Properties

Label 546.2.q.e.335.1
Level $546$
Weight $2$
Character 546.335
Analytic conductor $4.360$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 335.1
Root \(-1.18614 - 1.26217i\) of defining polynomial
Character \(\chi\) \(=\) 546.335
Dual form 546.2.q.e.251.1

$q$-expansion

\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-1.68614 - 0.396143i) q^{3} +(-0.500000 + 0.866025i) q^{4} -2.52434i q^{5} +(0.500000 + 1.65831i) q^{6} +(0.500000 + 2.59808i) q^{7} +1.00000 q^{8} +(2.68614 + 1.33591i) q^{9} +O(q^{10})\) \(q+(-0.500000 - 0.866025i) q^{2} +(-1.68614 - 0.396143i) q^{3} +(-0.500000 + 0.866025i) q^{4} -2.52434i q^{5} +(0.500000 + 1.65831i) q^{6} +(0.500000 + 2.59808i) q^{7} +1.00000 q^{8} +(2.68614 + 1.33591i) q^{9} +(-2.18614 + 1.26217i) q^{10} +(0.686141 + 1.18843i) q^{11} +(1.18614 - 1.26217i) q^{12} +(3.50000 + 0.866025i) q^{13} +(2.00000 - 1.73205i) q^{14} +(-1.00000 + 4.25639i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(0.686141 - 1.18843i) q^{17} +(-0.186141 - 2.99422i) q^{18} +(1.68614 - 2.92048i) q^{19} +(2.18614 + 1.26217i) q^{20} +(0.186141 - 4.57879i) q^{21} +(0.686141 - 1.18843i) q^{22} +(-0.813859 + 0.469882i) q^{23} +(-1.68614 - 0.396143i) q^{24} -1.37228 q^{25} +(-1.00000 - 3.46410i) q^{26} +(-4.00000 - 3.31662i) q^{27} +(-2.50000 - 0.866025i) q^{28} +(0.686141 - 0.396143i) q^{29} +(4.18614 - 1.26217i) q^{30} -4.74456 q^{31} +(-0.500000 + 0.866025i) q^{32} +(-0.686141 - 2.27567i) q^{33} -1.37228 q^{34} +(6.55842 - 1.26217i) q^{35} +(-2.50000 + 1.65831i) q^{36} +(7.11684 - 4.10891i) q^{37} -3.37228 q^{38} +(-5.55842 - 2.84674i) q^{39} -2.52434i q^{40} +(5.31386 - 3.06796i) q^{41} +(-4.05842 + 2.12819i) q^{42} +(2.00000 - 3.46410i) q^{43} -1.37228 q^{44} +(3.37228 - 6.78073i) q^{45} +(0.813859 + 0.469882i) q^{46} -4.25639i q^{47} +(0.500000 + 1.65831i) q^{48} +(-6.50000 + 2.59808i) q^{49} +(0.686141 + 1.18843i) q^{50} +(-1.62772 + 1.73205i) q^{51} +(-2.50000 + 2.59808i) q^{52} -14.3537i q^{53} +(-0.872281 + 5.12241i) q^{54} +(3.00000 - 1.73205i) q^{55} +(0.500000 + 2.59808i) q^{56} +(-4.00000 + 4.25639i) q^{57} +(-0.686141 - 0.396143i) q^{58} +(8.18614 + 4.72627i) q^{59} +(-3.18614 - 2.99422i) q^{60} +(4.50000 + 2.59808i) q^{61} +(2.37228 + 4.10891i) q^{62} +(-2.12772 + 7.64675i) q^{63} +1.00000 q^{64} +(2.18614 - 8.83518i) q^{65} +(-1.62772 + 1.73205i) q^{66} +(-7.11684 + 4.10891i) q^{67} +(0.686141 + 1.18843i) q^{68} +(1.55842 - 0.469882i) q^{69} +(-4.37228 - 5.04868i) q^{70} +(-0.558422 + 0.967215i) q^{71} +(2.68614 + 1.33591i) q^{72} +0.744563 q^{73} +(-7.11684 - 4.10891i) q^{74} +(2.31386 + 0.543620i) q^{75} +(1.68614 + 2.92048i) q^{76} +(-2.74456 + 2.37686i) q^{77} +(0.313859 + 6.23711i) q^{78} +15.3723 q^{79} +(-2.18614 + 1.26217i) q^{80} +(5.43070 + 7.17687i) q^{81} +(-5.31386 - 3.06796i) q^{82} +5.04868i q^{83} +(3.87228 + 2.45060i) q^{84} +(-3.00000 - 1.73205i) q^{85} -4.00000 q^{86} +(-1.31386 + 0.396143i) q^{87} +(0.686141 + 1.18843i) q^{88} +(-10.8030 + 6.23711i) q^{89} +(-7.55842 + 0.469882i) q^{90} +(-0.500000 + 9.52628i) q^{91} -0.939764i q^{92} +(8.00000 + 1.87953i) q^{93} +(-3.68614 + 2.12819i) q^{94} +(-7.37228 - 4.25639i) q^{95} +(1.18614 - 1.26217i) q^{96} +(5.37228 - 9.30506i) q^{97} +(5.50000 + 4.33013i) q^{98} +(0.255437 + 4.10891i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - q^{3} - 2 q^{4} + 2 q^{6} + 2 q^{7} + 4 q^{8} + 5 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 2 q^{2} - q^{3} - 2 q^{4} + 2 q^{6} + 2 q^{7} + 4 q^{8} + 5 q^{9} - 3 q^{10} - 3 q^{11} - q^{12} + 14 q^{13} + 8 q^{14} - 4 q^{15} - 2 q^{16} - 3 q^{17} + 5 q^{18} + q^{19} + 3 q^{20} - 5 q^{21} - 3 q^{22} - 9 q^{23} - q^{24} + 6 q^{25} - 4 q^{26} - 16 q^{27} - 10 q^{28} - 3 q^{29} + 11 q^{30} + 4 q^{31} - 2 q^{32} + 3 q^{33} + 6 q^{34} + 9 q^{35} - 10 q^{36} - 6 q^{37} - 2 q^{38} - 5 q^{39} + 27 q^{41} + q^{42} + 8 q^{43} + 6 q^{44} + 2 q^{45} + 9 q^{46} + 2 q^{48} - 26 q^{49} - 3 q^{50} - 18 q^{51} - 10 q^{52} + 8 q^{54} + 12 q^{55} + 2 q^{56} - 16 q^{57} + 3 q^{58} + 27 q^{59} - 7 q^{60} + 18 q^{61} - 2 q^{62} - 20 q^{63} + 4 q^{64} + 3 q^{65} - 18 q^{66} + 6 q^{67} - 3 q^{68} - 11 q^{69} - 6 q^{70} + 15 q^{71} + 5 q^{72} - 20 q^{73} + 6 q^{74} + 15 q^{75} + q^{76} + 12 q^{77} + 7 q^{78} + 50 q^{79} - 3 q^{80} - 7 q^{81} - 27 q^{82} + 4 q^{84} - 12 q^{85} - 16 q^{86} - 11 q^{87} - 3 q^{88} - 3 q^{89} - 13 q^{90} - 2 q^{91} + 32 q^{93} - 9 q^{94} - 18 q^{95} - q^{96} + 10 q^{97} + 22 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) −1.68614 0.396143i −0.973494 0.228714i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 2.52434i 1.12892i −0.825461 0.564459i \(-0.809085\pi\)
0.825461 0.564459i \(-0.190915\pi\)
\(6\) 0.500000 + 1.65831i 0.204124 + 0.677003i
\(7\) 0.500000 + 2.59808i 0.188982 + 0.981981i
\(8\) 1.00000 0.353553
\(9\) 2.68614 + 1.33591i 0.895380 + 0.445302i
\(10\) −2.18614 + 1.26217i −0.691318 + 0.399133i
\(11\) 0.686141 + 1.18843i 0.206879 + 0.358325i 0.950730 0.310021i \(-0.100336\pi\)
−0.743851 + 0.668346i \(0.767003\pi\)
\(12\) 1.18614 1.26217i 0.342409 0.364357i
\(13\) 3.50000 + 0.866025i 0.970725 + 0.240192i
\(14\) 2.00000 1.73205i 0.534522 0.462910i
