Properties

Label 546.2.q.e.335.2
Level $546$
Weight $2$
Character 546.335
Analytic conductor $4.360$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 335.2
Root \(1.68614 + 0.396143i\) of defining polynomial
Character \(\chi\) \(=\) 546.335
Dual form 546.2.q.e.251.2

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(1.18614 + 1.26217i) q^{3} +(-0.500000 + 0.866025i) q^{4} +0.792287i q^{5} +(0.500000 - 1.65831i) q^{6} +(0.500000 + 2.59808i) q^{7} +1.00000 q^{8} +(-0.186141 + 2.99422i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(1.18614 + 1.26217i) q^{3} +(-0.500000 + 0.866025i) q^{4} +0.792287i q^{5} +(0.500000 - 1.65831i) q^{6} +(0.500000 + 2.59808i) q^{7} +1.00000 q^{8} +(-0.186141 + 2.99422i) q^{9} +(0.686141 - 0.396143i) q^{10} +(-2.18614 - 3.78651i) q^{11} +(-1.68614 + 0.396143i) q^{12} +(3.50000 + 0.866025i) q^{13} +(2.00000 - 1.73205i) q^{14} +(-1.00000 + 0.939764i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-2.18614 + 3.78651i) q^{17} +(2.68614 - 1.33591i) q^{18} +(-1.18614 + 2.05446i) q^{19} +(-0.686141 - 0.396143i) q^{20} +(-2.68614 + 3.71277i) q^{21} +(-2.18614 + 3.78651i) q^{22} +(-3.68614 + 2.12819i) q^{23} +(1.18614 + 1.26217i) q^{24} +4.37228 q^{25} +(-1.00000 - 3.46410i) q^{26} +(-4.00000 + 3.31662i) q^{27} +(-2.50000 - 0.866025i) q^{28} +(-2.18614 + 1.26217i) q^{29} +(1.31386 + 0.396143i) q^{30} +6.74456 q^{31} +(-0.500000 + 0.866025i) q^{32} +(2.18614 - 7.25061i) q^{33} +4.37228 q^{34} +(-2.05842 + 0.396143i) q^{35} +(-2.50000 - 1.65831i) q^{36} +(-10.1168 + 5.84096i) q^{37} +2.37228 q^{38} +(3.05842 + 5.44482i) q^{39} +0.792287i q^{40} +(8.18614 - 4.72627i) q^{41} +(4.55842 + 0.469882i) q^{42} +(2.00000 - 3.46410i) q^{43} +4.37228 q^{44} +(-2.37228 - 0.147477i) q^{45} +(3.68614 + 2.12819i) q^{46} -0.939764i q^{47} +(0.500000 - 1.65831i) q^{48} +(-6.50000 + 2.59808i) q^{49} +(-2.18614 - 3.78651i) q^{50} +(-7.37228 + 1.73205i) q^{51} +(-2.50000 + 2.59808i) q^{52} +2.22938i q^{53} +(4.87228 + 1.80579i) q^{54} +(3.00000 - 1.73205i) q^{55} +(0.500000 + 2.59808i) q^{56} +(-4.00000 + 0.939764i) q^{57} +(2.18614 + 1.26217i) q^{58} +(5.31386 + 3.06796i) q^{59} +(-0.313859 - 1.33591i) q^{60} +(4.50000 + 2.59808i) q^{61} +(-3.37228 - 5.84096i) q^{62} +(-7.87228 + 1.01350i) q^{63} +1.00000 q^{64} +(-0.686141 + 2.77300i) q^{65} +(-7.37228 + 1.73205i) q^{66} +(10.1168 - 5.84096i) q^{67} +(-2.18614 - 3.78651i) q^{68} +(-7.05842 - 2.12819i) q^{69} +(1.37228 + 1.58457i) q^{70} +(8.05842 - 13.9576i) q^{71} +(-0.186141 + 2.99422i) q^{72} -10.7446 q^{73} +(10.1168 + 5.84096i) q^{74} +(5.18614 + 5.51856i) q^{75} +(-1.18614 - 2.05446i) q^{76} +(8.74456 - 7.57301i) q^{77} +(3.18614 - 5.37108i) q^{78} +9.62772 q^{79} +(0.686141 - 0.396143i) q^{80} +(-8.93070 - 1.11469i) q^{81} +(-8.18614 - 4.72627i) q^{82} -1.58457i q^{83} +(-1.87228 - 4.18265i) q^{84} +(-3.00000 - 1.73205i) q^{85} -4.00000 q^{86} +(-4.18614 - 1.26217i) q^{87} +(-2.18614 - 3.78651i) q^{88} +(9.30298 - 5.37108i) q^{89} +(1.05842 + 2.12819i) q^{90} +(-0.500000 + 9.52628i) q^{91} -4.25639i q^{92} +(8.00000 + 8.51278i) q^{93} +(-0.813859 + 0.469882i) q^{94} +(-1.62772 - 0.939764i) q^{95} +(-1.68614 + 0.396143i) q^{96} +(-0.372281 + 0.644810i) q^{97} +(5.50000 + 4.33013i) q^{98} +(11.7446 - 5.84096i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - q^{3} - 2 q^{4} + 2 q^{6} + 2 q^{7} + 4 q^{8} + 5 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{2} - q^{3} - 2 q^{4} + 2 q^{6} + 2 q^{7} + 4 q^{8} + 5 q^{9} - 3 q^{10} - 3 q^{11} - q^{12} + 14 q^{13} + 8 q^{14} - 4 q^{15} - 2 q^{16} - 3 q^{17} + 5 q^{18} + q^{19} + 3 q^{20} - 5 q^{21} - 3 q^{22} - 9 q^{23} - q^{24} + 6 q^{25} - 4 q^{26} - 16 q^{27} - 10 q^{28} - 3 q^{29} + 11 q^{30} + 4 q^{31} - 2 q^{32} + 3 q^{33} + 6 q^{34} + 9 q^{35} - 10 q^{36} - 6 q^{37} - 2 q^{38} - 5 q^{39} + 27 q^{41} + q^{42} + 8 q^{43} + 6 q^{44} + 2 q^{45} + 9 q^{46} + 2 q^{48} - 26 q^{49} - 3 q^{50} - 18 q^{51} - 10 q^{52} + 8 q^{54} + 12 q^{55} + 2 q^{56} - 16 q^{57} + 3 q^{58} + 27 q^{59} - 7 q^{60} + 18 q^{61} - 2 q^{62} - 20 q^{63} + 4 q^{64} + 3 q^{65} - 18 q^{66} + 6 q^{67} - 3 q^{68} - 11 q^{69} - 6 q^{70} + 15 q^{71} + 5 q^{72} - 20 q^{73} + 6 q^{74} + 15 q^{75} + q^{76} + 12 q^{77} + 7 q^{78} + 50 q^{79} - 3 q^{80} - 7 q^{81} - 27 q^{82} + 4 q^{84} - 12 q^{85} - 16 q^{86} - 11 q^{87} - 3 q^{88} - 3 q^{89} - 13 q^{90} - 2 q^{91} + 32 q^{93} - 9 q^{94} - 18 q^{95} - q^{96} + 10 q^{97} + 22 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 1.18614 + 1.26217i 0.684819 + 0.728714i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0.792287i 0.354322i 0.984182 + 0.177161i \(0.0566913\pi\)
−0.984182 + 0.177161i \(0.943309\pi\)
\(6\) 0.500000 1.65831i 0.204124 0.677003i
\(7\) 0.500000 + 2.59808i 0.188982 + 0.981981i
\(8\) 1.00000 0.353553
\(9\) −0.186141 + 2.99422i −0.0620469 + 0.998073i
\(10\) 0.686141 0.396143i 0.216977 0.125272i
\(11\) −2.18614 3.78651i −0.659146 1.14167i −0.980837 0.194830i \(-0.937584\pi\)
0.321691 0.946845i \(-0.395749\pi\)
\(12\) −1.68614 + 0.396143i −0.486747 + 0.114357i
\(13\) 3.50000 + 0.866025i 0.970725 + 0.240192i
\(14\) 2.00000 1.73205i 0.534522 0.462910i
\(15\) −1.00000 + 0.939764i −0.258199 + 0.242646i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −2.18614 + 3.78651i −0.530217 + 0.918363i 0.469162 + 0.883112i \(0.344556\pi\)
−0.999379 + 0.0352504i \(0.988777\pi\)
\(18\) 2.68614 1.33591i 0.633129 0.314876i
\(19\) −1.18614 + 2.05446i −0.272119 + 0.471325i −0.969404 0.245470i \(-0.921058\pi\)
0.697285 + 0.716794i \(0.254391\pi\)
\(20\) −0.686141 0.396143i −0.153426 0.0885804i
\(21\) −2.68614 + 3.71277i −0.586164 + 0.810192i
\(22\) −2.18614 + 3.78651i −0.466087 + 0.807286i
\(23\) −3.68614 + 2.12819i −0.768613 + 0.443759i −0.832380 0.554206i \(-0.813022\pi\)
0.0637663 + 0.997965i \(0.479689\pi\)
\(24\) 1.18614 + 1.26217i 0.242120 + 0.257639i
\(25\) 4.37228 0.874456
\(26\) −1.00000 3.46410i −0.196116 0.679366i
\(27\) −4.00000 + 3.31662i −0.769800 + 0.638285i
\(28\) −2.50000 0.866025i −0.472456 0.163663i
