Properties

Label 546.2.q.f.251.2
Level $546$
Weight $2$
Character 546.251
Analytic conductor $4.360$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 251.2
Root \(1.68614 + 0.396143i\) of defining polynomial
Character \(\chi\) \(=\) 546.251
Dual form 546.2.q.f.335.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(1.68614 - 0.396143i) q^{3} +(-0.500000 - 0.866025i) q^{4} -2.52434i q^{5} +(-0.500000 + 1.65831i) q^{6} +(2.50000 + 0.866025i) q^{7} +1.00000 q^{8} +(2.68614 - 1.33591i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{2} +(1.68614 - 0.396143i) q^{3} +(-0.500000 - 0.866025i) q^{4} -2.52434i q^{5} +(-0.500000 + 1.65831i) q^{6} +(2.50000 + 0.866025i) q^{7} +1.00000 q^{8} +(2.68614 - 1.33591i) q^{9} +(2.18614 + 1.26217i) q^{10} +(0.686141 - 1.18843i) q^{11} +(-1.18614 - 1.26217i) q^{12} +(-3.50000 + 0.866025i) q^{13} +(-2.00000 + 1.73205i) q^{14} +(-1.00000 - 4.25639i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-0.686141 - 1.18843i) q^{17} +(-0.186141 + 2.99422i) q^{18} +(-1.68614 - 2.92048i) q^{19} +(-2.18614 + 1.26217i) q^{20} +(4.55842 + 0.469882i) q^{21} +(0.686141 + 1.18843i) q^{22} +(-0.813859 - 0.469882i) q^{23} +(1.68614 - 0.396143i) q^{24} -1.37228 q^{25} +(1.00000 - 3.46410i) q^{26} +(4.00000 - 3.31662i) q^{27} +(-0.500000 - 2.59808i) q^{28} +(0.686141 + 0.396143i) q^{29} +(4.18614 + 1.26217i) q^{30} +4.74456 q^{31} +(-0.500000 - 0.866025i) q^{32} +(0.686141 - 2.27567i) q^{33} +1.37228 q^{34} +(2.18614 - 6.31084i) q^{35} +(-2.50000 - 1.65831i) q^{36} +(7.11684 + 4.10891i) q^{37} +3.37228 q^{38} +(-5.55842 + 2.84674i) q^{39} -2.52434i q^{40} +(-5.31386 - 3.06796i) q^{41} +(-2.68614 + 3.71277i) q^{42} +(2.00000 + 3.46410i) q^{43} -1.37228 q^{44} +(-3.37228 - 6.78073i) q^{45} +(0.813859 - 0.469882i) q^{46} -4.25639i q^{47} +(-0.500000 + 1.65831i) q^{48} +(5.50000 + 4.33013i) q^{49} +(0.686141 - 1.18843i) q^{50} +(-1.62772 - 1.73205i) q^{51} +(2.50000 + 2.59808i) q^{52} +14.3537i q^{53} +(0.872281 + 5.12241i) q^{54} +(-3.00000 - 1.73205i) q^{55} +(2.50000 + 0.866025i) q^{56} +(-4.00000 - 4.25639i) q^{57} +(-0.686141 + 0.396143i) q^{58} +(-8.18614 + 4.72627i) q^{59} +(-3.18614 + 2.99422i) q^{60} +(-4.50000 + 2.59808i) q^{61} +(-2.37228 + 4.10891i) q^{62} +(7.87228 - 1.01350i) q^{63} +1.00000 q^{64} +(2.18614 + 8.83518i) q^{65} +(1.62772 + 1.73205i) q^{66} +(-7.11684 - 4.10891i) q^{67} +(-0.686141 + 1.18843i) q^{68} +(-1.55842 - 0.469882i) q^{69} +(4.37228 + 5.04868i) q^{70} +(-0.558422 - 0.967215i) q^{71} +(2.68614 - 1.33591i) q^{72} -0.744563 q^{73} +(-7.11684 + 4.10891i) q^{74} +(-2.31386 + 0.543620i) q^{75} +(-1.68614 + 2.92048i) q^{76} +(2.74456 - 2.37686i) q^{77} +(0.313859 - 6.23711i) q^{78} +15.3723 q^{79} +(2.18614 + 1.26217i) q^{80} +(5.43070 - 7.17687i) q^{81} +(5.31386 - 3.06796i) q^{82} +5.04868i q^{83} +(-1.87228 - 4.18265i) q^{84} +(-3.00000 + 1.73205i) q^{85} -4.00000 q^{86} +(1.31386 + 0.396143i) q^{87} +(0.686141 - 1.18843i) q^{88} +(10.8030 + 6.23711i) q^{89} +(7.55842 + 0.469882i) q^{90} +(-9.50000 - 0.866025i) q^{91} +0.939764i q^{92} +(8.00000 - 1.87953i) q^{93} +(3.68614 + 2.12819i) q^{94} +(-7.37228 + 4.25639i) q^{95} +(-1.18614 - 1.26217i) q^{96} +(-5.37228 - 9.30506i) q^{97} +(-6.50000 + 2.59808i) q^{98} +(0.255437 - 4.10891i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} + q^{3} - 2 q^{4} - 2 q^{6} + 10 q^{7} + 4 q^{8} + 5 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{2} + q^{3} - 2 q^{4} - 2 q^{6} + 10 q^{7} + 4 q^{8} + 5 q^{9} + 3 q^{10} - 3 q^{11} + q^{12} - 14 q^{13} - 8 q^{14} - 4 q^{15} - 2 q^{16} + 3 q^{17} + 5 q^{18} - q^{19} - 3 q^{20} + q^{21} - 3 q^{22} - 9 q^{23} + q^{24} + 6 q^{25} + 4 q^{26} + 16 q^{27} - 2 q^{28} - 3 q^{29} + 11 q^{30} - 4 q^{31} - 2 q^{32} - 3 q^{33} - 6 q^{34} + 3 q^{35} - 10 q^{36} - 6 q^{37} + 2 q^{38} - 5 q^{39} - 27 q^{41} - 5 q^{42} + 8 q^{43} + 6 q^{44} - 2 q^{45} + 9 q^{46} - 2 q^{48} + 22 q^{49} - 3 q^{50} - 18 q^{51} + 10 q^{52} - 8 q^{54} - 12 q^{55} + 10 q^{56} - 16 q^{57} + 3 q^{58} - 27 q^{59} - 7 q^{60} - 18 q^{61} + 2 q^{62} + 20 q^{63} + 4 q^{64} + 3 q^{65} + 18 q^{66} + 6 q^{67} + 3 q^{68} + 11 q^{69} + 6 q^{70} + 15 q^{71} + 5 q^{72} + 20 q^{73} + 6 q^{74} - 15 q^{75} - q^{76} - 12 q^{77} + 7 q^{78} + 50 q^{79} + 3 q^{80} - 7 q^{81} + 27 q^{82} + 4 q^{84} - 12 q^{85} - 16 q^{86} + 11 q^{87} - 3 q^{88} + 3 q^{89} + 13 q^{90} - 38 q^{91} + 32 q^{93} + 9 q^{94} - 18 q^{95} + q^{96} - 10 q^{97} - 26 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 1.68614 0.396143i 0.973494 0.228714i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 2.52434i 1.12892i −0.825461 0.564459i \(-0.809085\pi\)
0.825461 0.564459i \(-0.190915\pi\)
\(6\) −0.500000 + 1.65831i −0.204124 + 0.677003i
\(7\) 2.50000 + 0.866025i 0.944911 + 0.327327i
\(8\) 1.00000 0.353553
\(9\) 2.68614 1.33591i 0.895380 0.445302i
\(10\) 2.18614 + 1.26217i 0.691318 + 0.399133i
\(11\) 0.686141 1.18843i 0.206879 0.358325i −0.743851 0.668346i \(-0.767003\pi\)
0.950730 + 0.310021i \(0.100336\pi\)
\(12\) −1.18614 1.26217i −0.342409 0.364357i
\(13\) −3.50000 + 0.866025i −0.970725 + 0.240192i
\(14\) −2.00000 + 1.73205i −0.534522 + 0.462910i
\(15\) −1.00000 4.25639i −0.258199 1.09899i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −0.686141 1.18843i −0.166414 0.288237i 0.770743 0.637146i \(-0.219885\pi\)
−0.937156 + 0.348910i \(0.886552\pi\)
\(18\) −0.186141 + 2.99422i −0.0438738 + 0.705744i
\(19\) −1.68614 2.92048i −0.386827 0.670004i 0.605194 0.796078i \(-0.293096\pi\)
−0.992021 + 0.126074i \(0.959762\pi\)
\(20\) −2.18614 + 1.26217i −0.488836 + 0.282230i
\(21\) 4.55842 + 0.469882i 0.994729 + 0.102537i
\(22\) 0.686141 + 1.18843i 0.146286 + 0.253374i
\(23\) −0.813859 0.469882i −0.169701 0.0979772i 0.412744 0.910847i \(-0.364571\pi\)
−0.582445 + 0.812870i \(0.697904\pi\)
\(24\) 1.68614 0.396143i 0.344182 0.0808625i
\(25\) −1.37228 −0.274456
\(26\) 1.00000 3.46410i 0.196116 0.679366i
\(27\) 4.00000 3.31662i 0.769800 0.638285i
\(28\) −0.500000 2.59808i −0.0944911 0.490990i