\(15\) −1.00000 + 4.25639i −0.258199 + 1.09899i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0.686141 1.18843i 0.166414 0.288237i −0.770743 0.637146i \(-0.780115\pi\)
0.937156 + 0.348910i \(0.113448\pi\)
\(18\) −0.186141 2.99422i −0.0438738 0.705744i
\(19\) 1.68614 2.92048i 0.386827 0.670004i −0.605194 0.796078i \(-0.706904\pi\)
0.992021 + 0.126074i \(0.0402377\pi\)
\(20\) 2.18614 + 1.26217i 0.488836 + 0.282230i
\(21\) 0.186141 4.57879i 0.0406192 0.999175i
\(22\) 0.686141 1.18843i 0.146286 0.253374i
\(23\) −0.813859 + 0.469882i −0.169701 + 0.0979772i −0.582445 0.812870i \(-0.697904\pi\)
0.412744 + 0.910847i \(0.364571\pi\)
\(24\) −1.68614 0.396143i −0.344182 0.0808625i
\(25\) −1.37228 −0.274456
\(26\) −1.00000 3.46410i −0.196116 0.679366i
\(27\) −4.00000 3.31662i −0.769800 0.638285i
\(28\) −2.50000 0.866025i −0.472456 0.163663i
\(29\) 0.686141 0.396143i 0.127413 0.0735620i −0.434939 0.900460i \(-0.643230\pi\)
0.562352 + 0.826898i \(0.309897\pi\)
\(30\) 4.18614 1.26217i 0.764281 0.230439i
\(31\) −4.74456 −0.852149 −0.426074 0.904688i \(-0.640104\pi\)
−0.426074 + 0.904688i \(0.640104\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) −0.686141 2.27567i −0.119442 0.396143i
\(34\) −1.37228 −0.235344
\(35\) 6.55842 1.26217i 1.10858 0.213345i
\(36\) −2.50000 + 1.65831i −0.416667 + 0.276385i
\(37\) 7.11684 4.10891i 1.17000 0.675501i 0.216321 0.976322i \(-0.430594\pi\)
0.953681 + 0.300821i \(0.0972608\pi\)
\(38\) −3.37228 −0.547056
\(39\) −5.55842 2.84674i −0.890060 0.455844i
\(40\) 2.52434i 0.399133i
\(41\) 5.31386 3.06796i 0.829885 0.479135i −0.0239280 0.999714i \(-0.507617\pi\)
0.853813 + 0.520579i \(0.174284\pi\)
\(42\) −4.05842 + 2.12819i −0.626228 + 0.328388i
\(43\) 2.00000 3.46410i 0.304997 0.528271i −0.672264 0.740312i \(-0.734678\pi\)
0.977261 + 0.212041i \(0.0680112\pi\)
\(44\) −1.37228 −0.206879
\(45\) 3.37228 6.78073i 0.502710 1.01081i
\(46\) 0.813859 + 0.469882i 0.119997 + 0.0692803i
\(47\) 4.25639i 0.620858i −0.950597 0.310429i \(-0.899527\pi\)
0.950597 0.310429i \(-0.100473\pi\)
\(48\) 0.500000 + 1.65831i 0.0721688 + 0.239357i
\(49\) −6.50000 + 2.59808i −0.928571 + 0.371154i
\(50\) 0.686141 + 1.18843i 0.0970349 + 0.168069i
\(51\) −1.62772 + 1.73205i −0.227926 + 0.242536i
\(52\) −2.50000 + 2.59808i −0.346688 + 0.360288i
\(53\) 14.3537i 1.97164i −0.167813 0.985819i \(-0.553670\pi\)
0.167813 0.985819i \(-0.446330\pi\)
\(54\) −0.872281 + 5.12241i −0.118702 + 0.697072i
\(55\) 3.00000 1.73205i 0.404520 0.233550i
\(56\) 0.500000 + 2.59808i 0.0668153 + 0.347183i
\(57\) −4.00000 + 4.25639i −0.529813 + 0.563772i
\(58\) −0.686141 0.396143i −0.0900947 0.0520162i