\(29\) −2.18614 + 1.26217i −0.405956 + 0.234379i −0.689051 0.724713i \(-0.741972\pi\)
0.283095 + 0.959092i \(0.408639\pi\)
\(30\) 1.31386 + 0.396143i 0.239877 + 0.0723256i
\(31\) 6.74456 1.21136 0.605680 0.795709i \(-0.292901\pi\)
0.605680 + 0.795709i \(0.292901\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 2.18614 7.25061i 0.380558 1.26217i
\(34\) 4.37228 0.749840
\(35\) −2.05842 + 0.396143i −0.347937 + 0.0669605i
\(36\) −2.50000 1.65831i −0.416667 0.276385i
\(37\) −10.1168 + 5.84096i −1.66320 + 0.960248i −0.692026 + 0.721873i \(0.743282\pi\)
−0.971173 + 0.238376i \(0.923385\pi\)
\(38\) 2.37228 0.384835
\(39\) 3.05842 + 5.44482i 0.489739 + 0.871869i
\(40\) 0.792287i 0.125272i
\(41\) 8.18614 4.72627i 1.27846 0.738119i 0.301895 0.953341i \(-0.402381\pi\)
0.976565 + 0.215222i \(0.0690474\pi\)
\(42\) 4.55842 + 0.469882i 0.703380 + 0.0725044i
\(43\) 2.00000 3.46410i 0.304997 0.528271i −0.672264 0.740312i \(-0.734678\pi\)
0.977261 + 0.212041i \(0.0680112\pi\)
\(44\) 4.37228 0.659146
\(45\) −2.37228 0.147477i −0.353639 0.0219845i
\(46\) 3.68614 + 2.12819i 0.543492 + 0.313785i
\(47\) 0.939764i 0.137079i −0.997648 0.0685393i \(-0.978166\pi\)
0.997648 0.0685393i \(-0.0218339\pi\)
\(48\) 0.500000 1.65831i 0.0721688 0.239357i
\(49\) −6.50000 + 2.59808i −0.928571 + 0.371154i
\(50\) −2.18614 3.78651i −0.309167 0.535493i
\(51\) −7.37228 + 1.73205i −1.03233 + 0.242536i
\(52\) −2.50000 + 2.59808i −0.346688 + 0.360288i
\(53\) 2.22938i 0.306229i 0.988208 + 0.153115i \(0.0489304\pi\)
−0.988208 + 0.153115i \(0.951070\pi\)
\(54\) 4.87228 + 1.80579i 0.663034 + 0.245737i
\(55\) 3.00000 1.73205i 0.404520 0.233550i
\(56\) 0.500000 + 2.59808i 0.0668153 + 0.347183i
\(57\) −4.00000 + 0.939764i −0.529813 + 0.124475i
\(58\) 2.18614 + 1.26217i 0.287054 + 0.165731i
\(59\) 5.31386 + 3.06796i 0.691806 + 0.399414i 0.804288 0.594240i \(-0.202547\pi\)
−0.112483 + 0.993654i \(0.535880\pi\)
\(60\) −0.313859 1.33591i −0.0405191 0.172465i
\(61\) 4.50000 + 2.59808i 0.576166 + 0.332650i 0.759608 0.650381i \(-0.225391\pi\)
−0.183442 + 0.983030i \(0.558724\pi\)
\(62\) −3.37228 5.84096i −0.428280 0.741803i
\(63\) −7.87228 + 1.01350i −0.991814 + 0.127689i
\(64\) 1.00000 0.125000
\(65\) −0.686141 + 2.77300i −0.0851053 + 0.343949i
\(66\) −7.37228 + 1.73205i −0.907465 + 0.213201i
\(67\) 10.1168 5.84096i 1.23597 0.713587i 0.267701 0.963502i \(-0.413736\pi\)
0.968268 + 0.249915i \(0.0804026\pi\)
\(68\) −2.18614 3.78651i −0.265108 0.459181i
\(69\) −7.05842 2.12819i −0.849734 0.256204i
\(70\) 1.37228 + 1.58457i 0.164019 + 0.189393i
\(71\) 8.05842 13.9576i 0.956359 1.65646i 0.225131 0.974328i \(-0.427719\pi\)
0.731228 0.682133i \(-0.238948\pi\)
\(72\) −0.186141 + 2.99422i −0.0219369 + 0.352872i
\(73\) −10.7446 −1.25756 −0.628778 0.777585i \(-0.716445\pi\)
−0.628778 + 0.777585i \(0.716445\pi\)
\(74\) 10.1168 + 5.84096i 1.17606 + 0.678998i
\(75\) 5.18614 + 5.51856i 0.598844 + 0.637228i
\(76\) −1.18614 2.05446i −0.136060 0.235662i
\(77\) 8.74456 7.57301i 0.996535 0.863025i
\(78\) 3.18614 5.37108i 0.360759 0.608155i
\(79\) 9.62772 1.08320 0.541601 0.840635i \(-0.317818\pi\)
0.541601 + 0.840635i \(0.317818\pi\)
\(80\) 0.686141 0.396143i 0.0767129 0.0442902i
\(81\) −8.93070 1.11469i −0.992300 0.123855i
\(82\) −8.18614 4.72627i −0.904008 0.521929i
\(83\) 1.58457i 0.173930i −0.996211 0.0869648i \(-0.972283\pi\)
0.996211 0.0869648i \(-0.0277168\pi\)
\(84\) −1.87228 4.18265i −0.204283 0.456365i
\(85\) −3.00000 1.73205i −0.325396 0.187867i
\(86\) −4.00000 −0.431331
\(87\) −4.18614 1.26217i −0.448801 0.135319i
\(88\) −2.18614 3.78651i −0.233043 0.403643i
\(89\) 9.30298 5.37108i 0.986114 0.569333i 0.0820038 0.996632i \(-0.473868\pi\)
0.904111 + 0.427299i \(0.140535\pi\)
\(90\) 1.05842 + 2.12819i 0.111567 + 0.224331i
\(91\) −0.500000 + 9.52628i −0.0524142 + 0.998625i
\(92\) 4.25639i 0.443759i
\(93\) 8.00000 + 8.51278i 0.829561 + 0.882734i
\(94\) −0.813859 + 0.469882i −0.0839432 + 0.0484646i
\(95\) −1.62772 0.939764i −0.167000 0.0964177i
\(96\) −1.68614 + 0.396143i −0.172091 + 0.0404312i
\(97\) −0.372281 + 0.644810i −0.0377994 + 0.0654706i −0.884306 0.466907i \(-0.845368\pi\)
0.846507 + 0.532378i \(0.178701\pi\)
\(98\) 5.50000 + 4.33013i 0.555584 + 0.437409i
\(99\) 11.7446 5.84096i 1.18037 0.587039i
\(100\) −2.18614 + 3.78651i −0.218614 + 0.378651i
\(101\) 7.37228 + 12.7692i 0.733569 + 1.27058i 0.955348 + 0.295482i \(0.0954804\pi\)
−0.221779 + 0.975097i \(0.571186\pi\)
\(102\) 5.18614 + 5.51856i 0.513504 + 0.546419i
\(103\) 8.21782i 0.809726i −0.914377 0.404863i \(-0.867319\pi\)
0.914377 0.404863i \(-0.132681\pi\)
\(104\) 3.50000 + 0.866025i 0.343203 + 0.0849208i
\(105\) −2.94158 2.12819i −0.287069 0.207690i
\(106\) 1.93070 1.11469i 0.187526 0.108268i
\(107\) 0.813859 0.469882i 0.0786788 0.0454252i −0.460144 0.887844i \(-0.652202\pi\)
0.538823 + 0.842419i \(0.318869\pi\)
\(108\) −0.872281 5.12241i −0.0839353 0.492905i
\(109\) 19.8997i 1.90605i −0.302891 0.953025i \(-0.597952\pi\)
0.302891 0.953025i \(-0.402048\pi\)
\(110\) −3.00000 1.73205i −0.286039 0.165145i
\(111\) −19.3723 5.84096i −1.83874 0.554400i
\(112\) 2.00000 1.73205i 0.188982 0.163663i
\(113\) −3.25544 1.87953i −0.306246 0.176811i 0.339000 0.940787i \(-0.389911\pi\)
−0.645245 + 0.763975i \(0.723245\pi\)
\(114\) 2.81386 + 2.99422i 0.263542 + 0.280434i
\(115\) −1.68614 2.92048i −0.157233 0.272336i
\(116\) 2.52434i 0.234379i
\(117\) −3.24456 + 10.3186i −0.299960 + 0.953952i
\(118\) 6.13592i 0.564857i
\(119\) −10.9307 3.78651i −1.00202 0.347108i
\(120\) −1.00000 + 0.939764i −0.0912871 + 0.0857883i
\(121\) −4.05842 + 7.02939i −0.368947 + 0.639036i
\(122\) 5.19615i 0.470438i
\(123\) 15.6753 + 4.72627i 1.41339 + 0.426153i
\(124\) −3.37228 + 5.84096i −0.302840 + 0.524534i
\(125\) 7.42554i 0.664160i
\(126\) 4.81386 + 6.31084i 0.428853 + 0.562215i
\(127\) 1.05842 + 1.83324i 0.0939198 + 0.162674i 0.909157 0.416453i \(-0.136727\pi\)
−0.815237 + 0.579127i \(0.803394\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 6.74456 1.58457i 0.593826 0.139514i