\(29\) 0.686141 + 0.396143i 0.127413 + 0.0735620i 0.562352 0.826898i \(-0.309897\pi\)
−0.434939 + 0.900460i \(0.643230\pi\)
\(30\) 4.18614 + 1.26217i 0.764281 + 0.230439i
\(31\) 4.74456 0.852149 0.426074 0.904688i \(-0.359896\pi\)
0.426074 + 0.904688i \(0.359896\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0.686141 2.27567i 0.119442 0.396143i
\(34\) 1.37228 0.235344
\(35\) 2.18614 6.31084i 0.369525 1.06673i
\(36\) −2.50000 1.65831i −0.416667 0.276385i
\(37\) 7.11684 + 4.10891i 1.17000 + 0.675501i 0.953681 0.300821i \(-0.0972608\pi\)
0.216321 + 0.976322i \(0.430594\pi\)
\(38\) 3.37228 0.547056
\(39\) −5.55842 + 2.84674i −0.890060 + 0.455844i
\(40\) 2.52434i 0.399133i
\(41\) −5.31386 3.06796i −0.829885 0.479135i 0.0239280 0.999714i \(-0.492383\pi\)
−0.853813 + 0.520579i \(0.825716\pi\)
\(42\) −2.68614 + 3.71277i −0.414481 + 0.572893i
\(43\) 2.00000 + 3.46410i 0.304997 + 0.528271i 0.977261 0.212041i \(-0.0680112\pi\)
−0.672264 + 0.740312i \(0.734678\pi\)
\(44\) −1.37228 −0.206879
\(45\) −3.37228 6.78073i −0.502710 1.01081i
\(46\) 0.813859 0.469882i 0.119997 0.0692803i
\(47\) 4.25639i 0.620858i −0.950597 0.310429i \(-0.899527\pi\)
0.950597 0.310429i \(-0.100473\pi\)
\(48\) −0.500000 + 1.65831i −0.0721688 + 0.239357i
\(49\) 5.50000 + 4.33013i 0.785714 + 0.618590i
\(50\) 0.686141 1.18843i 0.0970349 0.168069i
\(51\) −1.62772 1.73205i −0.227926 0.242536i
\(52\) 2.50000 + 2.59808i 0.346688 + 0.360288i
\(53\) 14.3537i 1.97164i 0.167813 + 0.985819i \(0.446330\pi\)
−0.167813 + 0.985819i \(0.553670\pi\)
\(54\) 0.872281 + 5.12241i 0.118702 + 0.697072i
\(55\) −3.00000 1.73205i −0.404520 0.233550i
\(56\) 2.50000 + 0.866025i 0.334077 + 0.115728i
\(57\) −4.00000 4.25639i −0.529813 0.563772i
\(58\) −0.686141 + 0.396143i −0.0900947 + 0.0520162i
\(59\) −8.18614 + 4.72627i −1.06574 + 0.615308i −0.927016 0.375022i \(-0.877635\pi\)
−0.138729 + 0.990330i \(0.544302\pi\)
\(60\) −3.18614 + 2.99422i −0.411329 + 0.386552i
\(61\) −4.50000 + 2.59808i −0.576166 + 0.332650i −0.759608 0.650381i \(-0.774609\pi\)
0.183442 + 0.983030i \(0.441276\pi\)
\(62\) −2.37228 + 4.10891i −0.301280 + 0.521832i
\(63\) 7.87228 1.01350i 0.991814 0.127689i
\(64\) 1.00000 0.125000
\(65\) 2.18614 + 8.83518i 0.271157 + 1.09587i
\(66\) 1.62772 + 1.73205i 0.200358 + 0.213201i
\(67\) −7.11684 4.10891i −0.869461 0.501983i −0.00229183 0.999997i \(-0.500730\pi\)
−0.867169 + 0.498014i \(0.834063\pi\)
\(68\) −0.686141 + 1.18843i −0.0832068 + 0.144118i
\(69\) −1.55842 0.469882i −0.187612 0.0565671i
\(70\) 4.37228 + 5.04868i 0.522588 + 0.603432i
\(71\) −0.558422 0.967215i −0.0662725 0.114787i 0.830985 0.556294i \(-0.187777\pi\)
−0.897258 + 0.441507i \(0.854444\pi\)
\(72\) 2.68614 1.33591i 0.316565 0.157438i
\(73\) −0.744563 −0.0871445 −0.0435722 0.999050i \(-0.513874\pi\)
−0.0435722 + 0.999050i \(0.513874\pi\)
\(74\) −7.11684 + 4.10891i −0.827316 + 0.477651i
\(75\) −2.31386 + 0.543620i −0.267181 + 0.0627719i
\(76\) −1.68614 + 2.92048i −0.193414 + 0.335002i
\(77\) 2.74456 2.37686i 0.312772 0.270868i
\(78\) 0.313859 6.23711i 0.0355376 0.706213i
\(79\) 15.3723 1.72952 0.864758 0.502188i \(-0.167472\pi\)
0.864758 + 0.502188i \(0.167472\pi\)
\(80\) 2.18614 + 1.26217i 0.244418 + 0.141115i
\(81\) 5.43070 7.17687i 0.603411 0.797430i
\(82\) 5.31386 3.06796i 0.586818 0.338799i
\(83\) 5.04868i 0.554164i 0.960846 + 0.277082i \(0.0893674\pi\)
−0.960846 + 0.277082i \(0.910633\pi\)
\(84\) −1.87228 4.18265i −0.204283 0.456365i
\(85\) −3.00000 + 1.73205i −0.325396 + 0.187867i
\(86\) −4.00000 −0.431331
\(87\) 1.31386 + 0.396143i 0.140861 + 0.0424710i
\(88\) 0.686141 1.18843i 0.0731428 0.126687i
\(89\) 10.8030 + 6.23711i 1.14511 + 0.661132i 0.947692 0.319187i \(-0.103410\pi\)
0.197422 + 0.980319i \(0.436743\pi\)
\(90\) 7.55842 + 0.469882i 0.796728 + 0.0495299i
\(91\) −9.50000 0.866025i −0.995871 0.0907841i
\(92\) 0.939764i 0.0979772i
\(93\) 8.00000 1.87953i 0.829561 0.194898i
\(94\) 3.68614 + 2.12819i 0.380196 + 0.219506i
\(95\) −7.37228 + 4.25639i −0.756380 + 0.436696i
\(96\) −1.18614 1.26217i −0.121060 0.128820i
\(97\) −5.37228 9.30506i −0.545473 0.944786i −0.998577 0.0533287i \(-0.983017\pi\)
0.453104 0.891457i \(-0.350316\pi\)
\(98\) −6.50000 + 2.59808i −0.656599 + 0.262445i
\(99\) 0.255437 4.10891i 0.0256724 0.412961i
\(100\) 0.686141 + 1.18843i 0.0686141 + 0.118843i
\(101\) −1.62772 + 2.81929i −0.161964 + 0.280530i −0.935573 0.353133i \(-0.885116\pi\)
0.773609 + 0.633663i \(0.218450\pi\)
\(102\) 2.31386 0.543620i 0.229106 0.0538264i
\(103\) 11.6819i 1.15105i 0.817783 + 0.575527i \(0.195203\pi\)
−0.817783 + 0.575527i \(0.804797\pi\)
\(104\) −3.50000 + 0.866025i −0.343203 + 0.0849208i
\(105\) 1.18614 11.5070i 0.115755 1.12297i
\(106\) −12.4307 7.17687i −1.20738 0.697079i
\(107\) 3.68614 + 2.12819i 0.356353 + 0.205740i 0.667480 0.744628i \(-0.267373\pi\)
−0.311127 + 0.950368i \(0.600706\pi\)
\(108\) −4.87228 1.80579i −0.468835 0.173762i
\(109\) 19.8997i 1.90605i −0.302891 0.953025i \(-0.597952\pi\)
0.302891 0.953025i \(-0.402048\pi\)
\(110\) 3.00000 1.73205i 0.286039 0.165145i
\(111\) 13.6277 + 4.10891i 1.29349 + 0.390001i
\(112\) −2.00000 + 1.73205i −0.188982 + 0.163663i
\(113\) −14.7446 + 8.51278i −1.38705 + 0.800815i −0.992982 0.118266i \(-0.962267\pi\)
−0.394070 + 0.919081i \(0.628933\pi\)
\(114\) 5.68614 1.33591i 0.532556 0.125119i
\(115\) −1.18614 + 2.05446i −0.110608 + 0.191579i
\(116\) 0.792287i 0.0735620i
\(117\) −8.24456 + 7.00194i −0.762210 + 0.647330i
\(118\) 9.45254i 0.870177i
\(119\) −0.686141 3.56529i −0.0628984 0.326830i
\(120\) −1.00000 4.25639i −0.0912871 0.388553i
\(121\) 4.55842 + 7.89542i 0.414402 + 0.717765i
\(122\) 5.19615i 0.470438i
\(123\) −10.1753 3.06796i −0.917473 0.276628i
\(124\) −2.37228 4.10891i −0.213037 0.368991i
\(125\) 9.15759i 0.819080i
\(126\) −3.05842 + 7.32435i −0.272466 + 0.652505i
\(127\) −7.55842 + 13.0916i −0.670701 + 1.16169i 0.307004 + 0.951708i \(0.400673\pi\)
−0.977706 + 0.209981i \(0.932660\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 4.74456 + 5.04868i 0.417735 + 0.444511i