\(59\) 8.18614 + 4.72627i 1.06574 + 0.615308i 0.927016 0.375022i \(-0.122365\pi\)
0.138729 + 0.990330i \(0.455698\pi\)
\(60\) −3.18614 2.99422i −0.411329 0.386552i
\(61\) 4.50000 + 2.59808i 0.576166 + 0.332650i 0.759608 0.650381i \(-0.225391\pi\)
−0.183442 + 0.983030i \(0.558724\pi\)
\(62\) 2.37228 + 4.10891i 0.301280 + 0.521832i
\(63\) −2.12772 + 7.64675i −0.268067 + 0.963400i
\(64\) 1.00000 0.125000
\(65\) 2.18614 8.83518i 0.271157 1.09587i
\(66\) −1.62772 + 1.73205i −0.200358 + 0.213201i
\(67\) −7.11684 + 4.10891i −0.869461 + 0.501983i −0.867169 0.498014i \(-0.834063\pi\)
−0.00229183 + 0.999997i \(0.500730\pi\)
\(68\) 0.686141 + 1.18843i 0.0832068 + 0.144118i
\(69\) 1.55842 0.469882i 0.187612 0.0565671i
\(70\) −4.37228 5.04868i −0.522588 0.603432i
\(71\) −0.558422 + 0.967215i −0.0662725 + 0.114787i −0.897258 0.441507i \(-0.854444\pi\)
0.830985 + 0.556294i \(0.187777\pi\)
\(72\) 2.68614 + 1.33591i 0.316565 + 0.157438i
\(73\) 0.744563 0.0871445 0.0435722 0.999050i \(-0.486126\pi\)
0.0435722 + 0.999050i \(0.486126\pi\)
\(74\) −7.11684 4.10891i −0.827316 0.477651i
\(75\) 2.31386 + 0.543620i 0.267181 + 0.0627719i
\(76\) 1.68614 + 2.92048i 0.193414 + 0.335002i
\(77\) −2.74456 + 2.37686i −0.312772 + 0.270868i
\(78\) 0.313859 + 6.23711i 0.0355376 + 0.706213i
\(79\) 15.3723 1.72952 0.864758 0.502188i \(-0.167472\pi\)
0.864758 + 0.502188i \(0.167472\pi\)
\(80\) −2.18614 + 1.26217i −0.244418 + 0.141115i
\(81\) 5.43070 + 7.17687i 0.603411 + 0.797430i
\(82\) −5.31386 3.06796i −0.586818 0.338799i
\(83\) 5.04868i 0.554164i 0.960846 + 0.277082i \(0.0893674\pi\)
−0.960846 + 0.277082i \(0.910633\pi\)
\(84\) 3.87228 + 2.45060i 0.422501 + 0.267382i
\(85\) −3.00000 1.73205i −0.325396 0.187867i
\(86\) −4.00000 −0.431331
\(87\) −1.31386 + 0.396143i −0.140861 + 0.0424710i
\(88\) 0.686141 + 1.18843i 0.0731428 + 0.126687i
\(89\) −10.8030 + 6.23711i −1.14511 + 0.661132i −0.947692 0.319187i \(-0.896590\pi\)
−0.197422 + 0.980319i \(0.563257\pi\)
\(90\) −7.55842 + 0.469882i −0.796728 + 0.0495299i
\(91\) −0.500000 + 9.52628i −0.0524142 + 0.998625i
\(92\) 0.939764i 0.0979772i
\(93\) 8.00000 + 1.87953i 0.829561 + 0.194898i
\(94\) −3.68614 + 2.12819i −0.380196 + 0.219506i
\(95\) −7.37228 4.25639i −0.756380 0.436696i
\(96\) 1.18614 1.26217i 0.121060 0.128820i
\(97\) 5.37228 9.30506i 0.545473 0.944786i −0.453104 0.891457i \(-0.649684\pi\)
0.998577 0.0533287i \(-0.0169831\pi\)
\(98\) 5.50000 + 4.33013i 0.555584 + 0.437409i
\(99\) 0.255437 + 4.10891i 0.0256724 + 0.412961i
\(100\) 0.686141 1.18843i 0.0686141 0.118843i
\(101\) 1.62772 + 2.81929i 0.161964 + 0.280530i 0.935573 0.353133i \(-0.114884\pi\)