\(130\) 2.74456 0.792287i 0.240714 0.0694882i
\(131\) −21.6060 −1.88772 −0.943861 0.330342i \(-0.892836\pi\)
−0.943861 + 0.330342i \(0.892836\pi\)
\(132\) 5.18614 + 5.51856i 0.451396 + 0.480329i
\(133\) −5.93070 2.05446i −0.514257 0.178144i
\(134\) −10.1168 5.84096i −0.873962 0.504582i
\(135\) −2.62772 3.16915i −0.226158 0.272757i
\(136\) −2.18614 + 3.78651i −0.187460 + 0.324690i
\(137\) −3.68614 + 6.38458i −0.314928 + 0.545472i −0.979422 0.201822i \(-0.935314\pi\)
0.664494 + 0.747294i \(0.268647\pi\)
\(138\) 1.68614 + 7.17687i 0.143534 + 0.610936i
\(139\) −7.67527 4.43132i −0.651008 0.375859i 0.137835 0.990455i \(-0.455986\pi\)
−0.788842 + 0.614596i \(0.789319\pi\)
\(140\) 0.686141 1.98072i 0.0579895 0.167401i
\(141\) 1.18614 1.11469i 0.0998911 0.0938740i
\(142\) −16.1168 −1.35250
\(143\) −4.37228 15.1460i −0.365629 1.26657i
\(144\) 2.68614 1.33591i 0.223845 0.111326i
\(145\) −1.00000 1.73205i −0.0830455 0.143839i
\(146\) 5.37228 + 9.30506i 0.444613 + 0.770093i
\(147\) −10.9891 5.12241i −0.906368 0.422490i
\(148\) 11.6819i 0.960248i
\(149\) 3.00000 5.19615i 0.245770 0.425685i −0.716578 0.697507i \(-0.754293\pi\)
0.962348 + 0.271821i \(0.0876260\pi\)
\(150\) 2.18614 7.25061i 0.178498 0.592010i
\(151\) 16.8781i 1.37352i −0.726885 0.686759i \(-0.759033\pi\)
0.726885 0.686759i \(-0.240967\pi\)
\(152\) −1.18614 + 2.05446i −0.0962087 + 0.166638i
\(153\) −10.9307 7.25061i −0.883695 0.586177i
\(154\) −10.9307 3.78651i −0.880821 0.305125i
\(155\) 5.34363i 0.429211i
\(156\) −6.24456 0.0737384i −0.499965 0.00590380i
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) −4.81386 8.33785i −0.382970 0.663324i
\(159\) −2.81386 + 2.64436i −0.223154 + 0.209712i
\(160\) −0.686141 0.396143i −0.0542442 0.0313179i
\(161\) −7.37228 8.51278i −0.581017 0.670901i
\(162\) 3.50000 + 8.29156i 0.274986 + 0.651447i
\(163\) −9.00000 5.19615i −0.704934 0.406994i 0.104248 0.994551i \(-0.466756\pi\)
−0.809183 + 0.587557i \(0.800090\pi\)
\(164\) 9.45254i 0.738119i
\(165\) 5.74456 + 1.73205i 0.447214 + 0.134840i
\(166\) −1.37228 + 0.792287i −0.106510 + 0.0614934i
\(167\) 5.74456 3.31662i 0.444528 0.256648i −0.260989 0.965342i \(-0.584049\pi\)
0.705516 + 0.708694i \(0.250715\pi\)
\(168\) −2.68614 + 3.71277i −0.207240 + 0.286446i
\(169\) 11.5000 + 6.06218i 0.884615 + 0.466321i
\(170\) 3.46410i 0.265684i
\(171\) −5.93070 3.93398i −0.453532 0.300839i
\(172\) 2.00000 + 3.46410i 0.152499 + 0.264135i
\(173\) −0.941578 + 1.63086i −0.0715869 + 0.123992i −0.899597 0.436721i \(-0.856140\pi\)
0.828010 + 0.560713i \(0.189473\pi\)
\(174\) 1.00000 + 4.25639i 0.0758098 + 0.322676i
\(175\) 2.18614 + 11.3595i 0.165257 + 0.858699i
\(176\) −2.18614 + 3.78651i −0.164787 + 0.285419i
\(177\) 2.43070 + 10.3460i 0.182703 + 0.777654i
\(178\) −9.30298 5.37108i −0.697288 0.402580i
\(179\) 4.37228 2.52434i 0.326800 0.188678i −0.327620 0.944810i \(-0.606246\pi\)
0.654419 + 0.756132i \(0.272913\pi\)
\(180\) 1.31386 1.98072i 0.0979293 0.147634i
\(181\) 12.1244i 0.901196i −0.892727 0.450598i \(-0.851211\pi\)
0.892727 0.450598i \(-0.148789\pi\)
\(182\) 8.50000 4.33013i 0.630062 0.320970i
\(183\) 2.05842 + 8.76144i 0.152163 + 0.647665i
\(184\) −3.68614 + 2.12819i −0.271746 + 0.156893i
\(185\) −4.62772 8.01544i −0.340237 0.589307i
\(186\) 3.37228 11.1846i 0.247268 0.820094i
\(187\) 19.1168 1.39796
\(188\) 0.813859 + 0.469882i 0.0593568 + 0.0342697i
\(189\) −10.6168 8.73399i −0.772262 0.635304i
\(190\) 1.87953i 0.136355i
\(191\) 10.6277 + 6.13592i 0.768995 + 0.443979i 0.832516 0.554001i \(-0.186900\pi\)
−0.0635211 + 0.997980i \(0.520233\pi\)
\(192\) 1.18614 + 1.26217i 0.0856023 + 0.0910892i
\(193\) 11.6168 6.70699i 0.836199 0.482780i −0.0197716 0.999805i \(-0.506294\pi\)
0.855970 + 0.517025i \(0.172961\pi\)
\(194\) 0.744563 0.0534565
\(195\) −4.31386 + 2.42315i −0.308922 + 0.173525i
\(196\) 1.00000 6.92820i 0.0714286 0.494872i
\(197\) 12.3030 + 21.3094i 0.876551 + 1.51823i 0.855101 + 0.518462i \(0.173495\pi\)
0.0214504 + 0.999770i \(0.493172\pi\)
\(198\) −10.9307 7.25061i −0.776811 0.515278i
\(199\) −3.00000 1.73205i −0.212664 0.122782i 0.389885 0.920864i \(-0.372515\pi\)
−0.602549 + 0.798082i \(0.705848\pi\)
\(200\) 4.37228 0.309167
\(201\) 19.3723 + 5.84096i 1.36642 + 0.411990i
\(202\) 7.37228 12.7692i 0.518712 0.898435i
\(203\) −4.37228 5.04868i −0.306874 0.354348i
\(204\) 2.18614 7.25061i 0.153060 0.507644i
\(205\) 3.74456 + 6.48577i 0.261532 + 0.452986i
\(206\) −7.11684 + 4.10891i −0.495854 + 0.286281i
\(207\) −5.68614 11.4333i −0.395214 0.794666i
\(208\) −1.00000 3.46410i −0.0693375 0.240192i
\(209\) 10.3723 0.717466
\(210\) −0.372281 + 3.61158i −0.0256899 + 0.249223i
\(211\) −5.62772 9.74749i −0.387428 0.671045i 0.604675 0.796473i \(-0.293303\pi\)
−0.992103 + 0.125427i \(0.959970\pi\)
\(212\) −1.93070 1.11469i −0.132601 0.0765574i
\(213\) 27.1753 6.38458i 1.86202 0.437464i
\(214\) −0.813859 0.469882i −0.0556343 0.0321205i
\(215\) 2.74456 + 1.58457i 0.187178 + 0.108067i
\(216\) −4.00000 + 3.31662i −0.272166 + 0.225668i
\(217\) 3.37228 + 17.5229i 0.228925 + 1.18953i
\(218\) −17.2337 + 9.94987i −1.16721 + 0.673891i
\(219\) −12.7446 13.5615i −0.861198 0.916398i
\(220\) 3.46410i 0.233550i
\(221\) −10.9307 + 11.3595i −0.735279 + 0.764124i
\(222\) 4.62772 + 19.6974i 0.310592 + 1.32200i
\(223\) 14.1168 + 24.4511i 0.945334 + 1.63737i 0.755082 + 0.655631i \(0.227597\pi\)
0.190252 + 0.981735i \(0.439069\pi\)
\(224\) −2.50000 0.866025i −0.167038 0.0578638i
\(225\) −0.813859 + 13.0916i −0.0542573 + 0.872771i
\(226\) 3.75906i 0.250049i
\(227\) −16.8030 9.70121i −1.11525 0.643892i −0.175068 0.984556i \(-0.556015\pi\)
−0.940185 + 0.340665i \(0.889348\pi\)
\(228\) 1.18614 3.93398i 0.0785541 0.260534i
\(229\) 5.11684 0.338131 0.169065 0.985605i \(-0.445925\pi\)
0.169065 + 0.985605i \(0.445925\pi\)
\(230\) −1.68614 + 2.92048i −0.111181 + 0.192571i
\(231\) 19.9307 + 2.05446i 1.31134 + 0.135173i
\(232\) −2.18614 + 1.26217i −0.143527 + 0.0828654i
\(233\) 4.84630i 0.317491i 0.987320 + 0.158746i \(0.0507450\pi\)
