275\) 0.941578 + 1.63086i 0.0567793 + 0.0983446i
\(276\) −1.55842 0.469882i −0.0938060 0.0282836i
\(277\) 4.74456 8.21782i 0.285073 0.493761i −0.687554 0.726133i \(-0.741315\pi\)
0.972627 + 0.232372i \(0.0746488\pi\)
\(278\) 20.9870i 1.25872i
\(279\) 11.8614 + 7.86797i 0.710124 + 0.471043i
\(280\) 6.55842 1.26217i 0.391941 0.0754290i
\(281\) −3.25544 −0.194203 −0.0971016 0.995274i \(-0.530957\pi\)
−0.0971016 + 0.995274i \(0.530957\pi\)
\(282\) −1.68614 7.17687i −0.100408 0.427376i
\(283\) 6.55842 3.78651i 0.389858 0.225084i −0.292241 0.956345i \(-0.594401\pi\)
0.682098 + 0.731260i \(0.261068\pi\)
\(284\) 0.558422 + 0.967215i 0.0331362 + 0.0573937i
\(285\) −10.7446 + 10.0974i −0.636453 + 0.598115i
\(286\) 3.43070 3.56529i 0.202862 0.210820i
\(287\) −10.6277 12.2718i −0.627334 0.724383i
\(288\) −2.68614 + 1.33591i −0.158282 + 0.0787191i
\(289\) 7.55842 + 13.0916i 0.444613 + 0.770092i
\(290\) 1.00000 1.73205i 0.0587220 0.101710i
\(291\) 12.7446 + 13.5615i 0.747099 + 0.794986i
\(292\) −0.372281 + 0.644810i −0.0217861 + 0.0377347i
\(293\) −14.7446 8.51278i −0.861387 0.497322i 0.00308982 0.999995i \(-0.499016\pi\)
−0.864476 + 0.502673i \(0.832350\pi\)
\(294\) 9.93070 6.95565i 0.579170 0.405662i
\(295\) 11.9307 20.6646i 0.694632 1.20314i
\(296\) −7.11684 + 4.10891i −0.413658 + 0.238826i
\(297\) −6.68614 2.47805i −0.387969 0.143791i
\(298\) −6.00000 −0.347571
\(299\) 3.25544 0.939764i 0.188267 0.0543479i
\(300\) 1.62772 + 1.73205i 0.0939764 + 0.100000i
\(301\) 10.0000 + 3.46410i 0.576390 + 0.199667i
\(302\) −2.61684 + 1.51084i −0.150582 + 0.0869388i
\(303\) 5.48913 1.28962i 0.315342 0.0740868i
\(304\) −3.37228 −0.193414
\(305\) −6.55842 + 11.3595i −0.375534 + 0.650444i
\(306\) 3.43070 + 2.27567i 0.196120 + 0.130091i
\(307\) −13.2337 −0.755286 −0.377643 0.925951i \(-0.623265\pi\)
−0.377643 + 0.925951i \(0.623265\pi\)
\(308\) 0.686141 + 3.56529i 0.0390965 + 0.203151i
\(309\) −19.3723 5.84096i −1.10205 0.332281i
\(310\) 10.3723 5.98844i 0.589106 0.340121i
\(311\) −4.62772 −0.262414 −0.131207 0.991355i \(-0.541885\pi\)
−0.131207 + 0.991355i \(0.541885\pi\)
\(312\) 3.18614 5.37108i 0.180380 0.304078i
\(313\) 13.8564i 0.783210i 0.920133 + 0.391605i \(0.128080\pi\)
−0.920133 + 0.391605i \(0.871920\pi\)
\(314\) 0 0
\(315\) 18.4891 + 7.72049i 1.04174 + 0.435000i
\(316\) −7.68614 + 13.3128i −0.432379 + 0.748903i
\(317\) −26.7446 −1.50212 −0.751062 0.660232i \(-0.770458\pi\)
−0.751062 + 0.660232i \(0.770458\pi\)
\(318\) −5.68614 24.2024i −0.318863 1.35720i
\(319\) 0.941578 + 0.543620i 0.0527182 + 0.0304369i
\(320\) 2.52434i 0.141115i
\(321\) −1.68614 7.17687i −0.0941112 0.400574i
\(322\) −0.813859 + 2.34941i −0.0453546 + 0.130927i
\(323\) 2.31386 + 4.00772i 0.128747 + 0.222996i
\(324\) −8.93070 1.11469i −0.496150 0.0619273i
\(325\) −4.80298 1.18843i −0.266422 0.0659223i
\(326\) 10.3923i 0.575577i
\(327\) −33.0000 9.94987i −1.82490 0.550229i
\(328\) 5.31386 3.06796i 0.293409 0.169400i
\(329\) −11.0584 + 2.12819i −0.609671 + 0.117331i
\(330\) −4.37228 + 4.10891i −0.240686 + 0.226188i
\(331\) −19.1168 11.0371i −1.05076 0.606655i −0.127896 0.991788i \(-0.540822\pi\)
−0.922861 + 0.385133i \(0.874156\pi\)
\(332\) 4.37228 + 2.52434i 0.239960 + 0.138541i
\(333\) −24.6060 1.52967i −1.34840 0.0838255i
\(334\) 5.74456 + 3.31662i 0.314328 + 0.181478i
\(335\) −10.3723 17.9653i −0.566698 0.981550i
\(336\) 1.87228 + 4.18265i 0.102141 + 0.228182i
\(337\) 29.6060 1.61274 0.806370 0.591411i \(-0.201429\pi\)