\(130\) −8.74456 2.52434i −0.766949 0.221399i
\(131\) −18.6060 −1.62561 −0.812806 0.582535i \(-0.802061\pi\)
−0.812806 + 0.582535i \(0.802061\pi\)
\(132\) −2.31386 + 0.543620i −0.201396 + 0.0473161i
\(133\) −1.68614 8.76144i −0.146207 0.759714i
\(134\) 7.11684 4.10891i 0.614802 0.354956i
\(135\) −8.37228 10.0974i −0.720571 0.869042i
\(136\) −0.686141 1.18843i −0.0588361 0.101907i
\(137\) −0.813859 1.40965i −0.0695327 0.120434i 0.829163 0.559007i \(-0.188817\pi\)
−0.898696 + 0.438573i \(0.855484\pi\)
\(138\) 1.18614 1.11469i 0.100971 0.0948889i
\(139\) −18.1753 + 10.4935i −1.54161 + 0.890047i −0.542868 + 0.839818i \(0.682662\pi\)
−0.998738 + 0.0502287i \(0.984005\pi\)
\(140\) −6.55842 + 1.26217i −0.554288 + 0.106673i
\(141\) −1.68614 7.17687i −0.141999 0.604401i
\(142\) 1.11684 0.0937235
\(143\) −1.37228 + 4.75372i −0.114756 + 0.397526i
\(144\) −0.186141 + 2.99422i −0.0155117 + 0.249518i
\(145\) 1.00000 1.73205i 0.0830455 0.143839i
\(146\) 0.372281 0.644810i 0.0308102 0.0533649i
\(147\) 10.9891 + 5.12241i 0.906368 + 0.422490i
\(148\) 8.21782i 0.675501i
\(149\) 3.00000 + 5.19615i 0.245770 + 0.425685i 0.962348 0.271821i \(-0.0876260\pi\)
−0.716578 + 0.697507i \(0.754293\pi\)
\(150\) 0.686141 2.27567i 0.0560232 0.185808i
\(151\) 3.02167i 0.245900i −0.992413 0.122950i \(-0.960765\pi\)
0.992413 0.122950i \(-0.0392355\pi\)
\(152\) −1.68614 2.92048i −0.136764 0.236882i
\(153\) −3.43070 2.27567i −0.277356 0.183977i
\(154\) 0.686141 + 3.56529i 0.0552908 + 0.287299i
\(155\) 11.9769i 0.962006i
\(156\) 5.24456 + 3.39036i 0.419901 + 0.271446i
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) −7.68614 + 13.3128i −0.611477 + 1.05911i
\(159\) 5.68614 + 24.2024i 0.450940 + 1.91938i
\(160\) −2.18614 + 1.26217i −0.172830 + 0.0997832i
\(161\) −1.62772 1.87953i −0.128282 0.148128i
\(162\) 3.50000 + 8.29156i 0.274986 + 0.651447i
\(163\) −9.00000 + 5.19615i −0.704934 + 0.406994i −0.809183 0.587557i \(-0.800090\pi\)
0.104248 + 0.994551i \(0.466756\pi\)
\(164\) 6.13592i 0.479135i
\(165\) −5.74456 1.73205i −0.447214 0.134840i
\(166\) −4.37228 2.52434i −0.339355 0.195927i
\(167\) 5.74456 + 3.31662i 0.444528 + 0.256648i 0.705516 0.708694i \(-0.250715\pi\)
−0.260989 + 0.965342i \(0.584049\pi\)
\(168\) 4.55842 + 0.469882i 0.351690 + 0.0362522i
\(169\) 11.5000 6.06218i 0.884615 0.466321i
\(170\) 3.46410i 0.265684i
\(171\) −8.43070 5.59230i −0.644712 0.427654i
\(172\) 2.00000 3.46410i 0.152499 0.264135i
\(173\) 9.55842 + 16.5557i 0.726713 + 1.25870i 0.958265 + 0.285882i \(0.0922865\pi\)
−0.231552 + 0.972823i \(0.574380\pi\)
\(174\) −1.00000 + 0.939764i −0.0758098 + 0.0712433i
\(175\) −3.43070 1.18843i −0.259337 0.0898369i
\(176\) 0.686141 + 1.18843i 0.0517198 + 0.0895813i
\(177\) −11.9307 + 11.2120i −0.896767 + 0.842749i
\(178\) −10.8030 + 6.23711i −0.809718 + 0.467491i
\(179\) −1.37228 0.792287i −0.102569 0.0592183i 0.447838 0.894115i \(-0.352194\pi\)
−0.550407 + 0.834896i \(0.685527\pi\)
\(180\) −4.18614 + 6.31084i −0.312017 + 0.470383i
\(181\) 12.1244i 0.901196i −0.892727 0.450598i \(-0.851211\pi\)
0.892727 0.450598i \(-0.148789\pi\)
\(182\) 5.50000 7.79423i 0.407687 0.577747i
\(183\) −6.55842 + 6.16337i −0.484813 + 0.455609i
\(184\) −0.813859 0.469882i −0.0599985 0.0346402i
\(185\) 10.3723 17.9653i 0.762585 1.32084i
\(186\) −2.37228 + 7.86797i −0.173944 + 0.576907i
\(187\) −1.88316 −0.137710
\(188\) −3.68614 + 2.12819i −0.268839 + 0.155215i
\(189\) 12.8723 4.82746i 0.936321 0.351146i
\(190\) 8.51278i 0.617582i
\(191\) 16.3723 9.45254i 1.18466 0.683962i 0.227569 0.973762i \(-0.426922\pi\)
0.957087 + 0.289800i \(0.0935888\pi\)
\(192\) 1.68614 0.396143i 0.121687 0.0285892i
\(193\) −5.61684 3.24289i −0.404309 0.233428i 0.284032 0.958815i \(-0.408328\pi\)
−0.688342 + 0.725387i \(0.741661\pi\)
\(194\) 10.7446 0.771415
\(195\) 7.18614 + 14.0313i 0.514610 + 1.00480i
\(196\) 1.00000 6.92820i 0.0714286 0.494872i
\(197\) −7.80298 + 13.5152i −0.555940 + 0.962916i 0.441890 + 0.897069i \(0.354308\pi\)
−0.997830 + 0.0658465i \(0.979025\pi\)
\(198\) 3.43070 + 2.27567i 0.243809 + 0.161725i
\(199\) 3.00000 1.73205i 0.212664 0.122782i −0.389885 0.920864i \(-0.627485\pi\)
0.602549 + 0.798082i \(0.294152\pi\)
\(200\) −1.37228 −0.0970349
\(201\) −13.6277 4.10891i −0.961225 0.289820i
\(202\) −1.62772 2.81929i −0.114526 0.198365i
\(203\) 1.37228 + 1.58457i 0.0963153 + 0.111215i
\(204\) −0.686141 + 2.27567i −0.0480395 + 0.159329i
\(205\) −7.74456 + 13.4140i −0.540904 + 0.936873i
\(206\) −10.1168 5.84096i −0.704874 0.406959i
\(207\) −2.81386 0.174928i −0.195577 0.0121584i
\(208\) 1.00000 3.46410i 0.0693375 0.240192i
\(209\) −4.62772 −0.320106
\(210\) 9.37228 + 6.78073i 0.646749 + 0.467915i
\(211\) −11.3723 + 19.6974i −0.782900 + 1.35602i 0.147345 + 0.989085i \(0.452927\pi\)
−0.930246 + 0.366938i \(0.880406\pi\)
\(212\) 12.4307 7.17687i 0.853744 0.492909i
\(213\) −1.32473 1.40965i −0.0907693 0.0965873i
\(214\) −3.68614 + 2.12819i −0.251979 + 0.145480i
\(215\) 8.74456 5.04868i 0.596374 0.344317i
\(216\) 4.00000 3.31662i 0.272166 0.225668i
\(217\) 11.8614 + 4.10891i 0.805205 + 0.278931i
\(218\) 17.2337 + 9.94987i 1.16721 + 0.673891i
\(219\) −1.25544 + 0.294954i −0.0848346 + 0.0199311i
\(220\) 3.46410i 0.233550i
\(221\) 3.43070 + 3.56529i 0.230774 + 0.239827i
\(222\) −10.3723 + 9.74749i −0.696142 + 0.654209i
\(223\) 3.11684 5.39853i 0.208719 0.361512i −0.742592 0.669744i \(-0.766404\pi\)
0.951311 + 0.308232i \(0.0997372\pi\)
\(224\) −0.500000 2.59808i −0.0334077 0.173591i
\(225\) −3.68614 + 1.83324i −0.245743 + 0.122216i
\(226\) 17.0256i 1.13252i
\(227\) −3.30298 + 1.90698i −0.219227 + 0.126571i −0.605592 0.795775i \(-0.707064\pi\)
0.386365 + 0.922346i \(0.373730\pi\)
\(228\) −1.68614 + 5.59230i −0.111667 + 0.370359i
\(229\) 12.1168 0.800704 0.400352 0.916362i \(-0.368888\pi\)
0.400352 + 0.916362i \(0.368888\pi\)
\(230\) −1.18614 2.05446i −0.0782118 0.135467i
\(231\) 3.68614 5.09496i 0.242530 0.335224i
\(232\) 0.686141 + 0.396143i 0.0450473 + 0.0260081i
\(233\) 28.0627i 1.83845i −0.393737 0.919223i \(-0.628818\pi\)