−0.987320 + 0.158746i \(0.949255\pi\)
\(234\) 10.5584 2.34941i 0.690226 0.153586i
\(235\) 0.744563 0.0485699
\(236\) −5.31386 + 3.06796i −0.345903 + 0.199707i
\(237\) 11.4198 + 12.1518i 0.741798 + 0.789345i
\(238\) 2.18614 + 11.3595i 0.141706 + 0.736328i
\(239\) 15.6060 1.00947 0.504733 0.863275i \(-0.331591\pi\)
0.504733 + 0.863275i \(0.331591\pi\)
\(240\) 1.31386 + 0.396143i 0.0848093 + 0.0255710i
\(241\) −6.37228 + 11.0371i −0.410475 + 0.710963i −0.994942 0.100454i \(-0.967970\pi\)
0.584467 + 0.811418i \(0.301304\pi\)
\(242\) 8.11684 0.521770
\(243\) −9.18614 12.5942i −0.589291 0.807921i
\(244\) −4.50000 + 2.59808i −0.288083 + 0.166325i
\(245\) −2.05842 5.14987i −0.131508 0.329013i
\(246\) −3.74456 15.9383i −0.238745 1.01619i
\(247\) −5.93070 + 6.16337i −0.377362 + 0.392166i
\(248\) 6.74456 0.428280
\(249\) 2.00000 1.87953i 0.126745 0.119110i
\(250\) 6.43070 3.71277i 0.406713 0.234816i
\(251\) −8.05842 + 13.9576i −0.508643 + 0.880996i 0.491307 + 0.870987i \(0.336519\pi\)
−0.999950 + 0.0100091i \(0.996814\pi\)
\(252\) 3.05842 7.32435i 0.192662 0.461390i
\(253\) 16.1168 + 9.30506i 1.01326 + 0.585004i
\(254\) 1.05842 1.83324i 0.0664113 0.115028i
\(255\) −1.37228 5.84096i −0.0859356 0.365775i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −2.44158 4.22894i −0.152301 0.263794i 0.779772 0.626064i \(-0.215335\pi\)
−0.932073 + 0.362270i \(0.882002\pi\)
\(258\) −4.74456 5.04868i −0.295384 0.314317i
\(259\) −20.2337 23.3639i −1.25726 1.45176i
\(260\) −2.05842 1.98072i −0.127658 0.122839i
\(261\) −3.37228 6.78073i −0.208739 0.419716i
\(262\) 10.8030 + 18.7113i 0.667411 + 1.15599i
\(263\) 19.5475 11.2858i 1.20535 0.695911i 0.243613 0.969873i \(-0.421667\pi\)
0.961741 + 0.273961i \(0.0883341\pi\)
\(264\) 2.18614 7.25061i 0.134548 0.446244i
\(265\) −1.76631 −0.108504
\(266\) 1.18614 + 6.16337i 0.0727270 + 0.377900i
\(267\) 17.8139 + 5.37108i 1.09019 + 0.328705i
\(268\) 11.6819i 0.713587i
\(269\) 0.430703 0.746000i 0.0262604 0.0454844i −0.852597 0.522570i \(-0.824973\pi\)
0.878857 + 0.477085i \(0.158307\pi\)
\(270\) −1.43070 + 3.86025i −0.0870698 + 0.234927i
\(271\) −2.00000 3.46410i −0.121491 0.210429i 0.798865 0.601511i \(-0.205434\pi\)
−0.920356 + 0.391082i \(0.872101\pi\)
\(272\) 4.37228 0.265108
\(273\) −12.6168 + 10.6684i −0.763606 + 0.645682i
\(274\) 7.37228 0.445376
\(275\) −9.55842 16.5557i −0.576395 0.998345i
\(276\) 5.37228 5.04868i 0.323373 0.303895i
\(277\) −6.74456 + 11.6819i −0.405241 + 0.701899i −0.994350 0.106155i \(-0.966146\pi\)
0.589108 + 0.808054i \(0.299479\pi\)
\(278\) 8.86263i 0.531545i
\(279\) −1.25544 + 20.1947i −0.0751611 + 1.20903i
\(280\) −2.05842 + 0.396143i −0.123014 + 0.0236741i
\(281\) 14.7446 0.879587 0.439793 0.898099i \(-0.355052\pi\)
0.439793 + 0.898099i \(0.355052\pi\)
\(282\) −1.55842 0.469882i −0.0928027 0.0279811i
\(283\) −2.05842 + 1.18843i −0.122360 + 0.0706449i −0.559931 0.828539i \(-0.689172\pi\)
0.437571 + 0.899184i \(0.355839\pi\)
\(284\) 8.05842 + 13.9576i 0.478179 + 0.828231i
\(285\) −0.744563 3.16915i −0.0441041 0.187724i
\(286\) −10.9307 + 11.3595i −0.646346 + 0.671703i
\(287\) 16.3723 + 18.9051i 0.966425 + 1.11593i
\(288\) −2.50000 1.65831i −0.147314 0.0977170i
\(289\) −1.05842 1.83324i −0.0622601 0.107838i
\(290\) −1.00000 + 1.73205i −0.0587220 + 0.101710i
\(291\) −1.25544 + 0.294954i −0.0735950 + 0.0172905i
\(292\) 5.37228 9.30506i 0.314389 0.544538i
\(293\) 3.25544 + 1.87953i 0.190185 + 0.109803i 0.592069 0.805887i \(-0.298311\pi\)
−0.401884 + 0.915690i \(0.631645\pi\)
\(294\) 1.05842 + 12.0781i 0.0617284 + 0.704407i
\(295\) −2.43070 + 4.21010i −0.141521 + 0.245122i
\(296\) −10.1168 + 5.84096i −0.588030 + 0.339499i
\(297\) 21.3030 + 7.89542i 1.23612 + 0.458139i
\(298\) −6.00000 −0.347571
\(299\) −14.7446 + 4.25639i −0.852700 + 0.246153i
\(300\) −7.37228 + 1.73205i −0.425639 + 0.100000i
\(301\) 10.0000 + 3.46410i 0.576390 + 0.199667i
\(302\) −14.6168 + 8.43904i −0.841105 + 0.485612i
\(303\) −7.37228 + 24.4511i −0.423526 + 1.40468i
\(304\) 2.37228 0.136060
\(305\) −2.05842 + 3.56529i −0.117865 + 0.204148i
\(306\) −0.813859 + 13.0916i −0.0465252 + 0.748395i
\(307\) 21.2337 1.21187 0.605935 0.795514i \(-0.292799\pi\)
0.605935 + 0.795514i \(0.292799\pi\)
\(308\) 2.18614 + 11.3595i 0.124567 + 0.647269i
\(309\) 10.3723 9.74749i 0.590058 0.554516i
\(310\) 4.62772 2.67181i 0.262837 0.151749i
\(311\) 10.3723 0.588158 0.294079 0.955781i \(-0.404987\pi\)
0.294079 + 0.955781i \(0.404987\pi\)
\(312\) 3.05842 + 5.44482i 0.173149 + 0.308252i
\(313\) 13.8564i 0.783210i 0.920133 + 0.391605i \(0.128080\pi\)
−0.920133 + 0.391605i \(0.871920\pi\)
\(314\) 0 0
\(315\) −0.802985 6.23711i −0.0452431 0.351421i
\(316\) −4.81386 + 8.33785i −0.270801 + 0.469041i
\(317\) 15.2554 0.856831 0.428415 0.903582i \(-0.359072\pi\)
0.428415 + 0.903582i \(0.359072\pi\)
\(318\) 3.69702 + 1.11469i 0.207318 + 0.0625088i
\(319\) 9.55842 + 5.51856i 0.535169 + 0.308980i
\(320\) 0.792287i 0.0442902i
\(321\) 1.55842 + 0.469882i 0.0869826 + 0.0262263i
\(322\) −3.68614 + 10.6410i −0.205421 + 0.592998i
\(323\) −5.18614 8.98266i −0.288565 0.499809i
\(324\) 5.43070 7.17687i 0.301706 0.398715i
\(325\) 15.3030 + 3.78651i 0.848857 + 0.210038i
\(326\) 10.3923i 0.575577i
\(327\) 25.1168 23.6039i 1.38896 1.30530i
\(328\) 8.18614 4.72627i 0.452004 0.260965i
\(329\) 2.44158 0.469882i 0.134609 0.0259054i
\(330\) −1.37228 5.84096i −0.0755416 0.321534i
\(331\) −1.88316 1.08724i −0.103508 0.0597602i 0.447353 0.894358i \(-0.352367\pi\)
−0.550860 + 0.834598i \(0.685700\pi\)
\(332\) 1.37228 + 0.792287i 0.0753137 + 0.0434824i
\(333\) −15.6060 31.3793i −0.855202 1.71957i
\(334\) −5.74456 3.31662i −0.314328 0.181478i
\(335\) 4.62772 + 8.01544i 0.252839 + 0.437930i
\(336\) 4.55842 + 0.469882i 0.248682 + 0.0256342i
\(337\) −10.6060 −0.577744 −0.288872 0.957368i \(-0.593280\pi\)
−0.288872 + 0.957368i \(0.593280\pi\)
\(338\) −0.500000 12.9904i −0.0271964 0.706584i
\(339\) −1.48913 6.33830i −0.0808782 0.344249i
\(340\) 3.00000 1.73205i 0.162698 0.0939336i
\(341\) −14.7446 25.5383i −0.798463 1.38298i