0.806370 + 0.591411i \(0.201429\pi\)
\(338\) 0.500000 + 12.9904i 0.0271964 + 0.706584i
\(339\) −21.4891 + 20.1947i −1.16713 + 1.09683i
\(340\) 3.00000 1.73205i 0.162698 0.0939336i
\(341\) 3.25544 + 5.63858i 0.176292 + 0.305346i
\(342\) −8.43070 5.59230i −0.455880 0.302397i
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) −2.00000 + 3.46410i −0.107833 + 0.186772i
\(345\) −4.00000 + 0.939764i −0.215353 + 0.0505952i
\(346\) 19.1168 1.02773
\(347\) −13.5475 7.82168i −0.727270 0.419890i 0.0901523 0.995928i \(-0.471265\pi\)
−0.817423 + 0.576038i \(0.804598\pi\)
\(348\) 1.31386 + 0.396143i 0.0704303 + 0.0212355i
\(349\) −1.44158 2.49689i −0.0771659 0.133655i 0.824860 0.565337i \(-0.191254\pi\)
−0.902026 + 0.431682i \(0.857920\pi\)
\(350\) 2.74456 2.37686i 0.146703 0.127049i
\(351\) 16.8723 8.14409i 0.900576 0.434699i
\(352\) −1.37228 −0.0731428
\(353\) 19.6277 11.3321i 1.04468 0.603145i 0.123523 0.992342i \(-0.460581\pi\)
0.921155 + 0.389197i \(0.127247\pi\)
\(354\) 15.6753 + 4.72627i 0.833131 + 0.251198i
\(355\) 2.44158 + 1.40965i 0.129586 + 0.0748162i
\(356\) 12.4742i 0.661132i
\(357\) 3.68614 5.09496i 0.195091 0.269654i
\(358\) 1.37228 + 0.792287i 0.0725273 + 0.0418737i
\(359\) 22.3723 1.18076 0.590382 0.807124i \(-0.298977\pi\)
0.590382 + 0.807124i \(0.298977\pi\)
\(360\) −4.18614 + 6.31084i −0.220629 + 0.332611i
\(361\) 3.81386 + 6.60580i 0.200729 + 0.347674i
\(362\) 10.5000 6.06218i 0.551868 0.318621i
\(363\) 10.8139 + 11.5070i 0.567580 + 0.603961i
\(364\) −8.00000 5.19615i −0.419314 0.272352i
\(365\) 1.87953i 0.0983790i
\(366\) −8.61684 2.59808i −0.450410 0.135804i
\(367\) −8.23369 + 4.75372i −0.429795 + 0.248142i −0.699259 0.714868i \(-0.746487\pi\)
0.269464 + 0.963010i \(0.413153\pi\)
\(368\) −0.813859 0.469882i −0.0424254 0.0244943i
\(369\) 18.3723 + 1.14214i 0.956423 + 0.0594576i
\(370\) −10.3723 + 17.9653i −0.539229 + 0.933972i
\(371\) −37.2921 + 7.17687i −1.93611 + 0.372605i
\(372\) 5.62772 + 5.98844i 0.291784 + 0.310486i
\(373\) −4.00000 + 6.92820i −0.207112 + 0.358729i −0.950804 0.309794i \(-0.899740\pi\)
0.743691 + 0.668523i \(0.233073\pi\)
\(374\) 0.941578 + 1.63086i 0.0486878 + 0.0843298i
\(375\) −15.1861 4.57879i −0.784209 0.236448i
\(376\) 4.25639i 0.219506i
\(377\) −2.74456 + 0.792287i −0.141352 + 0.0408049i
\(378\) −2.25544 + 13.5615i −0.116007 + 0.697526i
\(379\) −22.1168 + 12.7692i −1.13607 + 0.655908i −0.945453 0.325757i \(-0.894381\pi\)
−0.190613 + 0.981665i \(0.561047\pi\)
\(380\) −7.37228 + 4.25639i −0.378190 + 0.218348i
\(381\) 25.4891 5.98844i 1.30585 0.306797i
\(382\) 18.9051i 0.967268i
\(383\) 27.4307 + 15.8371i 1.40164 + 0.809239i 0.994561 0.104152i \(-0.0332130\pi\)
0.407082 + 0.913392i \(0.366546\pi\)
\(384\) −1.68614 + 0.396143i −0.0860455 + 0.0202156i
\(385\) 6.00000 + 6.92820i 0.305788 + 0.353094i
\(386\) −5.61684 3.24289i −0.285890 0.165059i
\(387\) −10.7446 + 5.34363i −0.546177 + 0.271632i
\(388\) 5.37228 + 9.30506i 0.272736 + 0.472393i
\(389\) 22.6641i 1.14912i −0.818463 0.574559i \(-0.805174\pi\)
0.818463 0.574559i \(-0.194826\pi\)
\(390\) 0.186141 15.7634i 0.00942560 0.798210i
\(391\) 1.28962i 0.0652189i
\(392\) 6.50000 2.59808i 0.328300 0.131223i
\(393\) 9.30298 30.8545i 0.469273 1.55640i
\(394\) −7.80298 + 13.5152i −0.393109 + 0.680884i
\(395\) 38.8048i 1.95248i
\(396\) −3.43070 2.27567i −0.172399 0.114357i
\(397\) 6.87228 11.9031i 0.344910 0.597401i −0.640427 0.768019i \(-0.721243\pi\)
0.985337 + 0.170617i \(0.0545761\pi\)