0.393737 0.919223i \(-0.371182\pi\)
\(234\) −1.94158 10.6410i −0.126925 0.695622i
\(235\) −10.7446 −0.700898
\(236\) 8.18614 + 4.72627i 0.532872 + 0.307654i
\(237\) 25.9198 6.08963i 1.68367 0.395564i
\(238\) 3.43070 + 1.18843i 0.222379 + 0.0770345i
\(239\) −24.6060 −1.59163 −0.795814 0.605541i \(-0.792957\pi\)
−0.795814 + 0.605541i \(0.792957\pi\)
\(240\) 4.18614 + 1.26217i 0.270214 + 0.0814727i
\(241\) 0.627719 + 1.08724i 0.0404349 + 0.0700353i 0.885535 0.464573i \(-0.153792\pi\)
−0.845100 + 0.534609i \(0.820459\pi\)
\(242\) −9.11684 −0.586053
\(243\) 6.31386 14.2525i 0.405034 0.914302i
\(244\) 4.50000 + 2.59808i 0.288083 + 0.166325i
\(245\) 10.9307 13.8839i 0.698337 0.887007i
\(246\) 7.74456 7.27806i 0.493775 0.464032i
\(247\) 8.43070 + 8.76144i 0.536433 + 0.557477i
\(248\) 4.74456 0.301280
\(249\) 2.00000 + 8.51278i 0.126745 + 0.539475i
\(250\) 7.93070 + 4.57879i 0.501582 + 0.289588i
\(251\) −0.558422 0.967215i −0.0352473 0.0610501i 0.847864 0.530214i \(-0.177889\pi\)
−0.883111 + 0.469164i \(0.844555\pi\)
\(252\) −4.81386 6.31084i −0.303245 0.397546i
\(253\) −1.11684 + 0.644810i −0.0702154 + 0.0405389i
\(254\) −7.55842 13.0916i −0.474258 0.821438i
\(255\) −4.37228 + 4.10891i −0.273803 + 0.257310i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 11.0584 19.1537i 0.689805 1.19478i −0.282095 0.959386i \(-0.591029\pi\)
0.971901 0.235392i \(-0.0756373\pi\)
\(258\) −6.74456 + 1.58457i −0.419898 + 0.0986513i
\(259\) 14.2337 + 16.4356i 0.884438 + 1.02126i
\(260\) 6.55842 6.31084i 0.406736 0.391382i
\(261\) 2.37228 + 0.147477i 0.146841 + 0.00912859i
\(262\) 9.30298 16.1132i 0.574740 0.995479i
\(263\) −12.0475 6.95565i −0.742884 0.428904i 0.0802332 0.996776i \(-0.474433\pi\)
−0.823117 + 0.567872i \(0.807767\pi\)
\(264\) 0.686141 2.27567i 0.0422290 0.140058i
\(265\) 36.2337 2.22582
\(266\) 8.43070 + 2.92048i 0.516920 + 0.179066i
\(267\) 20.6861 + 6.23711i 1.26597 + 0.381705i
\(268\) 8.21782i 0.501983i
\(269\) 13.9307 + 24.1287i 0.849370 + 1.47115i 0.881771 + 0.471677i \(0.156351\pi\)
−0.0324014 + 0.999475i \(0.510316\pi\)
\(270\) 12.9307 2.20193i 0.786938 0.134005i
\(271\) 2.00000 3.46410i 0.121491 0.210429i −0.798865 0.601511i \(-0.794566\pi\)
0.920356 + 0.391082i \(0.127899\pi\)
\(272\) 1.37228 0.0832068
\(273\) −16.3614 + 2.30312i −0.990237 + 0.139391i
\(274\) 1.62772 0.0983341
\(275\) −0.941578 + 1.63086i −0.0567793 + 0.0983446i
\(276\) 0.372281 + 1.58457i 0.0224087 + 0.0953801i
\(277\) 4.74456 + 8.21782i 0.285073 + 0.493761i 0.972627 0.232372i \(-0.0746488\pi\)
−0.687554 + 0.726133i \(0.741315\pi\)
\(278\) 20.9870i 1.25872i
\(279\) 12.7446 6.33830i 0.762997 0.379464i
\(280\) 2.18614 6.31084i 0.130647 0.377145i
\(281\) 3.25544 0.194203 0.0971016 0.995274i \(-0.469043\pi\)
0.0971016 + 0.995274i \(0.469043\pi\)
\(282\) 7.05842 + 2.12819i 0.420323 + 0.126732i
\(283\) −6.55842 3.78651i −0.389858 0.225084i 0.292241 0.956345i \(-0.405599\pi\)
−0.682098 + 0.731260i \(0.738932\pi\)
\(284\) −0.558422 + 0.967215i −0.0331362 + 0.0573937i
\(285\) −10.7446 + 10.0974i −0.636453 + 0.598115i
\(286\) −3.43070 3.56529i −0.202862 0.210820i
\(287\) −10.6277 12.2718i −0.627334 0.724383i
\(288\) −2.50000 1.65831i −0.147314 0.0977170i
\(289\) 7.55842 13.0916i 0.444613 0.770092i
\(290\) 1.00000 + 1.73205i 0.0587220 + 0.101710i
\(291\) −12.7446 13.5615i −0.747099 0.794986i
\(292\) 0.372281 + 0.644810i 0.0217861 + 0.0377347i
\(293\) −14.7446 + 8.51278i −0.861387 + 0.497322i −0.864476 0.502673i \(-0.832350\pi\)
0.00308982 + 0.999995i \(0.499016\pi\)
\(294\) −9.93070 + 6.95565i −0.579170 + 0.405662i
\(295\) 11.9307 + 20.6646i 0.694632 + 1.20314i
\(296\) 7.11684 + 4.10891i 0.413658 + 0.238826i
\(297\) −1.19702 7.02939i −0.0694579 0.407887i
\(298\) −6.00000 −0.347571
\(299\) 3.25544 + 0.939764i 0.188267 + 0.0543479i
\(300\) 1.62772 + 1.73205i 0.0939764 + 0.100000i
\(301\) 2.00000 + 10.3923i 0.115278 + 0.599002i
\(302\) 2.61684 + 1.51084i 0.150582 + 0.0869388i
\(303\) −1.62772 + 5.39853i −0.0935100 + 0.310138i
\(304\) 3.37228 0.193414
\(305\) 6.55842 + 11.3595i 0.375534 + 0.650444i
\(306\) 3.68614 1.83324i 0.210723 0.104799i
\(307\) 13.2337 0.755286 0.377643 0.925951i \(-0.376735\pi\)
0.377643 + 0.925951i \(0.376735\pi\)
\(308\) −3.43070 1.18843i −0.195482 0.0677171i
\(309\) 4.62772 + 19.6974i 0.263262 + 1.12054i
\(310\) 10.3723 + 5.98844i 0.589106 + 0.340121i
\(311\) −4.62772 −0.262414 −0.131207 0.991355i \(-0.541885\pi\)
−0.131207 + 0.991355i \(0.541885\pi\)
\(312\) −5.55842 + 2.84674i −0.314684 + 0.161165i
\(313\) 13.8564i 0.783210i 0.920133 + 0.391605i \(0.128080\pi\)
−0.920133 + 0.391605i \(0.871920\pi\)
\(314\) 0 0
\(315\) −2.55842 19.8723i −0.144151 1.11968i
\(316\) −7.68614 13.3128i −0.432379 0.748903i
\(317\) 26.7446 1.50212 0.751062 0.660232i \(-0.229542\pi\)
0.751062 + 0.660232i \(0.229542\pi\)
\(318\) −23.8030 7.17687i −1.33481 0.402459i
\(319\) 0.941578 0.543620i 0.0527182 0.0304369i
\(320\) 2.52434i 0.141115i
\(321\) 7.05842 + 2.12819i 0.393963 + 0.118784i
\(322\) 2.44158 0.469882i 0.136064 0.0261855i
\(323\) −2.31386 + 4.00772i −0.128747 + 0.222996i
\(324\) −8.93070 1.11469i −0.496150 0.0619273i
\(325\) 4.80298 1.18843i 0.266422 0.0659223i
\(326\) 10.3923i 0.575577i
\(327\) −7.88316 33.5538i −0.435940 1.85553i
\(328\) −5.31386 3.06796i −0.293409 0.169400i
\(329\) 3.68614 10.6410i 0.203224 0.586656i
\(330\) 4.37228 4.10891i 0.240686 0.226188i
\(331\) −19.1168 + 11.0371i −1.05076 + 0.606655i −0.922861 0.385133i \(-0.874156\pi\)
−0.127896 + 0.991788i \(0.540822\pi\)
\(332\) 4.37228 2.52434i 0.239960 0.138541i
\(333\) 24.6060 + 1.52967i 1.34840 + 0.0838255i
\(334\) −5.74456 + 3.31662i −0.314328 + 0.181478i
\(335\) −10.3723 + 17.9653i −0.566698 + 0.981550i
\(336\) −2.68614 + 3.71277i −0.146541 + 0.202548i
\(337\) 29.6060 1.61274 0.806370 0.591411i \(-0.201429\pi\)
0.806370 + 0.591411i \(0.201429\pi\)
\(338\) −0.500000 + 12.9904i −0.0271964 + 0.706584i
\(339\) −21.4891 + 20.1947i −1.16713 + 1.09683i
\(340\) 3.00000 + 1.73205i 0.162698 + 0.0939336i