\(342\) −0.441578 + 7.10313i −0.0238778 + 0.384093i
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) 2.00000 3.46410i 0.107833 0.186772i
\(345\) 1.68614 5.59230i 0.0907788 0.301079i
\(346\) 1.88316 0.101239
\(347\) −18.0475 10.4198i −0.968843 0.559362i −0.0699597 0.997550i \(-0.522287\pi\)
−0.898883 + 0.438188i \(0.855620\pi\)
\(348\) 3.18614 2.99422i 0.170795 0.160507i
\(349\) −10.0584 17.4217i −0.538415 0.932562i −0.998990 0.0449411i \(-0.985690\pi\)
0.460575 0.887621i \(-0.347643\pi\)
\(350\) 8.74456 7.57301i 0.467417 0.404795i
\(351\) −16.8723 + 8.14409i −0.900576 + 0.434699i
\(352\) 4.37228 0.233043
\(353\) −25.3723 + 14.6487i −1.35043 + 0.779671i −0.988310 0.152460i \(-0.951280\pi\)
−0.362121 + 0.932131i \(0.617947\pi\)
\(354\) 7.74456 7.27806i 0.411619 0.386825i
\(355\) 11.0584 + 6.38458i 0.586920 + 0.338858i
\(356\) 10.7422i 0.569333i
\(357\) −8.18614 18.2877i −0.433257 0.967889i
\(358\) −4.37228 2.52434i −0.231082 0.133415i
\(359\) −16.6277 −0.877577 −0.438789 0.898590i \(-0.644592\pi\)
−0.438789 + 0.898590i \(0.644592\pi\)
\(360\) −2.37228 0.147477i −0.125030 0.00777271i
\(361\) 6.68614 + 11.5807i 0.351902 + 0.609512i
\(362\) −10.5000 + 6.06218i −0.551868 + 0.318621i
\(363\) −13.6861 + 3.21543i −0.718336 + 0.168767i
\(364\) −8.00000 5.19615i −0.419314 0.272352i
\(365\) 8.51278i 0.445579i
\(366\) 6.55842 6.16337i 0.342814 0.322164i
\(367\) 26.2337 15.1460i 1.36939 0.790616i 0.378538 0.925586i \(-0.376427\pi\)
0.990850 + 0.134970i \(0.0430937\pi\)
\(368\) 3.68614 + 2.12819i 0.192153 + 0.110940i
\(369\) 12.6277 + 25.3909i 0.657373 + 1.32180i
\(370\) −4.62772 + 8.01544i −0.240584 + 0.416703i
\(371\) −5.79211 + 1.11469i −0.300711 + 0.0578719i
\(372\) −11.3723 + 2.67181i −0.589625 + 0.138527i
\(373\) −4.00000 + 6.92820i −0.207112 + 0.358729i −0.950804 0.309794i \(-0.899740\pi\)
0.743691 + 0.668523i \(0.233073\pi\)
\(374\) −9.55842 16.5557i −0.494254 0.856073i
\(375\) −9.37228 + 8.80773i −0.483983 + 0.454829i
\(376\) 0.939764i 0.0484646i
\(377\) −8.74456 + 2.52434i −0.450368 + 0.130010i
\(378\) −2.25544 + 13.5615i −0.116007 + 0.697526i
\(379\) −4.88316 + 2.81929i −0.250831 + 0.144817i −0.620145 0.784487i \(-0.712926\pi\)
0.369314 + 0.929305i \(0.379593\pi\)
\(380\) 1.62772 0.939764i 0.0835002 0.0482089i
\(381\) −1.05842 + 3.51039i −0.0542246 + 0.179843i
\(382\) 12.2718i 0.627882i
\(383\) −13.0693 7.54556i −0.667810 0.385560i 0.127436 0.991847i \(-0.459325\pi\)
−0.795246 + 0.606287i \(0.792658\pi\)
\(384\) 0.500000 1.65831i 0.0255155 0.0846254i
\(385\) 6.00000 + 6.92820i 0.305788 + 0.353094i
\(386\) −11.6168 6.70699i −0.591282 0.341377i
\(387\) 10.0000 + 6.63325i 0.508329 + 0.337187i
\(388\) −0.372281 0.644810i −0.0188997 0.0327353i
\(389\) 29.2974i 1.48544i 0.669604 + 0.742718i \(0.266464\pi\)
−0.669604 + 0.742718i \(0.733536\pi\)
\(390\) 4.25544 + 2.52434i 0.215482 + 0.127825i
\(391\) 18.6101i 0.941155i
\(392\) −6.50000 + 2.59808i −0.328300 + 0.131223i
\(393\) −25.6277 27.2704i −1.29275 1.37561i
\(394\) 12.3030 21.3094i 0.619815 1.07355i
\(395\) 7.62792i 0.383802i
\(396\) −0.813859 + 13.0916i −0.0408980 + 0.657876i
\(397\) 1.12772 1.95327i 0.0565986 0.0980316i −0.836338 0.548214i \(-0.815308\pi\)
0.892936 + 0.450183i \(0.148641\pi\)
\(398\) 3.46410i 0.173640i
\(399\) −4.44158 9.92242i −0.222357 0.496742i
\(400\) −2.18614 3.78651i −0.109307 0.189325i
\(401\) −5.74456 9.94987i −0.286870 0.496873i 0.686191 0.727421i \(-0.259281\pi\)
−0.973061 + 0.230548i \(0.925948\pi\)
\(402\) −4.62772 19.6974i −0.230810 0.982415i
\(403\) 23.6060 + 5.84096i 1.17590 + 0.290959i
\(404\) −14.7446 −0.733569
\(405\) 0.883156 7.07568i 0.0438844 0.351593i
\(406\) −2.18614 + 6.31084i −0.108496 + 0.313202i
\(407\) 44.2337 + 25.5383i 2.19258 + 1.26589i
\(408\) −7.37228 + 1.73205i −0.364982 + 0.0857493i
\(409\) −10.7446 + 18.6101i −0.531284 + 0.920212i 0.468049 + 0.883703i \(0.344957\pi\)
−0.999333 + 0.0365091i \(0.988376\pi\)
\(410\) 3.74456 6.48577i 0.184931 0.320309i
\(411\) −12.4307 + 2.92048i −0.613161 + 0.144057i
\(412\) 7.11684 + 4.10891i 0.350622 + 0.202432i
\(413\) −5.31386 + 15.3398i −0.261478 + 0.754822i
\(414\) −7.05842 + 10.6410i −0.346903 + 0.522975i
\(415\) 1.25544 0.0616270
\(416\) −2.50000 + 2.59808i −0.122573 + 0.127381i
\(417\) −3.51087 14.9436i −0.171928 0.731794i
\(418\) −5.18614 8.98266i −0.253662 0.439356i
\(419\) 2.74456 + 4.75372i 0.134081 + 0.232235i 0.925246 0.379368i \(-0.123859\pi\)
−0.791165 + 0.611602i \(0.790525\pi\)
\(420\) 3.31386 1.48338i 0.161700 0.0723817i
\(421\) 26.8280i 1.30751i −0.756704 0.653757i \(-0.773192\pi\)
0.756704 0.653757i \(-0.226808\pi\)
\(422\) −5.62772 + 9.74749i −0.273953 + 0.474501i
\(423\) 2.81386 + 0.174928i 0.136815 + 0.00850530i
\(424\) 2.22938i 0.108268i
\(425\) −9.55842 + 16.5557i −0.463652 + 0.803068i
\(426\) −19.1168 20.3422i −0.926214 0.985582i
\(427\) −4.50000 + 12.9904i −0.217770 + 0.628649i
\(428\) 0.939764i 0.0454252i
\(429\) 13.9307 23.4839i 0.672581 1.13381i
\(430\) 3.16915i 0.152830i
\(431\) −12.6861 21.9730i −0.611070 1.05840i −0.991060 0.133414i \(-0.957406\pi\)
0.379991 0.924990i \(-0.375927\pi\)
\(432\) 4.87228 + 1.80579i 0.234418 + 0.0868811i
\(433\) −21.3505 12.3267i −1.02604 0.592385i −0.110193 0.993910i \(-0.535147\pi\)
−0.915848 + 0.401525i \(0.868480\pi\)
\(434\) 13.4891 11.6819i 0.647499 0.560750i
\(435\) 1.00000 3.31662i 0.0479463 0.159020i
\(436\) 17.2337 + 9.94987i 0.825344 + 0.476513i
\(437\) 10.0974i 0.483022i
\(438\) −5.37228 + 17.8178i −0.256698 + 0.851369i
\(439\) −21.3505 + 12.3267i −1.01901 + 0.588323i −0.913816 0.406129i \(-0.866878\pi\)
−0.105190 + 0.994452i \(0.533545\pi\)
\(440\) 3.00000 1.73205i 0.143019 0.0825723i
\(441\) −6.56930 19.9460i −0.312824 0.949811i
\(442\) 15.3030 + 3.78651i 0.727889 + 0.180106i
\(443\) 7.86797i 0.373818i 0.982377 + 0.186909i \(0.0598470\pi\)
−0.982377 + 0.186909i \(0.940153\pi\)
\(444\) 14.7446 13.8564i 0.699746 0.657596i
\(445\) 4.25544 + 7.37063i 0.201727 + 0.349402i
\(446\) 14.1168 24.4511i 0.668452 1.15779i