−0.773609 + 0.633663i \(0.781550\pi\)
\(102\) 2.31386 + 0.543620i 0.229106 + 0.0538264i
\(103\) 11.6819i 1.15105i 0.817783 + 0.575527i \(0.195203\pi\)
−0.817783 + 0.575527i \(0.804797\pi\)
\(104\) 3.50000 + 0.866025i 0.343203 + 0.0849208i
\(105\) −11.5584 0.469882i −1.12799 0.0458558i
\(106\) −12.4307 + 7.17687i −1.20738 + 0.697079i
\(107\) 3.68614 2.12819i 0.356353 0.205740i −0.311127 0.950368i \(-0.600706\pi\)
0.667480 + 0.744628i \(0.267373\pi\)
\(108\) 4.87228 1.80579i 0.468835 0.173762i
\(109\) 19.8997i 1.90605i 0.302891 + 0.953025i \(0.402048\pi\)
−0.302891 + 0.953025i \(0.597952\pi\)
\(110\) −3.00000 1.73205i −0.286039 0.165145i
\(111\) −13.6277 + 4.10891i −1.29349 + 0.390001i
\(112\) 2.00000 1.73205i 0.188982 0.163663i
\(113\) −14.7446 8.51278i −1.38705 0.800815i −0.394070 0.919081i \(-0.628933\pi\)
−0.992982 + 0.118266i \(0.962267\pi\)
\(114\) 5.68614 + 1.33591i 0.532556 + 0.125119i
\(115\) 1.18614 + 2.05446i 0.110608 + 0.191579i
\(116\) 0.792287i 0.0735620i
\(117\) 8.24456 + 7.00194i 0.762210 + 0.647330i
\(118\) 9.45254i 0.870177i
\(119\) 3.43070 + 1.18843i 0.314492 + 0.108943i
\(120\) −1.00000 + 4.25639i −0.0912871 + 0.388553i
\(121\) 4.55842 7.89542i 0.414402 0.717765i
\(122\) 5.19615i 0.470438i
\(123\) −10.1753 + 3.06796i −0.917473 + 0.276628i
\(124\) 2.37228 4.10891i 0.213037 0.368991i
\(125\) 9.15759i 0.819080i
\(126\) 7.68614 1.98072i 0.684736 0.176456i
\(127\) −7.55842 13.0916i −0.670701 1.16169i −0.977706 0.209981i \(-0.932660\pi\)
0.307004 0.951708i \(-0.400673\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) −4.74456 + 5.04868i −0.417735 + 0.444511i
\(130\) −8.74456 + 2.52434i −0.766949 + 0.221399i
\(131\) 18.6060 1.62561 0.812806 0.582535i \(-0.197939\pi\)
0.812806 + 0.582535i \(0.197939\pi\)
\(132\) 2.31386 + 0.543620i 0.201396 + 0.0473161i
\(133\) 8.43070 + 2.92048i 0.731035 + 0.253238i
\(134\) 7.11684 + 4.10891i 0.614802 + 0.354956i
\(135\) −8.37228 + 10.0974i −0.720571 + 0.869042i
\(136\) 0.686141 1.18843i 0.0588361 0.101907i
\(137\) −0.813859 + 1.40965i −0.0695327 + 0.120434i −0.898696 0.438573i \(-0.855484\pi\)
0.829163 + 0.559007i \(0.188817\pi\)
\(138\) −1.18614 1.11469i −0.100971 0.0948889i
\(139\) 18.1753 + 10.4935i 1.54161 + 0.890047i 0.998738 + 0.0502287i \(0.0159950\pi\)
0.542868 + 0.839818i \(0.317338\pi\)
\(140\) −2.18614 + 6.31084i −0.184763 + 0.533364i
\(141\) −1.68614 + 7.17687i −0.141999 + 0.604401i
\(142\) 1.11684 0.0937235
\(143\) 1.37228 + 4.75372i 0.114756 + 0.397526i
\(144\) −0.186141 2.99422i −0.0155117 0.249518i
\(145\) −1.00000 1.73205i −0.0830455 0.143839i