\(398\) 3.46410i 0.173640i
\(399\) −9.05842 + 12.5205i −0.453488 + 0.626809i
\(400\) 0.686141 + 1.18843i 0.0343070 + 0.0594215i
\(401\) −5.74456 9.94987i −0.286870 0.496873i 0.686191 0.727421i \(-0.259281\pi\)
−0.973061 + 0.230548i \(0.925948\pi\)
\(402\) 10.3723 9.74749i 0.517322 0.486161i
\(403\) −16.6060 4.10891i −0.827202 0.204679i
\(404\) 3.25544 0.161964
\(405\) −20.9307 + 8.83518i −1.04006 + 0.439024i
\(406\) 0.686141 1.98072i 0.0340526 0.0983014i
\(407\) −9.76631 5.63858i −0.484098 0.279494i
\(408\) 1.62772 + 1.73205i 0.0805841 + 0.0857493i
\(409\) 0.744563 1.28962i 0.0368163 0.0637676i −0.847030 0.531545i \(-0.821612\pi\)
0.883846 + 0.467777i \(0.154945\pi\)
\(410\) 7.74456 13.4140i 0.382477 0.662469i
\(411\) 1.93070 + 2.05446i 0.0952346 + 0.101339i
\(412\) −10.1168 5.84096i −0.498421 0.287764i
\(413\) 8.18614 23.6314i 0.402814 1.16282i
\(414\) −1.25544 2.52434i −0.0617014 0.124064i
\(415\) 12.7446 0.625606
\(416\) 2.50000 2.59808i 0.122573 0.127381i
\(417\) −26.4891 + 24.8935i −1.29718 + 1.21904i
\(418\) −2.31386 4.00772i −0.113175 0.196024i
\(419\) 8.74456 + 15.1460i 0.427200 + 0.739932i 0.996623 0.0821127i \(-0.0261667\pi\)
−0.569423 + 0.822045i \(0.692833\pi\)
\(420\) 9.37228 + 6.78073i 0.457321 + 0.330866i
\(421\) 12.9715i 0.632194i 0.948727 + 0.316097i \(0.102373\pi\)
−0.948727 + 0.316097i \(0.897627\pi\)
\(422\) 11.3723 19.6974i 0.553594 0.958853i
\(423\) 7.05842 10.6410i 0.343192 0.517382i
\(424\) 14.3537i 0.697079i
\(425\) 0.941578 1.63086i 0.0456732 0.0791084i
\(426\) −0.558422 + 1.85208i −0.0270556 + 0.0897334i
\(427\) −4.50000 + 12.9904i −0.217770 + 0.628649i
\(428\) 4.25639i 0.205740i
\(429\) 8.56930 + 0.101190i 0.413730 + 0.00488549i
\(430\) 10.0974i 0.486938i
\(431\) 9.81386 + 16.9981i 0.472717 + 0.818770i 0.999512 0.0312223i \(-0.00993997\pi\)
−0.526795 + 0.849992i \(0.676607\pi\)
\(432\) −4.87228 1.80579i −0.234418 0.0868811i
\(433\) 30.3505 + 17.5229i 1.45855 + 0.842096i 0.998940 0.0460230i \(-0.0146548\pi\)
0.459613 + 0.888119i \(0.347988\pi\)
\(434\) 9.48913 8.21782i 0.455493 0.394468i
\(435\) 3.37228 0.792287i 0.161689 0.0379873i
\(436\) −17.2337 9.94987i −0.825344 0.476513i
\(437\) 3.16915i 0.151601i
\(438\) −1.25544 + 0.294954i −0.0599871 + 0.0140934i
\(439\) 30.3505 17.5229i 1.44855 0.836322i 0.450157 0.892950i \(-0.351368\pi\)
0.998395 + 0.0566279i \(0.0180349\pi\)
\(440\) −3.00000 + 1.73205i −0.143019 + 0.0825723i
\(441\) 20.5584 + 4.28384i 0.978972 + 0.203992i
\(442\) −4.80298 1.18843i −0.228455 0.0565279i
\(443\) 11.1846i 0.531396i −0.964056 0.265698i \(-0.914398\pi\)
0.964056 0.265698i \(-0.0856024\pi\)
\(444\) −13.6277 4.10891i −0.646743 0.195000i
\(445\) 15.7446 + 27.2704i 0.746364 + 1.29274i
\(446\) 3.11684 5.39853i 0.147587 0.255628i
\(447\) −7.11684 7.57301i −0.336615 0.358191i
\(448\) 0.500000 + 2.59808i 0.0236228 + 0.122748i
\(449\) −0.302985 + 0.524785i −0.0142987 + 0.0247661i −0.873086 0.487566i \(-0.837885\pi\)
0.858788 + 0.512332i \(0.171218\pi\)
\(450\) −0.255437 + 4.10891i −0.0120414 + 0.193696i
\(451\) 7.29211 + 4.21010i 0.343372 + 0.198246i
\(452\) −14.7446 + 8.51278i −0.693526 + 0.400407i
\(453\) −5.01087 1.51084i −0.235431 0.0709852i
\(454\) 3.81396i 0.178998i
\(455\) −24.0475 1.26217i −1.12737 0.0591714i
\(456\) −4.00000 4.25639i −0.187317 0.199324i
\(457\) −16.6753 + 9.62747i −0.780036 + 0.450354i −0.836443 0.548054i \(-0.815369\pi\)
0.0564070 + 0.998408i \(0.482036\pi\)
\(458\) −6.05842 10.4935i −0.283091 0.490329i