\(447\) 10.1168 2.37686i 0.478510 0.112422i
\(448\) 0.500000 + 2.59808i 0.0236228 + 0.122748i
\(449\) −19.8030 + 34.2998i −0.934561 + 1.61871i −0.159145 + 0.987255i \(0.550874\pi\)
−0.775416 + 0.631451i \(0.782460\pi\)
\(450\) 11.7446 5.84096i 0.553644 0.275346i
\(451\) −35.7921 20.6646i −1.68538 0.973057i
\(452\) 3.25544 1.87953i 0.153123 0.0884055i
\(453\) 21.3030 20.0198i 1.00090 0.940611i
\(454\) 19.4024i 0.910600i
\(455\) −7.54755 0.396143i −0.353834 0.0185715i
\(456\) −4.00000 + 0.939764i −0.187317 + 0.0440085i
\(457\) 9.17527 5.29734i 0.429201 0.247799i −0.269805 0.962915i \(-0.586959\pi\)
0.699006 + 0.715116i \(0.253626\pi\)
\(458\) −2.55842 4.43132i −0.119547 0.207062i
\(459\) −3.81386 22.3966i −0.178016 1.04539i
\(460\) 3.37228 0.157233
\(461\) 27.4307 + 15.8371i 1.27758 + 0.737608i 0.976402 0.215961i \(-0.0692884\pi\)
0.301173 + 0.953569i \(0.402622\pi\)
\(462\) −8.18614 18.2877i −0.380854 0.850822i
\(463\) 10.8347i 0.503533i 0.967788 + 0.251766i \(0.0810115\pi\)
−0.967788 + 0.251766i \(0.918989\pi\)
\(464\) 2.18614 + 1.26217i 0.101489 + 0.0585947i
\(465\) −6.74456 + 6.33830i −0.312772 + 0.293931i
\(466\) 4.19702 2.42315i 0.194423 0.112250i
\(467\) −25.3723 −1.17409 −0.587045 0.809555i \(-0.699709\pi\)
−0.587045 + 0.809555i \(0.699709\pi\)
\(468\) −7.31386 7.96916i −0.338083 0.368374i
\(469\) 20.2337 + 23.3639i 0.934305 + 1.07884i
\(470\) −0.372281 0.644810i −0.0171721 0.0297429i
\(471\) 0 0
\(472\) 5.31386 + 3.06796i 0.244590 + 0.141214i
\(473\) −17.4891 −0.804151
\(474\) 4.81386 15.9658i 0.221108 0.733332i
\(475\) −5.18614 + 8.98266i −0.237956 + 0.412153i
\(476\) 8.74456 7.57301i 0.400806 0.347108i
\(477\) −6.67527 0.414979i −0.305639 0.0190006i
\(478\) −7.80298 13.5152i −0.356900 0.618169i
\(479\) −2.69702 + 1.55712i −0.123230 + 0.0711467i −0.560348 0.828257i \(-0.689333\pi\)
0.437118 + 0.899404i \(0.355999\pi\)
\(480\) −0.313859 1.33591i −0.0143257 0.0609755i
\(481\) −40.4674 + 11.6819i −1.84515 + 0.532650i
\(482\) 12.7446 0.580499
\(483\) 2.00000 19.4024i 0.0910032 0.882840i
\(484\) −4.05842 7.02939i −0.184474 0.319518i
\(485\) −0.510875 0.294954i −0.0231976 0.0133932i
\(486\) −6.31386 + 14.2525i −0.286402 + 0.646509i
\(487\) −26.6168 15.3672i −1.20612 0.696356i −0.244214 0.969721i \(-0.578530\pi\)
−0.961910 + 0.273365i \(0.911863\pi\)
\(488\) 4.50000 + 2.59808i 0.203705 + 0.117609i
\(489\) −4.11684 17.5229i −0.186170 0.792412i
\(490\) −3.43070 + 4.35758i −0.154983 + 0.196855i
\(491\) 6.60597 3.81396i 0.298123 0.172122i −0.343476 0.939161i \(-0.611604\pi\)
0.641599 + 0.767040i \(0.278271\pi\)
\(492\) −11.9307 + 11.2120i −0.537878 + 0.505478i
\(493\) 11.0371i 0.497087i
\(494\) 8.30298 + 2.05446i 0.373569 + 0.0924343i
\(495\) 4.62772 + 9.30506i 0.208000 + 0.418232i
\(496\) −3.37228 5.84096i −0.151420 0.262267i
\(497\) 40.2921 + 13.9576i 1.80735 + 0.626084i
\(498\) −2.62772 0.792287i −0.117751 0.0355032i
\(499\) 16.4356i 0.735761i −0.929873 0.367880i \(-0.880084\pi\)
0.929873 0.367880i \(-0.119916\pi\)
\(500\) −6.43070 3.71277i −0.287590 0.166040i
\(501\) 11.0000 + 3.31662i 0.491444 + 0.148176i
\(502\) 16.1168 0.719330
\(503\) 11.4891 19.8997i 0.512275 0.887286i −0.487624 0.873054i \(-0.662136\pi\)
0.999899 0.0142322i \(-0.00453039\pi\)
\(504\) −7.87228 + 1.01350i −0.350659 + 0.0451450i
\(505\) −10.1168 + 5.84096i −0.450194 + 0.259919i
\(506\) 18.6101i 0.827321i
\(507\) 5.98913 + 21.7055i 0.265986 + 0.963977i
\(508\) −2.11684 −0.0939198
\(509\) −20.3139 + 11.7282i −0.900396 + 0.519844i −0.877329 0.479890i \(-0.840677\pi\)
−0.0230673 + 0.999734i \(0.507343\pi\)
\(510\) −4.37228 + 4.10891i −0.193608 + 0.181946i
\(511\) −5.37228 27.9152i −0.237656 1.23490i
\(512\) 1.00000 0.0441942
\(513\) −2.06930 12.1518i −0.0913617 0.536515i
\(514\) −2.44158 + 4.22894i −0.107693 + 0.186530i
\(515\) 6.51087 0.286903
\(516\) −2.00000 + 6.63325i −0.0880451 + 0.292013i
\(517\) −3.55842 + 2.05446i −0.156499 + 0.0903549i
\(518\) −10.1168 + 29.2048i −0.444509 + 1.28319i
\(519\) −3.17527 + 0.746000i −0.139379 + 0.0327458i
\(520\) −0.686141 + 2.77300i −0.0300893 + 0.121604i
\(521\) 1.11684 0.0489298 0.0244649 0.999701i \(-0.492212\pi\)
0.0244649 + 0.999701i \(0.492212\pi\)
\(522\) −4.18614 + 6.31084i −0.183222 + 0.276218i
\(523\) −7.50000 + 4.33013i −0.327952 + 0.189343i −0.654932 0.755688i \(-0.727303\pi\)
0.326979 + 0.945031i \(0.393969\pi\)
\(524\) 10.8030 18.7113i 0.471931 0.817408i
\(525\) −11.7446 + 16.2333i −0.512575 + 0.708478i
\(526\) −19.5475 11.2858i −0.852314 0.492083i
\(527\) −14.7446 + 25.5383i −0.642283 + 1.11247i
\(528\) −7.37228 + 1.73205i −0.320837 + 0.0753778i
\(529\) −2.44158 + 4.22894i −0.106156 + 0.183867i
\(530\) 0.883156 + 1.52967i 0.0383618 + 0.0664447i
\(531\) −10.1753 + 15.3398i −0.441569 + 0.665690i
\(532\) 4.74456 4.10891i 0.205703 0.178144i
\(533\) 32.7446 9.45254i 1.41832 0.409435i
\(534\) −4.25544 18.1128i −0.184151 0.783817i
\(535\) 0.372281 + 0.644810i 0.0160951 + 0.0278776i
\(536\) 10.1168 5.84096i 0.436981 0.252291i
\(537\) 8.37228 + 2.52434i 0.361291 + 0.108933i
\(538\) −0.861407 −0.0371379
\(539\) 24.0475 + 18.9325i 1.03580 + 0.815482i
\(540\) 4.05842 0.691097i 0.174647 0.0297401i
\(541\) 1.28962i 0.0554451i −0.999616 0.0277226i \(-0.991175\pi\)
0.999616 0.0277226i \(-0.00882549\pi\)
\(542\) −2.00000 + 3.46410i −0.0859074 + 0.148796i
\(543\) 15.3030 14.3812i 0.656714 0.617156i
\(544\) −2.18614 3.78651i −0.0937300 0.162345i
\(545\) 15.7663 0.675355
\(546\) 15.5475 + 5.59230i 0.665374 + 0.239328i
\(547\) 8.51087 0.363899 0.181949 0.983308i \(-0.441759\pi\)
0.181949 + 0.983308i \(0.441759\pi\)
\(548\) −3.68614 6.38458i −0.157464 0.272736i
\(549\) −8.61684 + 12.9904i −0.367758 + 0.554416i
\(550\) −9.55842 + 16.5557i −0.407572 + 0.705936i
\(551\) 5.98844i 0.255116i
\(552\) −7.05842 2.12819i −0.300426 0.0905820i
\(553\) 4.81386 + 25.0135i 0.204706 + 1.06368i
\(554\) 13.4891 0.573098
\(555\) 4.62772 15.3484i 0.196436 0.651504i
\(556\) 7.67527 4.43132i 0.325504 0.187930i
\(557\) −12.3030 21.3094i −0.521294 0.902908i −0.999693 0.0247655i \(-0.992116\pi\)