\(146\) −0.372281 0.644810i −0.0308102 0.0533649i
\(147\) 11.9891 1.80579i 0.988846 0.148939i
\(148\) 8.21782i 0.675501i
\(149\) 3.00000 5.19615i 0.245770 0.425685i −0.716578 0.697507i \(-0.754293\pi\)
0.962348 + 0.271821i \(0.0876260\pi\)
\(150\) −0.686141 2.27567i −0.0560232 0.185808i
\(151\) 3.02167i 0.245900i 0.992413 + 0.122950i \(0.0392355\pi\)
−0.992413 + 0.122950i \(0.960765\pi\)
\(152\) 1.68614 2.92048i 0.136764 0.236882i
\(153\) 3.43070 2.27567i 0.277356 0.183977i
\(154\) 3.43070 + 1.18843i 0.276454 + 0.0957665i
\(155\) 11.9769i 0.962006i
\(156\) 5.24456 3.39036i 0.419901 0.271446i
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) −7.68614 13.3128i −0.611477 1.05911i
\(159\) −5.68614 + 24.2024i −0.450940 + 1.91938i
\(160\) 2.18614 + 1.26217i 0.172830 + 0.0997832i
\(161\) −1.62772 1.87953i −0.128282 0.148128i
\(162\) 3.50000 8.29156i 0.274986 0.651447i
\(163\) −9.00000 5.19615i −0.704934 0.406994i 0.104248 0.994551i \(-0.466756\pi\)
−0.809183 + 0.587557i \(0.800090\pi\)
\(164\) 6.13592i 0.479135i
\(165\) −5.74456 + 1.73205i −0.447214 + 0.134840i
\(166\) 4.37228 2.52434i 0.339355 0.195927i
\(167\) −5.74456 + 3.31662i −0.444528 + 0.256648i −0.705516 0.708694i \(-0.749285\pi\)
0.260989 + 0.965342i \(0.415951\pi\)
\(168\) 0.186141 4.57879i 0.0143611 0.353262i
\(169\) 11.5000 + 6.06218i 0.884615 + 0.466321i
\(170\) 3.46410i 0.265684i
\(171\) 8.43070 5.59230i 0.644712 0.427654i
\(172\) 2.00000 + 3.46410i 0.152499 + 0.264135i
\(173\) −9.55842 + 16.5557i −0.726713 + 1.25870i 0.231552 + 0.972823i \(0.425620\pi\)
−0.958265 + 0.285882i \(0.907714\pi\)
\(174\) 1.00000 + 0.939764i 0.0758098 + 0.0712433i
\(175\) −0.686141 3.56529i −0.0518674 0.269511i
\(176\) 0.686141 1.18843i 0.0517198 0.0895813i
\(177\) −11.9307 11.2120i −0.896767 0.842749i
\(178\) 10.8030 + 6.23711i 0.809718 + 0.467491i
\(179\) −1.37228 + 0.792287i −0.102569 + 0.0592183i −0.550407 0.834896i \(-0.685527\pi\)
0.447838 + 0.894115i \(0.352194\pi\)
\(180\) 4.18614 + 6.31084i 0.312017 + 0.470383i
\(181\) 12.1244i 0.901196i −0.892727 0.450598i \(-0.851211\pi\)
0.892727 0.450598i \(-0.148789\pi\)
\(182\) 8.50000 4.33013i 0.630062 0.320970i
\(183\) −6.55842 6.16337i −0.484813 0.455609i
\(184\) −0.813859 + 0.469882i −0.0599985 + 0.0346402i
\(185\) −10.3723 17.9653i −0.762585 1.32084i
\(186\) −2.37228 7.86797i −0.173944 0.576907i
\(187\) 1.88316 0.137710
\(188\) 3.68614 + 2.12819i 0.268839 + 0.155215i
\(189\) 6.61684 12.0506i 0.481305 0.876553i
\(190\) 8.51278i 0.617582i
\(191\) 16.3723 + 9.45254i 1.18466 + 0.683962i 0.957087 0.289800i \(-0.0935888\pi\)