\(459\) 1.19702 + 7.02939i 0.0558719 + 0.328104i
\(460\) −2.37228 −0.110608
\(461\) −13.0693 7.54556i −0.608698 0.351432i 0.163758 0.986501i \(-0.447638\pi\)
−0.772456 + 0.635069i \(0.780972\pi\)
\(462\) −3.68614 + 5.09496i −0.171495 + 0.237039i
\(463\) 30.7345i 1.42835i 0.699966 + 0.714176i \(0.253199\pi\)
−0.699966 + 0.714176i \(0.746801\pi\)
\(464\) 0.686141 + 0.396143i 0.0318533 + 0.0183905i
\(465\) 19.8614 + 5.98844i 0.921051 + 0.277707i
\(466\) 24.3030 14.0313i 1.12581 0.649989i
\(467\) 19.6277 0.908263 0.454131 0.890935i \(-0.349950\pi\)
0.454131 + 0.890935i \(0.349950\pi\)
\(468\) 10.5584 2.34941i 0.488063 0.108601i
\(469\) −14.2337 16.4356i −0.657251 0.758928i
\(470\) −5.37228 9.30506i −0.247805 0.429211i
\(471\) 0 0
\(472\) 8.18614 + 4.72627i 0.376798 + 0.217544i
\(473\) −5.48913 −0.252390
\(474\) −25.9198 + 6.08963i −1.19054 + 0.279706i
\(475\) −2.31386 + 4.00772i −0.106167 + 0.183887i
\(476\) 2.74456 2.37686i 0.125797 0.108943i
\(477\) 23.8030 35.8843i 1.08986 1.64303i
\(478\) 12.3030 + 21.3094i 0.562725 + 0.974669i
\(479\) 22.8030 13.1653i 1.04189 0.601538i 0.121526 0.992588i \(-0.461221\pi\)
0.920369 + 0.391050i \(0.127888\pi\)
\(480\) −3.18614 + 2.99422i −0.145427 + 0.136667i
\(481\) 28.4674 8.21782i 1.29800 0.374701i
\(482\) −1.25544 −0.0571836
\(483\) −3.93070 + 1.75950i −0.178853 + 0.0800601i
\(484\) 4.55842 + 7.89542i 0.207201 + 0.358883i
\(485\) 23.4891 + 13.5615i 1.06659 + 0.615794i
\(486\) −9.18614 12.5942i −0.416692 0.571286i
\(487\) −9.38316 5.41737i −0.425191 0.245484i 0.272105 0.962268i \(-0.412280\pi\)
−0.697296 + 0.716783i \(0.745614\pi\)
\(488\) −4.50000 2.59808i −0.203705 0.117609i
\(489\) 13.1168 12.3267i 0.593164 0.557434i
\(490\) 10.9307 13.8839i 0.493799 0.627209i
\(491\) 33.6060 19.4024i 1.51662 0.875619i 0.516807 0.856102i \(-0.327121\pi\)
0.999810 0.0195166i \(-0.00621272\pi\)
\(492\) 10.1753 + 3.06796i 0.458736 + 0.138314i
\(493\) 1.08724i 0.0489669i
\(494\) 11.8030 + 2.92048i 0.531041 + 0.131399i
\(495\) −10.3723 0.644810i −0.466199 0.0289821i
\(496\) 2.37228 + 4.10891i 0.106519 + 0.184496i
\(497\) 2.79211 + 0.967215i 0.125243 + 0.0433855i
\(498\) 2.00000 + 8.51278i 0.0896221 + 0.381467i
\(499\) 23.3639i 1.04591i 0.852360 + 0.522955i \(0.175170\pi\)
−0.852360 + 0.522955i \(0.824830\pi\)
\(500\) −7.93070 4.57879i −0.354672 0.204770i
\(501\) 2.62772 + 11.1846i 0.117398 + 0.499691i
\(502\) −1.11684 −0.0498472
\(503\) 11.4891 19.8997i 0.512275 0.887286i −0.487624 0.873054i \(-0.662136\pi\)
0.999899 0.0142322i \(-0.00453039\pi\)
\(504\) −3.05842 + 7.32435i −0.136233 + 0.326252i
\(505\) 7.11684 4.10891i 0.316695 0.182844i
\(506\) 1.28962i 0.0573306i
\(507\) −15.8030 + 16.0395i −0.701835 + 0.712339i
\(508\) 15.1168 0.670701
\(509\) 23.1861 13.3865i 1.02771 0.593347i 0.111381 0.993778i \(-0.464473\pi\)
0.916327 + 0.400431i \(0.131139\pi\)
\(510\) 5.74456 + 1.73205i 0.254374 + 0.0766965i
\(511\) 0.372281 + 1.93443i 0.0164688 + 0.0855742i
\(512\) −1.00000 −0.0441942
\(513\) −2.94158 17.2742i −0.129874 0.762675i
\(514\) −11.0584 + 19.1537i −0.487766 + 0.844836i
\(515\) −29.4891 −1.29945
\(516\) −6.74456 + 1.58457i −0.296913 + 0.0697570i
\(517\) 5.05842 2.92048i 0.222469 0.128443i
\(518\) −7.11684 + 20.5446i −0.312696 + 0.902676i
\(519\) 22.6753 + 24.1287i 0.995334 + 1.05913i
\(520\) 2.18614 8.83518i 0.0958686 0.387448i
\(521\) 16.1168 0.706092 0.353046 0.935606i \(-0.385146\pi\)
0.353046 + 0.935606i \(0.385146\pi\)