0.478399 0.878143i \(-0.341217\pi\)
\(558\) 18.1168 9.01011i 0.766947 0.381428i
\(559\) 10.0000 10.3923i 0.422955 0.439548i
\(560\) 1.37228 + 1.58457i 0.0579895 + 0.0669605i
\(561\) 22.6753 + 24.1287i 0.957350 + 1.01871i
\(562\) −7.37228 12.7692i −0.310981 0.538635i
\(563\) 18.0000 31.1769i 0.758610 1.31395i −0.184950 0.982748i \(-0.559212\pi\)
0.943560 0.331202i \(-0.107454\pi\)
\(564\) 0.372281 + 1.58457i 0.0156759 + 0.0667226i
\(565\) 1.48913 2.57924i 0.0626480 0.108509i
\(566\) 2.05842 + 1.18843i 0.0865219 + 0.0499535i
\(567\) −1.56930 23.7600i −0.0659043 0.997826i
\(568\) 8.05842 13.9576i 0.338124 0.585648i
\(569\) 29.6644 17.1267i 1.24360 0.717990i 0.273772 0.961795i \(-0.411729\pi\)
0.969824 + 0.243804i \(0.0783955\pi\)
\(570\) −2.37228 + 2.22938i −0.0993639 + 0.0933786i
\(571\) −9.48913 −0.397108 −0.198554 0.980090i \(-0.563624\pi\)
−0.198554 + 0.980090i \(0.563624\pi\)
\(572\) 15.3030 + 3.78651i 0.639850 + 0.158322i
\(573\) 4.86141 + 20.6920i 0.203088 + 0.864422i
\(574\) 8.18614 23.6314i 0.341683 0.986354i
\(575\) −16.1168 + 9.30506i −0.672119 + 0.388048i
\(576\) −0.186141 + 2.99422i −0.00775586 + 0.124759i
\(577\) −5.76631 −0.240055 −0.120027 0.992771i \(-0.538298\pi\)
−0.120027 + 0.992771i \(0.538298\pi\)
\(578\) −1.05842 + 1.83324i −0.0440246 + 0.0762528i
\(579\) 22.2446 + 6.70699i 0.924452 + 0.278733i
\(580\) 2.00000 0.0830455
\(581\) 4.11684 0.792287i 0.170795 0.0328696i
\(582\) 0.883156 + 0.939764i 0.0366080 + 0.0389545i
\(583\) 8.44158 4.87375i 0.349614 0.201850i
\(584\) −10.7446 −0.444613
\(585\) −8.17527 2.57062i −0.338006 0.106282i
\(586\) 3.75906i 0.155285i
\(587\) −37.5475 + 21.6781i −1.54975 + 0.894750i −0.551593 + 0.834113i \(0.685980\pi\)
−0.998160 + 0.0606372i \(0.980687\pi\)
\(588\) 9.93070 6.95565i 0.409535 0.286846i
\(589\) −8.00000 + 13.8564i −0.329634 + 0.570943i
\(590\) 4.86141 0.200141
\(591\) −12.3030 + 40.8044i −0.506077 + 1.67847i
\(592\) 10.1168 + 5.84096i 0.415800 + 0.240062i
\(593\) 3.11425i 0.127887i −0.997954 0.0639434i \(-0.979632\pi\)
0.997954 0.0639434i \(-0.0203677\pi\)
\(594\) −3.81386 22.3966i −0.156485 0.918945i
\(595\) 3.00000 8.66025i 0.122988 0.355036i
\(596\) 3.00000 + 5.19615i 0.122885 + 0.212843i
\(597\) −1.37228 5.84096i −0.0561637 0.239055i
\(598\) 11.0584 + 10.6410i 0.452213 + 0.435142i
\(599\) 22.5716i 0.922249i 0.887335 + 0.461125i \(0.152554\pi\)
−0.887335 + 0.461125i \(0.847446\pi\)
\(600\) 5.18614 + 5.51856i 0.211723 + 0.225294i
\(601\) 37.1168 21.4294i 1.51403 0.874124i 0.514163 0.857693i \(-0.328103\pi\)
0.999865 0.0164316i \(-0.00523057\pi\)
\(602\) −2.00000 10.3923i −0.0815139 0.423559i
\(603\) 15.6060 + 31.3793i 0.635524 + 1.27786i
\(604\) 14.6168 + 8.43904i 0.594751 + 0.343380i
\(605\) −5.56930 3.21543i −0.226424 0.130726i
\(606\) 24.8614 5.84096i 1.00993 0.237273i
\(607\) 30.3505 + 17.5229i 1.23189 + 0.711232i 0.967424 0.253163i \(-0.0814708\pi\)
0.264466 + 0.964395i \(0.414804\pi\)
\(608\) −1.18614 2.05446i −0.0481044 0.0833192i
\(609\) 1.18614 11.5070i 0.0480648 0.466287i
\(610\) 4.11684 0.166686
\(611\) 0.813859 3.28917i 0.0329252 0.133066i
\(612\) 11.7446 5.84096i 0.474746 0.236107i
\(613\) −8.23369 + 4.75372i −0.332556 + 0.192001i −0.656975 0.753912i \(-0.728164\pi\)
0.324420 + 0.945913i \(0.394831\pi\)
\(614\) −10.6168 18.3889i −0.428461 0.742116i
\(615\) −3.74456 + 12.4193i −0.150995 + 0.500795i
\(616\) 8.74456 7.57301i 0.352328 0.305125i
\(617\) −16.8030 + 29.1036i −0.676463 + 1.17167i 0.299576 + 0.954072i \(0.403155\pi\)
−0.976039 + 0.217595i \(0.930179\pi\)
\(618\) −13.6277 4.10891i −0.548187 0.165285i
\(619\) −33.4674 −1.34517 −0.672584 0.740021i \(-0.734816\pi\)
−0.672584 + 0.740021i \(0.734816\pi\)
\(620\) −4.62772 2.67181i −0.185854 0.107303i
\(621\) 7.68614 20.7383i 0.308434 0.832200i
\(622\) −5.18614 8.98266i −0.207945 0.360172i
\(623\) 18.6060 + 21.4843i 0.745432 + 0.860751i
\(624\) 3.18614 5.37108i 0.127548 0.215015i
\(625\) 15.9783 0.639130
\(626\) 12.0000 6.92820i 0.479616 0.276907i
\(627\) 12.3030 + 13.0916i 0.491334 + 0.522827i
\(628\) 0 0
\(629\) 51.0767i 2.03656i
\(630\) −5.00000 + 3.81396i −0.199205 + 0.151952i
\(631\) −28.5000 16.4545i −1.13457 0.655043i −0.189488 0.981883i \(-0.560683\pi\)
−0.945080 + 0.326841i \(0.894016\pi\)
\(632\) 9.62772 0.382970
\(633\) 5.62772 18.6650i 0.223682 0.741868i
\(634\) −7.62772 13.2116i −0.302935 0.524700i
\(635\) −1.45245 + 0.838574i −0.0576388 + 0.0332778i
\(636\) −0.883156 3.75906i −0.0350194 0.149056i
\(637\) −25.0000 + 3.46410i −0.990536 + 0.137253i
\(638\) 11.0371i 0.436964i
\(639\) 40.2921 + 26.7268i 1.59393 + 1.05729i
\(640\) 0.686141 0.396143i 0.0271221 0.0156589i
\(641\) −23.6644 13.6626i −0.934687 0.539642i −0.0463963 0.998923i \(-0.514774\pi\)
−0.888291 + 0.459281i \(0.848107\pi\)
\(642\) −0.372281 1.58457i −0.0146928 0.0625381i
\(643\) −1.61684 + 2.80046i −0.0637621 + 0.110439i −0.896144 0.443763i \(-0.853643\pi\)
0.832382 + 0.554202i \(0.186977\pi\)
\(644\) 11.0584 2.12819i 0.435763 0.0838626i
\(645\) 1.25544 + 5.34363i 0.0494328 + 0.210405i
\(646\) −5.18614 + 8.98266i −0.204046 + 0.353418i
\(647\) 19.9307 + 34.5210i 0.783557 + 1.35716i 0.929857 + 0.367920i \(0.119930\pi\)
−0.146301 + 0.989240i \(0.546737\pi\)
\(648\) −8.93070 1.11469i −0.350831 0.0437892i
\(649\) 26.8280i 1.05309i
\(650\) −4.37228 15.1460i −0.171495 0.594076i
\(651\) −18.1168 + 25.0410i −0.710055 + 0.981434i
\(652\) 9.00000 5.19615i 0.352467 0.203497i
\(653\) 9.04755 5.22360i 0.354058 0.204415i −0.312413 0.949946i \(-0.601137\pi\)
0.666471 + 0.745531i \(0.267804\pi\)
\(654\) −33.0000 9.94987i −1.29040 0.389071i
\(655\) 17.1181i 0.668861i
\(656\) −8.18614 4.72627i −0.319615 0.184530i
\(657\) 2.00000 32.1716i 0.0780274 1.25513i
\(658\) −1.62772 1.87953i −0.0634551 0.0732716i
\(659\) −37.1644 21.4569i −1.44772 0.835841i −0.449374 0.893344i \(-0.648353\pi\)
−0.998345 + 0.0575028i \(0.981686\pi\)
\(660\) −4.37228 + 4.10891i −0.170191 + 0.159939i
\(661\) −10.5693 18.3066i −0.411098 0.712043i 0.583912 0.811817i \(-0.301521\pi\)