0.227569 + 0.973762i \(0.426922\pi\)
\(192\) −1.68614 0.396143i −0.121687 0.0285892i
\(193\) −5.61684 + 3.24289i −0.404309 + 0.233428i −0.688342 0.725387i \(-0.741661\pi\)
0.284032 + 0.958815i \(0.408328\pi\)
\(194\) −10.7446 −0.771415
\(195\) −7.18614 + 14.0313i −0.514610 + 1.00480i
\(196\) 1.00000 6.92820i 0.0714286 0.494872i
\(197\) −7.80298 13.5152i −0.555940 0.962916i −0.997830 0.0658465i \(-0.979025\pi\)
0.441890 0.897069i \(-0.354308\pi\)
\(198\) 3.43070 2.27567i 0.243809 0.161725i
\(199\) −3.00000 1.73205i −0.212664 0.122782i 0.389885 0.920864i \(-0.372515\pi\)
−0.602549 + 0.798082i \(0.705848\pi\)
\(200\) −1.37228 −0.0970349
\(201\) 13.6277 4.10891i 0.961225 0.289820i
\(202\) 1.62772 2.81929i 0.114526 0.198365i
\(203\) 1.37228 + 1.58457i 0.0963153 + 0.111215i
\(204\) −0.686141 2.27567i −0.0480395 0.159329i
\(205\) −7.74456 13.4140i −0.540904 0.936873i
\(206\) 10.1168 5.84096i 0.704874 0.406959i
\(207\) −2.81386 + 0.174928i −0.195577 + 0.0121584i
\(208\) −1.00000 3.46410i −0.0693375 0.240192i
\(209\) 4.62772 0.320106
\(210\) 5.37228 + 10.2448i 0.370723 + 0.706960i
\(211\) −11.3723 19.6974i −0.782900 1.35602i −0.930246 0.366938i \(-0.880406\pi\)
0.147345 0.989085i \(-0.452927\pi\)
\(212\) 12.4307 + 7.17687i 0.853744 + 0.492909i
\(213\) 1.32473 1.40965i 0.0907693 0.0965873i
\(214\) −3.68614 2.12819i −0.251979 0.145480i
\(215\) −8.74456 5.04868i −0.596374 0.344317i
\(216\) −4.00000 3.31662i −0.272166 0.225668i
\(217\) −2.37228 12.3267i −0.161041 0.836793i
\(218\) 17.2337 9.94987i 1.16721 0.673891i
\(219\) −1.25544 0.294954i −0.0848346 0.0199311i
\(220\) 3.46410i 0.233550i
\(221\) 3.43070 3.56529i 0.230774 0.239827i
\(222\) 10.3723 + 9.74749i 0.696142 + 0.654209i
\(223\) −3.11684 5.39853i −0.208719 0.361512i 0.742592 0.669744i \(-0.233596\pi\)
−0.951311 + 0.308232i \(0.900263\pi\)
\(224\) −2.50000 0.866025i −0.167038 0.0578638i
\(225\) −3.68614 1.83324i −0.245743 0.122216i
\(226\) 17.0256i 1.13252i
\(227\) 3.30298 + 1.90698i 0.219227 + 0.126571i 0.605592 0.795775i \(-0.292936\pi\)
−0.386365 + 0.922346i \(0.626270\pi\)
\(228\) −1.68614 5.59230i −0.111667 0.370359i
\(229\) −12.1168 −0.800704 −0.400352 0.916362i \(-0.631112\pi\)
−0.400352 + 0.916362i \(0.631112\pi\)
\(230\) 1.18614 2.05446i 0.0782118 0.135467i
\(231\) 5.56930 2.92048i 0.366433 0.192154i
\(232\) 0.686141 0.396143i 0.0450473 0.0260081i
\(233\) 28.0627i 1.83845i 0.393737 + 0.919223i \(0.371182\pi\)
−0.393737 + 0.919223i \(0.628818\pi\)
\(234\) 1.94158 10.6410i 0.126925 0.695622i
\(235\) −10.7446 −0.700898
\(236\) −8.18614 + 4.72627i −0.532872 + 0.307654i
\(237\) −25.9198 6.08963i −1.68367 0.395564i