\(341\) 3.25544 5.63858i 0.176292 0.305346i
\(342\) 9.05842 4.50506i 0.489823 0.243605i
\(343\) 10.0000 + 15.5885i 0.539949 + 0.841698i
\(344\) 2.00000 + 3.46410i 0.107833 + 0.186772i
\(345\) −1.18614 + 3.93398i −0.0638597 + 0.211799i
\(346\) −19.1168 −1.02773
\(347\) 13.5475 7.82168i 0.727270 0.419890i −0.0901523 0.995928i \(-0.528735\pi\)
0.817423 + 0.576038i \(0.195402\pi\)
\(348\) −0.313859 1.33591i −0.0168246 0.0716121i
\(349\) 1.44158 2.49689i 0.0771659 0.133655i −0.824860 0.565337i \(-0.808746\pi\)
0.902026 + 0.431682i \(0.142080\pi\)
\(350\) 2.74456 2.37686i 0.146703 0.127049i
\(351\) −11.1277 + 15.0723i −0.593954 + 0.804499i
\(352\) −1.37228 −0.0731428
\(353\) 19.6277 + 11.3321i 1.04468 + 0.603145i 0.921155 0.389197i \(-0.127247\pi\)
0.123523 + 0.992342i \(0.460581\pi\)
\(354\) −3.74456 15.9383i −0.199021 0.847112i
\(355\) −2.44158 + 1.40965i −0.129586 + 0.0748162i
\(356\) 12.4742i 0.661132i
\(357\) −2.56930 5.73977i −0.135982 0.303781i
\(358\) 1.37228 0.792287i 0.0725273 0.0418737i
\(359\) −22.3723 −1.18076 −0.590382 0.807124i \(-0.701023\pi\)
−0.590382 + 0.807124i \(0.701023\pi\)
\(360\) −3.37228 6.78073i −0.177735 0.357376i
\(361\) 3.81386 6.60580i 0.200729 0.347674i
\(362\) 10.5000 + 6.06218i 0.551868 + 0.318621i
\(363\) 10.8139 + 11.5070i 0.567580 + 0.603961i
\(364\) 4.00000 + 8.66025i 0.209657 + 0.453921i
\(365\) 1.87953i 0.0983790i
\(366\) −2.05842 8.76144i −0.107595 0.457968i
\(367\) 8.23369 + 4.75372i 0.429795 + 0.248142i 0.699259 0.714868i \(-0.253513\pi\)
−0.269464 + 0.963010i \(0.586847\pi\)
\(368\) 0.813859 0.469882i 0.0424254 0.0244943i
\(369\) −18.3723 1.14214i −0.956423 0.0594576i
\(370\) 10.3723 + 17.9653i 0.539229 + 0.933972i
\(371\) −12.4307 + 35.8843i −0.645370 + 1.86302i
\(372\) −5.62772 5.98844i −0.291784 0.310486i
\(373\) −4.00000 6.92820i −0.207112 0.358729i 0.743691 0.668523i \(-0.233073\pi\)
−0.950804 + 0.309794i \(0.899740\pi\)
\(374\) 0.941578 1.63086i 0.0486878 0.0843298i
\(375\) −3.62772 15.4410i −0.187335 0.797369i
\(376\) 4.25639i 0.219506i
\(377\) −2.74456 0.792287i −0.141352 0.0408049i
\(378\) −2.25544 + 13.5615i −0.116007 + 0.697526i
\(379\) −22.1168 12.7692i −1.13607 0.655908i −0.190613 0.981665i \(-0.561047\pi\)
−0.945453 + 0.325757i \(0.894381\pi\)
\(380\) 7.37228 + 4.25639i 0.378190 + 0.218348i
\(381\) −7.55842 + 25.0684i −0.387230 + 1.28430i
\(382\) 18.9051i 0.967268i
\(383\) 27.4307 15.8371i 1.40164 0.809239i 0.407082 0.913392i \(-0.366546\pi\)
0.994561 + 0.104152i \(0.0332130\pi\)
\(384\) −0.500000 + 1.65831i −0.0255155 + 0.0846254i
\(385\) −6.00000 6.92820i −0.305788 0.353094i
\(386\) 5.61684 3.24289i 0.285890 0.165059i
\(387\) 10.0000 + 6.63325i 0.508329 + 0.337187i
\(388\) −5.37228 + 9.30506i −0.272736 + 0.472393i
\(389\) 22.6641i 1.14912i −0.818463 0.574559i \(-0.805174\pi\)
0.818463 0.574559i \(-0.194826\pi\)
\(390\) −15.7446 0.792287i −0.797257 0.0401190i
\(391\) 1.28962i 0.0652189i
\(392\) 5.50000 + 4.33013i 0.277792 + 0.218704i
\(393\) −31.3723 + 7.37063i −1.58252 + 0.371799i
\(394\) −7.80298 13.5152i −0.393109 0.680884i
\(395\) 38.8048i 1.95248i
\(396\) −3.68614 + 1.83324i −0.185236 + 0.0921238i
\(397\) −6.87228 11.9031i −0.344910 0.597401i 0.640427 0.768019i \(-0.278757\pi\)
−0.985337 + 0.170617i \(0.945424\pi\)
\(398\) 3.46410i 0.173640i
\(399\) −6.31386 14.1051i −0.316088 0.706137i
\(400\) 0.686141 1.18843i 0.0343070 0.0594215i
\(401\) 5.74456 9.94987i 0.286870 0.496873i −0.686191 0.727421i \(-0.740719\pi\)
0.973061 + 0.230548i \(0.0740520\pi\)
\(402\) 10.3723 9.74749i 0.517322 0.486161i
\(403\) −16.6060 + 4.10891i −0.827202 + 0.204679i
\(404\) 3.25544 0.161964
\(405\) −18.1168 13.7089i −0.900233 0.681202i
\(406\) −2.05842 + 0.396143i −0.102158 + 0.0196603i
\(407\) 9.76631 5.63858i 0.484098 0.279494i
\(408\) −1.62772 1.73205i −0.0805841 0.0857493i
\(409\) −0.744563 1.28962i −0.0368163 0.0637676i 0.847030 0.531545i \(-0.178388\pi\)
−0.883846 + 0.467777i \(0.845055\pi\)
\(410\) −7.74456 13.4140i −0.382477 0.662469i
\(411\) −1.93070 2.05446i −0.0952346 0.101339i
\(412\) 10.1168 5.84096i 0.498421 0.287764i
\(413\) −24.5584 + 4.72627i −1.20844 + 0.232565i
\(414\) 1.55842 2.34941i 0.0765923 0.115467i
\(415\) 12.7446 0.625606
\(416\) 2.50000 + 2.59808i 0.122573 + 0.127381i
\(417\) −26.4891 + 24.8935i −1.29718 + 1.21904i
\(418\) 2.31386 4.00772i 0.113175 0.196024i
\(419\) 8.74456 15.1460i 0.427200 0.739932i −0.569423 0.822045i \(-0.692833\pi\)
0.996623 + 0.0821127i \(0.0261667\pi\)
\(420\) −10.5584 + 4.72627i −0.515198 + 0.230618i
\(421\) 12.9715i 0.632194i −0.948727 0.316097i \(-0.897627\pi\)
0.948727 0.316097i \(-0.102373\pi\)
\(422\) −11.3723 19.6974i −0.553594 0.958853i
\(423\) −5.68614 11.4333i −0.276470 0.555904i
\(424\) 14.3537i 0.697079i
\(425\) 0.941578 + 1.63086i 0.0456732 + 0.0791084i
\(426\) 1.88316 0.442430i 0.0912392 0.0214358i
\(427\) −13.5000 + 2.59808i −0.653311 + 0.125730i
\(428\) 4.25639i 0.205740i
\(429\) −0.430703 + 8.55906i −0.0207946 + 0.413236i
\(430\) 10.0974i 0.486938i
\(431\) −9.81386 + 16.9981i −0.472717 + 0.818770i −0.999512 0.0312223i \(-0.990060\pi\)
0.526795 + 0.849992i \(0.323393\pi\)
\(432\) 0.872281 + 5.12241i 0.0419677 + 0.246452i
\(433\) −30.3505 + 17.5229i −1.45855 + 0.842096i −0.998940 0.0460230i \(-0.985345\pi\)
−0.459613 + 0.888119i \(0.652012\pi\)
\(434\) −9.48913 + 8.21782i −0.455493 + 0.394468i
\(435\) 1.00000 3.31662i 0.0479463 0.159020i
\(436\) −17.2337 + 9.94987i −0.825344 + 0.476513i
\(437\) 3.16915i 0.151601i
\(438\) 0.372281 1.23472i 0.0177883 0.0589971i
\(439\) −30.3505 17.5229i −1.44855 0.836322i −0.450157 0.892950i \(-0.648632\pi\)
−0.998395 + 0.0566279i \(0.981965\pi\)
\(440\) −3.00000 1.73205i −0.143019 0.0825723i
\(441\) 20.5584 + 4.28384i 0.978972 + 0.203992i
\(442\) −4.80298 + 1.18843i −0.228455 + 0.0565279i
\(443\) 11.1846i 0.531396i −0.964056 0.265698i \(-0.914398\pi\)
0.964056 0.265698i \(-0.0856024\pi\)
\(444\) −3.25544 13.8564i −0.154496 0.657596i
\(445\) 15.7446 27.2704i 0.746364 1.29274i
\(446\) 3.11684 + 5.39853i 0.147587 + 0.255628i