\(522\) 1.05842 + 2.12819i 0.0463259 + 0.0931485i
\(523\) −7.50000 + 4.33013i −0.327952 + 0.189343i −0.654932 0.755688i \(-0.727303\pi\)
0.326979 + 0.945031i \(0.393969\pi\)
\(524\) 9.30298 16.1132i 0.406403 0.703910i
\(525\) 6.25544 + 0.644810i 0.273010 + 0.0281418i
\(526\) 12.0475 + 6.95565i 0.525298 + 0.303281i
\(527\) 3.25544 5.63858i 0.141809 0.245621i
\(528\) −1.62772 1.73205i −0.0708374 0.0753778i
\(529\) −11.0584 + 19.1537i −0.480801 + 0.832772i
\(530\) −18.1168 31.3793i −0.786945 1.36303i
\(531\) 12.6277 + 25.3909i 0.547996 + 1.10187i
\(532\) −6.74456 + 5.84096i −0.292414 + 0.253238i
\(533\) −21.2554 + 6.13592i −0.920675 + 0.265776i
\(534\) −15.7446 + 14.7962i −0.681334 + 0.640293i
\(535\) −5.37228 9.30506i −0.232264 0.402293i
\(536\) 7.11684 4.10891i 0.307401 0.177478i
\(537\) 0.627719 + 2.67181i 0.0270881 + 0.115297i
\(538\) 27.8614 1.20119
\(539\) 7.54755 + 5.94215i 0.325096 + 0.255947i
\(540\) −12.9307 + 2.20193i −0.556449 + 0.0947561i
\(541\) 18.6101i 0.800112i 0.916491 + 0.400056i \(0.131009\pi\)
−0.916491 + 0.400056i \(0.868991\pi\)
\(542\) 2.00000 3.46410i 0.0859074 0.148796i
\(543\) 20.1060 + 6.06218i 0.862830 + 0.260153i
\(544\) 0.686141 + 1.18843i 0.0294180 + 0.0509535i
\(545\) −50.2337 −2.15177
\(546\) −2.93070 16.2607i −0.125423 0.695895i
\(547\) 31.4891 1.34638 0.673189 0.739471i \(-0.264924\pi\)
0.673189 + 0.739471i \(0.264924\pi\)
\(548\) 0.813859 + 1.40965i 0.0347663 + 0.0602171i
\(549\) −6.94158 13.9576i −0.296259 0.595696i
\(550\) −0.941578 + 1.63086i −0.0401490 + 0.0695401i
\(551\) 2.67181i 0.113823i
\(552\) −0.372281 1.58457i −0.0158453 0.0674439i
\(553\) 7.68614 + 39.9384i 0.326848 + 1.69835i
\(554\) 9.48913 0.403154
\(555\) −34.9783 + 8.21782i −1.48474 + 0.348827i
\(556\) −18.1753 + 10.4935i −0.770803 + 0.445023i
\(557\) −7.80298 13.5152i −0.330623 0.572656i 0.652011 0.758209i \(-0.273926\pi\)
−0.982634 + 0.185553i \(0.940592\pi\)
\(558\) −0.883156 + 14.2063i −0.0373870 + 0.601399i
\(559\) 10.0000 10.3923i 0.422955 0.439548i
\(560\) 4.37228 + 5.04868i 0.184763 + 0.213345i
\(561\) −0.941578 + 3.12286i −0.0397535 + 0.131847i
\(562\) −1.62772 2.81929i −0.0686612 0.118925i
\(563\) −18.0000 + 31.1769i −0.758610 + 1.31395i 0.184950 + 0.982748i \(0.440788\pi\)
−0.943560 + 0.331202i \(0.892546\pi\)
\(564\) 5.37228 5.04868i 0.226214 0.212588i
\(565\) −21.4891 + 37.2203i −0.904054 + 1.56587i
\(566\) 6.55842 + 3.78651i 0.275671 + 0.159159i
\(567\) −19.7921 + 13.2390i −0.831190 + 0.555988i
\(568\) −0.558422 + 0.967215i −0.0234309 + 0.0405835i
\(569\) 19.1644 11.0646i 0.803413 0.463851i −0.0412501 0.999149i \(-0.513134\pi\)
0.844663 + 0.535298i \(0.179801\pi\)
\(570\) −14.1168 4.25639i −0.591290 0.178281i
\(571\) 13.4891 0.564502 0.282251 0.959341i \(-0.408919\pi\)
0.282251 + 0.959341i \(0.408919\pi\)
\(572\) 4.80298 + 1.18843i 0.200823 + 0.0496908i
\(573\) 23.8614 22.4241i 0.996825 0.936780i
\(574\) 5.31386 15.3398i 0.221796 0.640270i
\(575\) −1.11684 + 0.644810i −0.0465756 + 0.0268904i
\(576\) −2.50000 1.65831i −0.104167 0.0690963i
\(577\) −40.2337 −1.67495 −0.837475 0.546475i \(-0.815969\pi\)
−0.837475 + 0.546475i \(0.815969\pi\)
\(578\) −7.55842 + 13.0916i −0.314389 + 0.544538i
\(579\) −2.56930 10.9359i −0.106776 0.454482i
\(580\) 2.00000 0.0830455
\(581\) 13.1168 2.52434i 0.544178 0.104727i
\(582\) −5.37228 + 17.8178i −0.222688 + 0.738573i
\(583\) 17.0584 9.84868i 0.706488 0.407891i
\(584\) −0.744563 −0.0308102
\(585\) 20.1168 18.4627i 0.831729 0.763337i