−0.995010 + 0.0997743i \(0.968188\pi\)
\(662\) 2.17448i 0.0845136i
\(663\) −27.3030 0.322405i −1.06036 0.0125212i
\(664\) 1.58457i 0.0614934i
\(665\) 1.62772 4.69882i 0.0631202 0.182212i
\(666\) −19.3723 + 29.2048i −0.750661 + 1.13166i
\(667\) 5.37228 9.30506i 0.208016 0.360294i
\(668\) 6.63325i 0.256648i
\(669\) −14.1168 + 46.8203i −0.545789 + 1.81018i
\(670\) 4.62772 8.01544i 0.178784 0.309664i
\(671\) 22.7190i 0.877059i
\(672\) −1.87228 4.18265i −0.0722248 0.161349i
\(673\) 4.18614 + 7.25061i 0.161364 + 0.279490i 0.935358 0.353702i \(-0.115077\pi\)
−0.773994 + 0.633193i \(0.781744\pi\)
\(674\) 5.30298 + 9.18504i 0.204263 + 0.353794i
\(675\) −17.4891 + 14.5012i −0.673157 + 0.558152i
\(676\) −11.0000 + 6.92820i −0.423077 + 0.266469i
\(677\) 1.37228 0.0527411 0.0263705 0.999652i \(-0.491605\pi\)
0.0263705 + 0.999652i \(0.491605\pi\)
\(678\) −4.74456 + 4.45877i −0.182214 + 0.171238i
\(679\) −1.86141 0.644810i −0.0714342 0.0247455i
\(680\) −3.00000 1.73205i −0.115045 0.0664211i
\(681\) −7.68614 32.7152i −0.294534 1.25365i
\(682\) −14.7446 + 25.5383i −0.564598 + 0.977913i
\(683\) 6.86141 11.8843i 0.262544 0.454740i −0.704373 0.709830i \(-0.748772\pi\)
0.966917 + 0.255090i \(0.0821050\pi\)
\(684\) 6.37228 3.16915i 0.243650 0.121175i
\(685\) −5.05842 2.92048i −0.193272 0.111586i
\(686\) −8.50000 + 16.4545i −0.324532 + 0.628235i
\(687\) 6.06930 + 6.45832i 0.231558 + 0.246400i
\(688\) −4.00000 −0.152499
\(689\) −1.93070 + 7.80284i −0.0735539 + 0.297265i
\(690\) −5.68614 + 1.33591i −0.216468 + 0.0508571i
\(691\) 10.9416 + 18.9514i 0.416237 + 0.720944i 0.995557 0.0941560i \(-0.0300152\pi\)
−0.579320 + 0.815100i \(0.696682\pi\)
\(692\) −0.941578 1.63086i −0.0357934 0.0619960i
\(693\) 21.0475 + 27.5928i 0.799530 + 1.04816i
\(694\) 20.8395i 0.791057i
\(695\) 3.51087 6.08101i 0.133175 0.230666i
\(696\) −4.18614 1.26217i −0.158675 0.0478424i
\(697\) 41.3292i 1.56545i
\(698\) −10.0584 + 17.4217i −0.380717 + 0.659421i
\(699\) −6.11684 + 5.74839i −0.231360 + 0.217424i
\(700\) −10.9307 3.78651i −0.413142 0.143117i
\(701\) 45.3832i 1.71410i −0.515234 0.857049i \(-0.672295\pi\)
0.515234 0.857049i \(-0.327705\pi\)
\(702\) 15.4891 + 10.5398i 0.584599 + 0.397798i
\(703\) 27.7128i 1.04521i
\(704\) −2.18614 3.78651i −0.0823933 0.142709i
\(705\) 0.883156 + 0.939764i 0.0332616 + 0.0353936i
\(706\) 25.3723 + 14.6487i 0.954898 + 0.551311i
\(707\) −29.4891 + 25.5383i −1.10905 + 0.960468i
\(708\) −10.1753 3.06796i −0.382410 0.115301i
\(709\) −22.8832 13.2116i −0.859395 0.496172i 0.00441467 0.999990i \(-0.498595\pi\)
−0.863810 + 0.503818i \(0.831928\pi\)
\(710\) 12.7692i 0.479218i
\(711\) −1.79211 + 28.8275i −0.0672094 + 1.08112i
\(712\) 9.30298 5.37108i 0.348644 0.201290i
\(713\) −24.8614 + 14.3537i −0.931067 + 0.537552i
\(714\) −11.7446 + 16.2333i −0.439529 + 0.607515i
\(715\) 12.0000 3.46410i 0.448775 0.129550i
\(716\) 5.04868i 0.188678i
\(717\) 18.5109 + 19.6974i 0.691301 + 0.735612i
\(718\) 8.31386 + 14.4000i 0.310270 + 0.537404i
\(719\) 12.5584 21.7518i 0.468350 0.811206i −0.530996 0.847375i \(-0.678182\pi\)
0.999346 + 0.0361684i \(0.0115153\pi\)
\(720\) 1.05842 + 2.12819i 0.0394451 + 0.0793131i
\(721\) 21.3505 4.10891i 0.795135 0.153024i
\(722\) 6.68614 11.5807i 0.248832 0.430990i
\(723\) −21.4891 + 5.04868i −0.799189 + 0.187762i
\(724\) 10.5000 + 6.06218i 0.390229 + 0.225299i
\(725\) −9.55842 + 5.51856i −0.354991 + 0.204954i
\(726\) 9.62772 + 10.2448i 0.357318 + 0.380221i
\(727\) 28.1176i 1.04282i 0.853305 + 0.521412i \(0.174594\pi\)
−0.853305 + 0.521412i \(0.825406\pi\)
\(728\) −0.500000 + 9.52628i −0.0185312 + 0.353067i
\(729\) 5.00000 26.5330i 0.185185 0.982704i
\(730\) −7.37228 + 4.25639i −0.272860 + 0.157536i
\(731\) 8.74456 + 15.1460i 0.323429 + 0.560196i
\(732\) −8.61684 2.59808i −0.318488 0.0960277i
\(733\) −43.7446 −1.61574 −0.807871 0.589359i \(-0.799380\pi\)
−0.807871 + 0.589359i \(0.799380\pi\)
\(734\) −26.2337 15.1460i −0.968303 0.559050i
\(735\) 4.05842 8.70654i 0.149697 0.321146i
\(736\) 4.25639i 0.156893i
\(737\) −44.2337 25.5383i −1.62937 0.940717i
\(738\) 15.6753 23.6314i 0.577015 0.869882i
\(739\) −34.1168 + 19.6974i −1.25501 + 0.724579i −0.972100 0.234567i \(-0.924633\pi\)
−0.282909 + 0.959147i \(0.591299\pi\)
\(740\) 9.25544 0.340237
\(741\) −14.8139 0.174928i −0.544201 0.00642615i
\(742\) 3.86141 + 4.45877i 0.141757 + 0.163687i
\(743\) −1.62772 2.81929i −0.0597152 0.103430i 0.834622 0.550823i \(-0.185686\pi\)
−0.894338 + 0.447393i \(0.852353\pi\)
\(744\) 8.00000 + 8.51278i 0.293294 + 0.312094i
\(745\) 4.11684 + 2.37686i 0.150829 + 0.0870814i
\(746\) 8.00000 0.292901
\(747\) 4.74456 + 0.294954i 0.173594 + 0.0107918i
\(748\) −9.55842 + 16.5557i −0.349491 + 0.605335i
\(749\) 1.62772 + 1.87953i 0.0594755 + 0.0686764i
\(750\) 12.3139 + 3.71277i 0.449639 + 0.135571i
\(751\) 0.500000 + 0.866025i 0.0182453 + 0.0316017i 0.875004 0.484116i \(-0.160859\pi\)
−0.856759 + 0.515718i \(0.827525\pi\)
\(752\) −0.813859 + 0.469882i −0.0296784 + 0.0171348i
\(753\) −27.1753 + 6.38458i −0.990322 + 0.232667i
\(754\) 6.55842 + 6.31084i 0.238844 + 0.229827i
\(755\) 13.3723 0.486667
\(756\) 12.8723 4.82746i 0.468160 0.175573i
\(757\) 8.86141 + 15.3484i 0.322073 + 0.557847i 0.980916 0.194434i \(-0.0622869\pi\)
−0.658842 + 0.752281i \(0.728954\pi\)
\(758\) 4.88316 + 2.81929i 0.177364 + 0.102401i
\(759\) 7.37228 + 31.3793i 0.267597 + 1.13900i
\(760\) −1.62772 0.939764i −0.0590436 0.0340888i
\(761\) 3.25544 + 1.87953i 0.118010 + 0.0681328i 0.557843 0.829947i \(-0.311629\pi\)
−0.439833 + 0.898079i \(0.644963\pi\)
\(762\) 3.56930 0.838574i 0.129302 0.0303783i
\(763\) 51.7011 9.94987i 1.87170 0.360210i
\(764\) −10.6277 + 6.13592i −0.384497 + 0.221990i
\(765\) 5.74456 8.66025i 0.207695 0.313112i
\(766\) 15.0911i 0.545264i
\(767\) 15.9416 + 15.3398i 0.575617 + 0.553888i
\(768\) −1.68614 + 0.396143i −0.0608434 + 0.0142946i
\(769\) −12.1168 20.9870i −0.436945 0.756810i 0.560508 0.828149i \(-0.310606\pi\)
−0.997452 + 0.0713391i \(0.977273\pi\)
\(770\) 3.00000 8.66025i 0.108112 0.312094i