\(447\) 7.11684 + 7.57301i 0.336615 + 0.358191i
\(448\) 2.50000 + 0.866025i 0.118114 + 0.0409159i
\(449\) 0.302985 + 0.524785i 0.0142987 + 0.0247661i 0.873086 0.487566i \(-0.162115\pi\)
−0.858788 + 0.512332i \(0.828782\pi\)
\(450\) 0.255437 4.10891i 0.0120414 0.193696i
\(451\) −7.29211 + 4.21010i −0.343372 + 0.198246i
\(452\) 14.7446 + 8.51278i 0.693526 + 0.400407i
\(453\) −1.19702 5.09496i −0.0562407 0.239382i
\(454\) 3.81396i 0.178998i
\(455\) −2.18614 + 23.9812i −0.102488 + 1.12426i
\(456\) −4.00000 4.25639i −0.187317 0.199324i
\(457\) −16.6753 9.62747i −0.780036 0.450354i 0.0564070 0.998408i \(-0.482036\pi\)
−0.836443 + 0.548054i \(0.815369\pi\)
\(458\) −6.05842 + 10.4935i −0.283091 + 0.490329i
\(459\) −6.68614 2.47805i −0.312082 0.115666i
\(460\) 2.37228 0.110608
\(461\) −13.0693 + 7.54556i −0.608698 + 0.351432i −0.772456 0.635069i \(-0.780972\pi\)
0.163758 + 0.986501i \(0.447638\pi\)
\(462\) 2.56930 + 5.73977i 0.119535 + 0.267038i
\(463\) 30.7345i 1.42835i −0.699966 0.714176i \(-0.746801\pi\)
0.699966 0.714176i \(-0.253199\pi\)
\(464\) −0.686141 + 0.396143i −0.0318533 + 0.0183905i
\(465\) −4.74456 20.1947i −0.220024 0.936507i
\(466\) 24.3030 + 14.0313i 1.12581 + 0.649989i
\(467\) 19.6277 0.908263 0.454131 0.890935i \(-0.349950\pi\)
0.454131 + 0.890935i \(0.349950\pi\)
\(468\) 10.1861 + 3.63903i 0.470855 + 0.168214i
\(469\) −14.2337 16.4356i −0.657251 0.758928i
\(470\) 5.37228 9.30506i 0.247805 0.429211i
\(471\) 0 0
\(472\) −8.18614 + 4.72627i −0.376798 + 0.217544i
\(473\) 5.48913 0.252390
\(474\) −7.68614 + 25.4920i −0.353036 + 1.17089i
\(475\) 2.31386 + 4.00772i 0.106167 + 0.183887i
\(476\) −2.74456 + 2.37686i −0.125797 + 0.108943i
\(477\) 19.1753 + 38.5562i 0.877975 + 1.76537i
\(478\) 12.3030 21.3094i 0.562725 0.974669i
\(479\) 22.8030 + 13.1653i 1.04189 + 0.601538i 0.920369 0.391050i \(-0.127888\pi\)
0.121526 + 0.992588i \(0.461221\pi\)
\(480\) −3.18614 + 2.99422i −0.145427 + 0.136667i
\(481\) −28.4674 8.21782i −1.29800 0.374701i
\(482\) −1.25544 −0.0571836
\(483\) −3.48913 2.52434i −0.158761 0.114861i
\(484\) 4.55842 7.89542i 0.207201 0.358883i
\(485\) −23.4891 + 13.5615i −1.06659 + 0.615794i
\(486\) 9.18614 + 12.5942i 0.416692 + 0.571286i
\(487\) −9.38316 + 5.41737i −0.425191 + 0.245484i −0.697296 0.716783i \(-0.745614\pi\)
0.272105 + 0.962268i \(0.412280\pi\)
\(488\) −4.50000 + 2.59808i −0.203705 + 0.117609i
\(489\) −13.1168 + 12.3267i −0.593164 + 0.557434i
\(490\) 6.55842 + 16.4082i 0.296279 + 0.741247i
\(491\) −33.6060 19.4024i −1.51662 0.875619i −0.999810 0.0195166i \(-0.993787\pi\)
−0.516807 0.856102i \(-0.672879\pi\)
\(492\) 2.43070 + 10.3460i 0.109585 + 0.466435i
\(493\) 1.08724i 0.0489669i
\(494\) −11.8030 + 2.92048i −0.531041 + 0.131399i
\(495\) −10.3723 0.644810i −0.466199 0.0289821i
\(496\) −2.37228 + 4.10891i −0.106519 + 0.184496i
\(497\) −0.558422 2.90165i −0.0250486 0.130157i
\(498\) −8.37228 2.52434i −0.375171 0.113118i
\(499\) 23.3639i 1.04591i −0.852360 0.522955i \(-0.824830\pi\)
0.852360 0.522955i \(-0.175170\pi\)
\(500\) −7.93070 + 4.57879i −0.354672 + 0.204770i
\(501\) 11.0000 + 3.31662i 0.491444 + 0.148176i
\(502\) 1.11684 0.0498472
\(503\) 11.4891 + 19.8997i 0.512275 + 0.887286i 0.999899 + 0.0142322i \(0.00453039\pi\)
−0.487624 + 0.873054i \(0.662136\pi\)
\(504\) 7.87228 1.01350i 0.350659 0.0451450i
\(505\) 7.11684 + 4.10891i 0.316695 + 0.182844i
\(506\) 1.28962i 0.0573306i
\(507\) 16.9891 14.7773i 0.754514 0.656284i
\(508\) 15.1168 0.670701
\(509\) 23.1861 + 13.3865i 1.02771 + 0.593347i 0.916327 0.400431i \(-0.131139\pi\)
0.111381 + 0.993778i \(0.464473\pi\)
\(510\) −1.37228 5.84096i −0.0607656 0.258642i
\(511\) −1.86141 0.644810i −0.0823438 0.0285247i
\(512\) 1.00000 0.0441942
\(513\) −16.4307 6.08963i −0.725433 0.268864i
\(514\) 11.0584 + 19.1537i 0.487766 + 0.844836i
\(515\) 29.4891 1.29945
\(516\) 2.00000 6.63325i 0.0880451 0.292013i
\(517\) −5.05842 2.92048i −0.222469 0.128443i
\(518\) −21.3505 + 4.10891i −0.938089 + 0.180535i
\(519\) 22.6753 + 24.1287i 0.995334 + 1.05913i
\(520\) 2.18614 + 8.83518i 0.0958686 + 0.387448i
\(521\) 16.1168 0.706092 0.353046 0.935606i \(-0.385146\pi\)
0.353046 + 0.935606i \(0.385146\pi\)
\(522\) −1.31386 + 1.98072i −0.0575061 + 0.0866936i
\(523\) 7.50000 + 4.33013i 0.327952 + 0.189343i 0.654932 0.755688i \(-0.272697\pi\)
−0.326979 + 0.945031i \(0.606031\pi\)
\(524\) 9.30298 + 16.1132i 0.406403 + 0.703910i
\(525\) −6.25544 0.644810i −0.273010 0.0281418i
\(526\) 12.0475 6.95565i 0.525298 0.303281i
\(527\) −3.25544 5.63858i −0.141809 0.245621i
\(528\) 1.62772 + 1.73205i 0.0708374 + 0.0753778i
\(529\) −11.0584 19.1537i −0.480801 0.832772i
\(530\) −18.1168 + 31.3793i −0.786945 + 1.36303i
\(531\) −15.6753 + 23.6314i −0.680249 + 1.02551i
\(532\) −6.74456 + 5.84096i −0.292414 + 0.253238i
\(533\) 21.2554 + 6.13592i 0.920675 + 0.265776i
\(534\) −15.7446 + 14.7962i −0.681334 + 0.640293i
\(535\) 5.37228 9.30506i 0.232264 0.402293i
\(536\) −7.11684 4.10891i −0.307401 0.177478i
\(537\) −2.62772 0.792287i −0.113394 0.0341897i
\(538\) −27.8614 −1.20119
\(539\) 8.91983 3.56529i 0.384204 0.153568i
\(540\) −4.55842 + 12.2993i −0.196163 + 0.529277i
\(541\) 18.6101i 0.800112i −0.916491 0.400056i \(-0.868991\pi\)
0.916491 0.400056i \(-0.131009\pi\)
\(542\) 2.00000 + 3.46410i 0.0859074 + 0.148796i
\(543\) −4.80298 20.4434i −0.206116 0.877309i
\(544\) −0.686141 + 1.18843i −0.0294180 + 0.0509535i
\(545\) −50.2337 −2.15177
\(546\) 6.18614 15.3210i 0.264742 0.655676i
\(547\) 31.4891 1.34638 0.673189 0.739471i \(-0.264924\pi\)
0.673189 + 0.739471i \(0.264924\pi\)
\(548\) −0.813859 + 1.40965i −0.0347663 + 0.0602171i
\(549\) −8.61684 + 12.9904i −0.367758 + 0.554416i
\(550\) −0.941578 1.63086i −0.0401490 0.0695401i
\(551\) 2.67181i 0.113823i
\(552\) −1.55842 0.469882i −0.0663308 0.0199995i
\(553\) 38.4307 + 13.3128i 1.63424 + 0.566117i
\(554\) −9.48913 −0.403154
\(555\) 10.3723 34.4010i 0.440279 1.46024i
\(556\) 18.1753 + 10.4935i 0.770803 + 0.445023i
\(557\) 7.80298 13.5152i 0.330623 0.572656i −0.652011 0.758209i \(-0.726074\pi\)