\(586\) 17.0256i 0.703319i
\(587\) 5.95245 3.43665i 0.245684 0.141846i −0.372102 0.928192i \(-0.621363\pi\)
0.617786 + 0.786346i \(0.288030\pi\)
\(588\) 10.9891 + 5.12241i 0.453184 + 0.211245i
\(589\) −8.00000 + 13.8564i −0.329634 + 0.570943i
\(590\) 23.8614 0.982359
\(591\) −26.3139 + 6.18220i −1.08241 + 0.254302i
\(592\) −7.11684 4.10891i −0.292500 0.168875i
\(593\) 26.3306i 1.08127i 0.841258 + 0.540634i \(0.181816\pi\)
−0.841258 + 0.540634i \(0.818184\pi\)
\(594\) −1.19702 7.02939i −0.0491141 0.288419i
\(595\) 3.00000 8.66025i 0.122988 0.355036i
\(596\) −3.00000 5.19615i −0.122885 0.212843i
\(597\) 4.37228 4.10891i 0.178946 0.168167i
\(598\) 2.44158 + 2.34941i 0.0998435 + 0.0960745i
\(599\) 13.9113i 0.568401i 0.958765 + 0.284200i \(0.0917281\pi\)
−0.958765 + 0.284200i \(0.908272\pi\)
\(600\) −0.686141 + 2.27567i −0.0280116 + 0.0929039i
\(601\) 19.8832 11.4795i 0.811051 0.468260i −0.0362698 0.999342i \(-0.511548\pi\)
0.847321 + 0.531082i \(0.178214\pi\)
\(602\) 2.00000 + 10.3923i 0.0815139 + 0.423559i
\(603\) 24.6060 + 1.52967i 1.00203 + 0.0622930i
\(604\) −2.61684 1.51084i −0.106478 0.0614750i
\(605\) 19.9307 + 11.5070i 0.810298 + 0.467826i
\(606\) 3.86141 + 4.10891i 0.156859 + 0.166913i
\(607\) −21.3505 12.3267i −0.866591 0.500327i −0.000377344 1.00000i \(-0.500120\pi\)
−0.866214 + 0.499673i \(0.833453\pi\)
\(608\) −1.68614 2.92048i −0.0683820 0.118441i
\(609\) 3.31386 1.48338i 0.134284 0.0601098i
\(610\) −13.1168 −0.531085
\(611\) −3.68614 + 14.8974i −0.149125 + 0.602683i
\(612\) −0.255437 + 4.10891i −0.0103254 + 0.166093i
\(613\) 26.2337 15.1460i 1.05957 0.611742i 0.134256 0.990947i \(-0.457136\pi\)
0.925313 + 0.379204i \(0.123802\pi\)
\(614\) −6.61684 11.4607i −0.267034 0.462517i
\(615\) 26.1168 6.13592i 1.05313 0.247424i
\(616\) −2.74456 + 2.37686i −0.110582 + 0.0957665i
\(617\) −3.30298 + 5.72094i −0.132973 + 0.230316i −0.924821 0.380402i \(-0.875786\pi\)
0.791848 + 0.610718i \(0.209119\pi\)
\(618\) −4.62772 19.6974i −0.186154 0.792344i
\(619\) 35.4674 1.42555 0.712777 0.701391i \(-0.247437\pi\)
0.712777 + 0.701391i \(0.247437\pi\)
\(620\) 10.3723 + 5.98844i 0.416561 + 0.240502i
\(621\) 1.69702 4.57879i 0.0680989 0.183741i
\(622\) −2.31386 4.00772i −0.0927773 0.160695i
\(623\) 21.6060 + 24.9484i 0.865625 + 0.999538i
\(624\) 6.24456 + 0.0737384i 0.249983 + 0.00295190i
\(625\) −29.9783 −1.19913
\(626\) −12.0000 + 6.92820i −0.479616 + 0.276907i
\(627\) 2.31386 7.67420i 0.0924066 0.306478i
\(628\) 0 0
\(629\) 11.2772i 0.449650i
\(630\) 2.55842 + 19.8723i 0.101930 + 0.791731i
\(631\) −28.5000 16.4545i −1.13457 0.655043i −0.189488 0.981883i \(-0.560683\pi\)
−0.945080 + 0.326841i \(0.894016\pi\)
\(632\) −15.3723 −0.611477
\(633\) 38.3505 9.01011i 1.52430 0.358120i
\(634\) −13.3723 23.1615i −0.531081 0.919860i
\(635\) 33.0475 19.0800i 1.31145 0.757167i
\(636\) 18.1168 17.0256i 0.718380 0.675107i
\(637\) −25.0000 + 3.46410i −0.990536 + 0.137253i
\(638\) 1.08724i 0.0430443i
\(639\) −3.00000 + 1.49200i −0.118678 + 0.0590226i
\(640\) −2.18614 + 1.26217i −0.0864148 + 0.0498916i
\(641\) −25.1644 14.5287i −0.993934 0.573848i −0.0874859 0.996166i \(-0.527883\pi\)
−0.906448 + 0.422318i \(0.861217\pi\)
\(642\) 5.37228 5.04868i 0.212027 0.199255i
\(643\) 15.6168 27.0492i 0.615868 1.06672i −0.374363 0.927282i \(-0.622139\pi\)
0.990232 0.139433i \(-0.0445280\pi\)
\(644\) −2.44158 + 0.469882i −0.0962117 + 0.0185159i
\(645\) −12.7446 + 11.9769i −0.501817 + 0.471589i