0.982634 + 0.185553i \(0.0594078\pi\)
\(558\) −0.883156 + 14.2063i −0.0373870 + 0.601399i
\(559\) −10.0000 10.3923i −0.422955 0.439548i
\(560\) 4.37228 + 5.04868i 0.184763 + 0.213345i
\(561\) −3.17527 + 0.746000i −0.134060 + 0.0314961i
\(562\) −1.62772 + 2.81929i −0.0686612 + 0.118925i
\(563\) −18.0000 31.1769i −0.758610 1.31395i −0.943560 0.331202i \(-0.892546\pi\)
0.184950 0.982748i \(-0.440788\pi\)
\(564\) −5.37228 + 5.04868i −0.226214 + 0.212588i
\(565\) 21.4891 + 37.2203i 0.904054 + 1.56587i
\(566\) 6.55842 3.78651i 0.275671 0.159159i
\(567\) 19.7921 13.2390i 0.831190 0.555988i
\(568\) −0.558422 0.967215i −0.0234309 0.0405835i
\(569\) −19.1644 11.0646i −0.803413 0.463851i 0.0412501 0.999149i \(-0.486866\pi\)
−0.844663 + 0.535298i \(0.820199\pi\)
\(570\) −3.37228 14.3537i −0.141249 0.601212i
\(571\) 13.4891 0.564502 0.282251 0.959341i \(-0.408919\pi\)
0.282251 + 0.959341i \(0.408919\pi\)
\(572\) 4.80298 1.18843i 0.200823 0.0496908i
\(573\) 23.8614 22.4241i 0.996825 0.936780i
\(574\) 15.9416 3.06796i 0.665389 0.128054i
\(575\) 1.11684 + 0.644810i 0.0465756 + 0.0268904i
\(576\) 2.68614 1.33591i 0.111923 0.0556628i
\(577\) 40.2337 1.67495 0.837475 0.546475i \(-0.184031\pi\)
0.837475 + 0.546475i \(0.184031\pi\)
\(578\) 7.55842 + 13.0916i 0.314389 + 0.544538i
\(579\) −10.7554 3.24289i −0.446981 0.134770i
\(580\) −2.00000 −0.0830455
\(581\) −4.37228 + 12.6217i −0.181393 + 0.523636i
\(582\) 18.1168 4.25639i 0.750967 0.176433i
\(583\) 17.0584 + 9.84868i 0.706488 + 0.407891i
\(584\) −0.744563 −0.0308102
\(585\) 17.6753 + 20.8121i 0.730782 + 0.860473i
\(586\) 17.0256i 0.703319i
\(587\) 5.95245 + 3.43665i 0.245684 + 0.141846i 0.617786 0.786346i \(-0.288030\pi\)
−0.372102 + 0.928192i \(0.621363\pi\)
\(588\) −1.05842 12.0781i −0.0436486 0.498091i
\(589\) −8.00000 13.8564i −0.329634 0.570943i
\(590\) −23.8614 −0.982359
\(591\) −7.80298 + 25.8796i −0.320972 + 1.06454i
\(592\) −7.11684 + 4.10891i −0.292500 + 0.168875i
\(593\) 26.3306i 1.08127i −0.841258 0.540634i \(-0.818184\pi\)
0.841258 0.540634i \(-0.181816\pi\)
\(594\) 6.68614 + 2.47805i 0.274336 + 0.101676i
\(595\) −9.00000 + 1.73205i −0.368964 + 0.0710072i
\(596\) 3.00000 5.19615i 0.122885 0.212843i
\(597\) 4.37228 4.10891i 0.178946 0.168167i
\(598\) −2.44158 + 2.34941i −0.0998435 + 0.0960745i
\(599\) 13.9113i 0.568401i 0.958765 + 0.284200i \(0.0917281\pi\)
−0.958765 + 0.284200i \(0.908272\pi\)
\(600\) −2.31386 + 0.543620i −0.0944629 + 0.0221932i
\(601\) −19.8832 11.4795i −0.811051 0.468260i 0.0362698 0.999342i \(-0.488452\pi\)
−0.847321 + 0.531082i \(0.821786\pi\)
\(602\) −10.0000 3.46410i −0.407570 0.141186i
\(603\) −24.6060 1.52967i −1.00203 0.0622930i
\(604\) −2.61684 + 1.51084i −0.106478 + 0.0614750i
\(605\) 19.9307 11.5070i 0.810298 0.467826i
\(606\) −3.86141 4.10891i −0.156859 0.166913i
\(607\) 21.3505 12.3267i 0.866591 0.500327i 0.000377344 1.00000i \(-0.499880\pi\)
0.866214 + 0.499673i \(0.166547\pi\)
\(608\) −1.68614 + 2.92048i −0.0683820 + 0.118441i
\(609\) 2.94158 + 2.12819i 0.119199 + 0.0862388i
\(610\) −13.1168 −0.531085
\(611\) 3.68614 + 14.8974i 0.149125 + 0.602683i
\(612\) −0.255437 + 4.10891i −0.0103254 + 0.166093i
\(613\) 26.2337 + 15.1460i 1.05957 + 0.611742i 0.925313 0.379204i \(-0.123802\pi\)
0.134256 + 0.990947i \(0.457136\pi\)
\(614\) −6.61684 + 11.4607i −0.267034 + 0.462517i
\(615\) −7.74456 + 25.6858i −0.312291 + 1.03575i
\(616\) 2.74456 2.37686i 0.110582 0.0957665i
\(617\) 3.30298 + 5.72094i 0.132973 + 0.230316i 0.924821 0.380402i \(-0.124214\pi\)
−0.791848 + 0.610718i \(0.790881\pi\)
\(618\) −19.3723 5.84096i −0.779267 0.234958i
\(619\) −35.4674 −1.42555 −0.712777 0.701391i \(-0.752563\pi\)
−0.712777 + 0.701391i \(0.752563\pi\)
\(620\) −10.3723 + 5.98844i −0.416561 + 0.240502i
\(621\) −4.81386 + 0.819738i −0.193174 + 0.0328950i
\(622\) 2.31386 4.00772i 0.0927773 0.160695i
\(623\) 21.6060 + 24.9484i 0.865625 + 0.999538i
\(624\) 0.313859 6.23711i 0.0125644 0.249684i
\(625\) −29.9783 −1.19913
\(626\) −12.0000 6.92820i −0.479616 0.276907i
\(627\) −7.80298 + 1.83324i −0.311621 + 0.0732126i
\(628\) 0 0
\(629\) 11.2772i 0.449650i
\(630\) 18.4891 + 7.72049i 0.736624 + 0.307592i
\(631\) −28.5000 + 16.4545i −1.13457 + 0.655043i −0.945080 0.326841i \(-0.894016\pi\)
−0.189488 + 0.981883i \(0.560683\pi\)
\(632\) 15.3723 0.611477
\(633\) −11.3723 + 37.7176i −0.452008 + 1.49914i
\(634\) −13.3723 + 23.1615i −0.531081 + 0.919860i
\(635\) 33.0475 + 19.0800i 1.31145 + 0.757167i
\(636\) 18.1168 17.0256i 0.718380 0.675107i
\(637\) −23.0000 10.3923i −0.911293 0.411758i
\(638\) 1.08724i 0.0430443i
\(639\) −2.79211 1.85208i −0.110454 0.0732670i
\(640\) 2.18614 + 1.26217i 0.0864148 + 0.0498916i
\(641\) 25.1644 14.5287i 0.993934 0.573848i 0.0874859 0.996166i \(-0.472117\pi\)
0.906448 + 0.422318i \(0.138783\pi\)
\(642\) −5.37228 + 5.04868i −0.212027 + 0.199255i
\(643\) −15.6168 27.0492i −0.615868 1.06672i −0.990232 0.139433i \(-0.955472\pi\)
0.374363 0.927282i \(-0.377861\pi\)
\(644\) −0.813859 + 2.34941i −0.0320706 + 0.0925797i
\(645\) 12.7446 11.9769i 0.501817 0.471589i
\(646\) −2.31386 4.00772i −0.0910376 0.157682i
\(647\) −5.56930 + 9.64630i −0.218952 + 0.379235i −0.954488 0.298250i \(-0.903597\pi\)
0.735536 + 0.677486i \(0.236930\pi\)
\(648\) 5.43070 7.17687i 0.213338 0.281934i
\(649\) 12.9715i 0.509178i
\(650\) −1.37228 + 4.75372i −0.0538253 + 0.186456i
\(651\) 21.6277 + 2.22938i 0.847657 + 0.0873765i
\(652\) 9.00000 + 5.19615i 0.352467 + 0.203497i
\(653\) −22.5475 13.0178i −0.882354 0.509427i −0.0109200 0.999940i \(-0.503476\pi\)
−0.871434 + 0.490513i \(0.836809\pi\)
\(654\) 33.0000 + 9.94987i 1.29040 + 0.389071i
\(655\) 46.9678i 1.83518i
\(656\) 5.31386 3.06796i 0.207471 0.119784i
\(657\) −2.00000 + 0.994667i −0.0780274 + 0.0388056i
\(658\) 7.37228 + 8.51278i 0.287401 + 0.331863i
\(659\) 11.6644 6.73444i 0.454380 0.262337i −0.255298 0.966862i \(-0.582174\pi\)
0.709678 + 0.704526i \(0.248840\pi\)
\(660\) 1.37228 + 5.84096i 0.0534160 + 0.227359i
\(661\) 24.9307 43.1812i 0.969692 1.67956i 0.273249 0.961943i \(-0.411902\pi\)
0.696443 0.717613i \(-0.254765\pi\)
\(662\) 22.0742i 0.857939i
\(663\) 7.19702 + 4.65253i 0.279509 + 0.180689i
\(664\) 5.04868i 0.195927i
\(665\) −22.1168 + 4.25639i −0.857654 + 0.165056i
\(666\) −13.6277 + 20.5446i −0.528063 + 0.796085i
\(667\) −0.372281 0.644810i −0.0144148 0.0249671i
\(668\) 6.63325i 0.256648i
\(669\) 3.11684 10.3374i 0.120504 0.399667i
\(670\) −10.3723 17.9653i −0.400716 0.694061i
\(671\) 7.13058i 0.275273i
\(672\) −1.87228 4.18265i −0.0722248 0.161349i
\(673\) 1.31386 2.27567i 0.0506456 0.0877207i −0.839591 0.543219i \(-0.817205\pi\)
0.890237 + 0.455498i \(0.150539\pi\)
\(674\) −14.8030 + 25.6395i −0.570190 + 0.987597i
\(675\) −5.48913 + 4.55134i −0.211277 + 0.175181i
\(676\) −11.0000 6.92820i −0.423077 0.266469i
\(677\) 4.37228 0.168040 0.0840202 0.996464i \(-0.473224\pi\)
0.0840202 + 0.996464i \(0.473224\pi\)
\(678\) −6.74456 28.7075i −0.259023 1.10250i
\(679\) −5.37228 27.9152i −0.206169 1.07129i
\(680\) −3.00000 + 1.73205i −0.115045 + 0.0664211i
\(681\) −4.81386 + 4.52389i −0.184467 + 0.173356i
\(682\) 3.25544 + 5.63858i 0.124657 + 0.215912i
\(683\) −21.8614 37.8651i −0.836503 1.44887i −0.892800 0.450452i \(-0.851263\pi\)
0.0562969 0.998414i \(-0.482071\pi\)
\(684\) −0.627719 + 10.0974i −0.0240014 + 0.386082i
\(685\) −3.55842 + 2.05446i −0.135960 + 0.0784967i
\(686\) −18.5000 + 0.866025i −0.706333 + 0.0330650i
\(687\) 20.4307 4.80001i 0.779480 0.183132i
\(688\) −4.00000 −0.152499
\(689\) −12.4307 50.2381i −0.473572 1.91392i
\(690\) −2.81386 2.99422i −0.107122 0.113988i
\(691\) −19.5584 + 33.8762i −0.744037 + 1.28871i 0.206606 + 0.978424i \(0.433758\pi\)
−0.950643 + 0.310286i \(0.899575\pi\)
\(692\) 9.55842 16.5557i 0.363357 0.629352i
\(693\) 4.19702 10.0511i 0.159431 0.381808i
\(694\) 15.6434i 0.593814i
\(695\) 26.4891 + 45.8805i 1.00479 + 1.74035i
\(696\) 1.31386 + 0.396143i 0.0498017 + 0.0150158i
\(697\) 8.42020i 0.318938i
\(698\) 1.44158 + 2.49689i 0.0545645 + 0.0945085i
\(699\) −11.1168 47.3176i −0.420478 1.78972i
\(700\) 0.686141 + 3.56529i 0.0259337 + 0.134755i
\(701\) 22.1668i 0.837229i 0.908164 + 0.418614i \(0.137484\pi\)
−0.908164 + 0.418614i \(0.862516\pi\)
\(702\) −7.48913 17.1730i −0.282659 0.648154i
\(703\) 27.7128i 1.04521i
\(704\) 0.686141 1.18843i 0.0258599 0.0447907i
\(705\) −18.1168 + 4.25639i −0.682320 + 0.160305i
\(706\) −19.6277 + 11.3321i −0.738699 + 0.426488i
\(707\) −6.51087 + 5.63858i −0.244867 + 0.212061i
\(708\) 15.6753 + 4.72627i 0.589113 + 0.177624i
\(709\) −40.1168 + 23.1615i −1.50662 + 0.869847i −0.506649 + 0.862152i \(0.669116\pi\)
−0.999970 + 0.00769505i \(0.997551\pi\)
\(710\) 2.81929i 0.105806i
\(711\) 41.2921 20.5359i 1.54858 0.770158i
\(712\) 10.8030 + 6.23711i 0.404859 + 0.233745i
\(713\) −3.86141 2.22938i −0.144611 0.0834911i
\(714\) 6.25544 + 0.644810i 0.234104 + 0.0241314i
\(715\) 12.0000 + 3.46410i 0.448775 + 0.129550i
\(716\) 1.58457i 0.0592183i
\(717\) −41.4891 + 9.74749i −1.54944 + 0.364027i
\(718\) 11.1861 19.3750i 0.417463 0.723067i
\(719\) −3.94158 6.82701i −0.146996 0.254605i 0.783120 0.621871i \(-0.213627\pi\)
−0.930116 + 0.367266i \(0.880294\pi\)
\(720\) 7.55842 + 0.469882i 0.281686 + 0.0175115i
\(721\) −10.1168 + 29.2048i −0.376771 + 1.08764i
\(722\) 3.81386 + 6.60580i 0.141937 + 0.245842i
\(723\) 1.48913 + 1.58457i 0.0553812 + 0.0589309i
\(724\) −10.5000 + 6.06218i −0.390229 + 0.225299i
\(725\) −0.941578 0.543620i −0.0349693 0.0201896i
\(726\) −15.3723 + 3.61158i −0.570519 + 0.134038i
\(727\) 31.5817i 1.17130i −0.810564 0.585650i \(-0.800839\pi\)
0.810564 0.585650i \(-0.199161\pi\)
\(728\) −9.50000 0.866025i −0.352093 0.0320970i
\(729\) 5.00000 26.5330i 0.185185 0.982704i
\(730\) −1.62772 0.939764i −0.0602446 0.0347822i
\(731\) 2.74456 4.75372i 0.101511 0.175823i
\(732\) 8.61684 + 2.59808i 0.318488 + 0.0960277i
\(733\) 32.2554 1.19138 0.595691 0.803214i \(-0.296878\pi\)
0.595691 + 0.803214i \(0.296878\pi\)
\(734\) −8.23369 + 4.75372i −0.303911 + 0.175463i
\(735\) 12.9307 27.7403i 0.476956 1.02322i
\(736\) 0.939764i 0.0346402i
\(737\) −9.76631 + 5.63858i −0.359747 + 0.207700i
\(738\) 10.1753 15.3398i 0.374557 0.564665i
\(739\) −16.8832 9.74749i −0.621057 0.358567i 0.156223 0.987722i \(-0.450068\pi\)
−0.777280 + 0.629154i \(0.783401\pi\)
\(740\) −20.7446 −0.762585
\(741\) 17.6861 + 11.4333i 0.649717 + 0.420011i
\(742\) −24.8614 28.7075i −0.912691 1.05388i
\(743\) −7.37228 + 12.7692i −0.270463 + 0.468455i −0.968980 0.247138i \(-0.920510\pi\)
0.698518 + 0.715593i \(0.253843\pi\)
\(744\) 8.00000 1.87953i 0.293294 0.0689068i
\(745\) 13.1168 7.57301i 0.480564 0.277454i
\(746\) 8.00000 0.292901
\(747\) 6.74456 + 13.5615i 0.246771 + 0.496188i
\(748\) 0.941578 + 1.63086i 0.0344275 + 0.0596302i
\(749\) 7.37228 + 8.51278i 0.269377 + 0.311050i
\(750\) 15.1861 + 4.57879i 0.554519 + 0.167194i
\(751\) 0.500000 0.866025i 0.0182453 0.0316017i −0.856759 0.515718i \(-0.827525\pi\)
0.875004 + 0.484116i \(0.160859\pi\)
\(752\) 3.68614 + 2.12819i 0.134420 + 0.0776073i
\(753\) −1.32473 1.40965i −0.0482760 0.0513703i
\(754\) 2.05842 1.98072i 0.0749633 0.0721335i
\(755\) −7.62772 −0.277601
\(756\) −10.6168 8.73399i −0.386131 0.317652i
\(757\) −19.8614 + 34.4010i −0.721875 + 1.25032i 0.238372 + 0.971174i \(0.423386\pi\)
−0.960247 + 0.279150i \(0.909947\pi\)
\(758\) 22.1168 12.7692i 0.803320 0.463797i
\(759\) −1.62772 + 1.52967i −0.0590824 + 0.0555235i
\(760\) −7.37228 + 4.25639i −0.267421 + 0.154395i
\(761\) −14.7446 + 8.51278i −0.534490 + 0.308588i −0.742843 0.669466i \(-0.766523\pi\)
0.208353 + 0.978054i \(0.433190\pi\)
\(762\) −17.9307 19.0800i −0.649561 0.691196i
\(763\) 17.2337 49.7494i 0.623901 1.80105i
\(764\) −16.3723 9.45254i −0.592328 0.341981i
\(765\) −5.74456 + 8.66025i −0.207695 + 0.313112i
\(766\) 31.6742i 1.14444i
\(767\) 24.5584 23.6314i 0.886753 0.853279i
\(768\) −1.18614 1.26217i −0.0428012 0.0455446i
\(769\) −5.11684 + 8.86263i −0.184518 + 0.319595i −0.943414 0.331617i \(-0.892406\pi\)
0.758896 + 0.651212i \(0.225739\pi\)
\(770\) 9.00000 1.73205i 0.324337