\(646\) −2.31386 + 4.00772i −0.0910376 + 0.157682i
\(647\) −5.56930 9.64630i −0.218952 0.379235i 0.735536 0.677486i \(-0.236930\pi\)
−0.954488 + 0.298250i \(0.903597\pi\)
\(648\) −3.50000 8.29156i −0.137493 0.325723i
\(649\) 12.9715i 0.509178i
\(650\) −1.37228 4.75372i −0.0538253 0.186456i
\(651\) 21.6277 + 2.22938i 0.847657 + 0.0873765i
\(652\) 9.00000 5.19615i 0.352467 0.203497i
\(653\) 22.5475 13.0178i 0.882354 0.509427i 0.0109200 0.999940i \(-0.496524\pi\)
0.871434 + 0.490513i \(0.163191\pi\)
\(654\) −7.88316 33.5538i −0.308256 1.31206i
\(655\) 46.9678i 1.83518i
\(656\) 5.31386 + 3.06796i 0.207471 + 0.119784i
\(657\) −1.86141 1.23472i −0.0726204 0.0481709i
\(658\) −7.37228 8.51278i −0.287401 0.331863i
\(659\) −11.6644 6.73444i −0.454380 0.262337i 0.255298 0.966862i \(-0.417826\pi\)
−0.709678 + 0.704526i \(0.751160\pi\)
\(660\) −5.74456 1.73205i −0.223607 0.0674200i
\(661\) −24.9307 43.1812i −0.969692 1.67956i −0.696443 0.717613i \(-0.745235\pi\)
−0.273249 0.961943i \(-0.588098\pi\)
\(662\) 22.0742i 0.857939i
\(663\) −4.19702 7.47182i −0.162999 0.290182i
\(664\) 5.04868i 0.195927i
\(665\) −7.37228 + 21.2819i −0.285885 + 0.825278i
\(666\) −10.9783 22.0742i −0.425399 0.855359i
\(667\) −0.372281 + 0.644810i −0.0144148 + 0.0249671i
\(668\) 6.63325i 0.256648i
\(669\) 10.5109 2.46943i 0.406374 0.0954739i
\(670\) 10.3723 17.9653i 0.400716 0.694061i
\(671\) 7.13058i 0.275273i
\(672\) −2.68614 + 3.71277i −0.103620 + 0.143223i
\(673\) 1.31386 + 2.27567i 0.0506456 + 0.0877207i 0.890237 0.455498i \(-0.150539\pi\)
−0.839591 + 0.543219i \(0.817205\pi\)
\(674\) 14.8030 + 25.6395i 0.570190 + 0.987597i
\(675\) −5.48913 + 4.55134i −0.211277 + 0.175181i
\(676\) −11.0000 + 6.92820i −0.423077 + 0.266469i
\(677\) 4.37228 0.168040 0.0840202 0.996464i \(-0.473224\pi\)
0.0840202 + 0.996464i \(0.473224\pi\)
\(678\) −28.2337 8.51278i −1.08431 0.326931i
\(679\) 26.8614 + 9.30506i 1.03085 + 0.357096i
\(680\) 3.00000 + 1.73205i 0.115045 + 0.0664211i
\(681\) 4.81386 4.52389i 0.184467 0.173356i
\(682\) −3.25544 + 5.63858i −0.124657 + 0.215912i
\(683\) 21.8614 37.8651i 0.836503 1.44887i −0.0562969 0.998414i \(-0.517929\pi\)
0.892800 0.450452i \(-0.148737\pi\)
\(684\) 0.627719 10.0974i 0.0240014 0.386082i
\(685\) 3.55842 + 2.05446i 0.135960 + 0.0784967i
\(686\) 8.50000 16.4545i 0.324532 0.628235i
\(687\) 6.05842 20.0935i 0.231143 0.766615i
\(688\) −4.00000 −0.152499
\(689\) −12.4307 + 50.2381i −0.473572 + 1.91392i
\(690\) −2.81386 2.99422i −0.107122 0.113988i
\(691\) 19.5584 + 33.8762i 0.744037 + 1.28871i 0.950643 + 0.310286i \(0.100425\pi\)
−0.206606 + 0.978424i \(0.566242\pi\)
\(692\) 9.55842 + 16.5557i 0.363357 + 0.629352i
\(693\) −10.8030 + 1.39081i −0.410371 + 0.0528325i
\(694\) 15.6434i 0.593814i
\(695\) −26.4891 + 45.8805i −1.00479 + 1.74035i
\(696\) 0.313859 + 1.33591i 0.0118968 + 0.0506374i
\(697\) 8.42020i 0.318938i
\(698\) 1.44158 2.49689i 0.0545645 0.0945085i
\(699\) 46.5367 + 14.0313i 1.76018 + 0.530714i
\(700\) 3.43070 + 1.18843i 0.129668 + 0.0449185i
\(701\) 22.1668i 0.837229i 0.908164 + 0.418614i \(0.137484\pi\)
−0.908164 + 0.418614i \(0.862516\pi\)
\(702\) 15.4891 + 10.5398i 0.584599 + 0.397798i
\(703\) 27.7128i 1.04521i
\(704\) −0.686141 1.18843i −0.0258599 0.0447907i
\(705\) 5.37228 17.8178i 0.202332 0.671059i
\(706\) 19.6277 + 11.3321i 0.738699 + 0.426488i
\(707\) 6.51087 5.63858i 0.244867 0.212061i
\(708\) 3.74456 + 15.9383i 0.140729 + 0.598999i
\(709\) −40.1168 23.1615i −1.50662 0.869847i −0.999970 0.00769505i \(-0.997551\pi\)
−0.506649 0.862152i \(-0.669116\pi\)
\(710\) 2.81929i 0.105806i
\(711\) −38.4307 25.4920i −1.44126 0.956026i
\(712\) −10.8030 + 6.23711i −0.404859 + 0.233745i
\(713\) −3.86141 + 2.22938i −0.144611 + 0.0834911i
\(714\) 6.25544 + 0.644810i 0.234104 + 0.0241314i
\(715\) 12.0000 3.46410i 0.448775 0.129550i
\(716\) 1.58457i 0.0592183i
\(717\) −12.3030 + 40.8044i −0.459463 + 1.52387i
\(718\) 11.1861 + 19.3750i 0.417463 + 0.723067i
\(719\) −3.94158 + 6.82701i −0.146996 + 0.254605i −0.930116 0.367266i \(-0.880294\pi\)
0.783120 + 0.621871i \(0.213627\pi\)
\(720\) −7.55842 0.469882i −0.281686 0.0175115i
\(721\) −30.3505 + 5.84096i −1.13031 + 0.217529i
\(722\) −3.81386 + 6.60580i −0.141937 + 0.245842i
\(723\) −1.48913 1.58457i −0.0553812 0.0589309i
\(724\) 10.5000 + 6.06218i 0.390229 + 0.225299i
\(725\) 0.941578 0.543620i 0.0349693 0.0201896i
\(726\) −4.55842 + 15.1186i −0.169179 + 0.561103i
\(727\) 31.5817i 1.17130i −0.810564 0.585650i \(-0.800839\pi\)
0.810564 0.585650i \(-0.199161\pi\)
\(728\) 0.500000 9.52628i 0.0185312 0.353067i
\(729\) 5.00000 26.5330i 0.185185 0.982704i
\(730\) −1.62772 + 0.939764i −0.0602446 + 0.0347822i
\(731\) 2.74456 + 4.75372i 0.101511 + 0.175823i
\(732\) −2.05842 8.76144i −0.0760815 0.323832i
\(733\) −32.2554 −1.19138 −0.595691 0.803214i \(-0.703122\pi\)
−0.595691 + 0.803214i \(0.703122\pi\)
\(734\) −8.23369 4.75372i −0.303911 0.175463i
\(735\) 30.4891 2.67181i 1.12461 0.0985514i
\(736\) 0.939764i 0.0346402i
\(737\) 9.76631 + 5.63858i 0.359747 + 0.207700i
\(738\) 8.19702 + 16.4819i 0.301736 + 0.606708i
\(739\) −16.8832 + 9.74749i −0.621057 + 0.358567i −0.777280 0.629154i \(-0.783401\pi\)
0.156223 + 0.987722i \(0.450068\pi\)
\(740\) −20.7446 −0.762585
\(741\) 10.3139 + 18.3615i 0.378889 + 0.674525i
\(742\) −24.8614 28.7075i −0.912691 1.05388i
\(743\) 7.37228 + 12.7692i 0.270463 + 0.468455i 0.968980 0.247138i \(-0.0794900\pi\)
−0.698518 + 0.715593i \(0.746157\pi\)
\(744\) −2.37228 + 7.86797i −0.0869721 + 0.288454i
\(745\) −13.1168 7.57301i −0.480564 0.277454i
\(746\) −8.00000 −0.292901
\(747\) −8.37228 + 12.6217i −0.306326 + 0.461803i
\(748\) −0.941578 + 1.63086i −0.0344275 + 0.0596302i
\(749\) −7.37228 8.51278i −0.269377 0.311050i
\(750\) −3.62772 15.4410i −0.132466 0.563825i
\(751\) 0.500000 + 0.866025i 0.0182453 + 0.0316017i 0.875004 0.484116i \(-0.160859\pi\)
−0.856759 + 0.515718i \(0.827525\pi\)
\(752\) 3.68614 2.12819i 0.134420 0.0776073i
\(753\) −1.32473 1.40965i −0.0482760 0.0513703i
\(754\) −2.05842 1.98072i −0.0749633 0.0721335i
\(755\) −7.62772 −0.277601
\(756\) −12.8723 + 4.82746i −0.468160 + 0.175573i
\(757\) −19.8614 34.4010i −0.721875 1.25032i −0.960247 0.279150i \(-0.909947\pi\)
0.238372 0.971174i \(-0.423386\pi\)
\(758\) −22.1168 12.7692i −0.803320 0.463797i
\(759\) 1.62772 1.52967i 0.0590824 0.0555235i
\(760\) −7.37228 4.25639i −0.267421 0.154395i
\(761\) −14.7446 8.51278i −0.534490 0.308588i 0.208353 0.978054i \(-0.433190\pi\)
−0.742843 + 0.669466i \(0.766523\pi\)
\(762\) 17.9307 + 19.0800i 0.649561 + 0.691196i
\(763\) −51.7011 + 9.94987i −1.87170 + 0.360210i
\(764\) 16.3723 9.45254i 0.592328 0.341981i
\(765\) 4.62772 + 9.30506i 0.167316 + 0.336425i
\(766\) 31.6742i 1.14444i
\(767\) −24.5584 23.6314i −0.886753 0.853279i
\(768\) −1.18614 1.26217i −0.0428012 0.0455446i
\(769\) 5.11684 + 8.86263i 0.184518 + 0.319595i 0.943414 0.331617i \(-0.107594\pi\)
−0.758896 + 0.651212i \(0.774261\pi\)