\(238\) −0.686141 3.56529i −0.0444759 0.231104i
\(239\) −24.6060 −1.59163 −0.795814 0.605541i \(-0.792957\pi\)
−0.795814 + 0.605541i \(0.792957\pi\)
\(240\) 4.18614 1.26217i 0.270214 0.0814727i
\(241\) −0.627719 + 1.08724i −0.0404349 + 0.0700353i −0.885535 0.464573i \(-0.846208\pi\)
0.845100 + 0.534609i \(0.179541\pi\)
\(242\) −9.11684 −0.586053
\(243\) −6.31386 14.2525i −0.405034 0.914302i
\(244\) −4.50000 + 2.59808i −0.288083 + 0.166325i
\(245\) 6.55842 + 16.4082i 0.419002 + 1.04828i
\(246\) 7.74456 + 7.27806i 0.493775 + 0.464032i
\(247\) 8.43070 8.76144i 0.536433 0.557477i
\(248\) −4.74456 −0.301280
\(249\) 2.00000 8.51278i 0.126745 0.539475i
\(250\) −7.93070 + 4.57879i −0.501582 + 0.289588i
\(251\) 0.558422 0.967215i 0.0352473 0.0610501i −0.847864 0.530214i \(-0.822111\pi\)
0.883111 + 0.469164i \(0.155445\pi\)
\(252\) −5.55842 5.66603i −0.350148 0.356927i
\(253\) −1.11684 0.644810i −0.0702154 0.0405389i
\(254\) −7.55842 + 13.0916i −0.474258 + 0.821438i
\(255\) 4.37228 + 4.10891i 0.273803 + 0.257310i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −11.0584 19.1537i −0.689805 1.19478i −0.971901 0.235392i \(-0.924363\pi\)
0.282095 0.959386i \(-0.408971\pi\)
\(258\) 6.74456 + 1.58457i 0.419898 + 0.0986513i
\(259\) 14.2337 + 16.4356i 0.884438 + 1.02126i
\(260\) 6.55842 + 6.31084i 0.406736 + 0.391382i
\(261\) 2.37228 0.147477i 0.146841 0.00912859i
\(262\) −9.30298 16.1132i −0.574740 0.995479i
\(263\) −12.0475 + 6.95565i −0.742884 + 0.428904i −0.823117 0.567872i \(-0.807767\pi\)
0.0802332 + 0.996776i \(0.474433\pi\)
\(264\) −0.686141 2.27567i −0.0422290 0.140058i
\(265\) −36.2337 −2.22582
\(266\) −1.68614 8.76144i −0.103384 0.537199i
\(267\) 20.6861 6.23711i 1.26597 0.381705i
\(268\) 8.21782i 0.501983i
\(269\) −13.9307 + 24.1287i −0.849370 + 1.47115i 0.0324014 + 0.999475i \(0.489684\pi\)
−0.881771 + 0.471677i \(0.843649\pi\)
\(270\) 12.9307 + 2.20193i 0.786938 + 0.134005i
\(271\) −2.00000 3.46410i −0.121491 0.210429i 0.798865 0.601511i \(-0.205434\pi\)
−0.920356 + 0.391082i \(0.872101\pi\)
\(272\) −1.37228 −0.0832068
\(273\) 4.61684 15.8646i 0.279424 0.960168i
\(274\) 1.62772 0.0983341
\(275\) −0.941578 1.63086i −0.0567793 0.0983446i
\(276\) −0.372281 + 1.58457i −0.0224087 + 0.0953801i
\(277\) 4.74456 8.21782i 0.285073 0.493761i −0.687554 0.726133i \(-0.741315\pi\)
0.972627 + 0.232372i \(0.0746488\pi\)
\(278\) 20.9870i 1.25872i
\(279\) −12.7446 6.33830i −0.762997 0.379464i
\(280\) 6.55842 1.26217i 0.391941 0.0754290i
\(281\) 3.25544 0.194203 0.0971016 0.995274i \(-0.469043\pi\)
0.0971016 + 0.995274i \(0.469043\pi\)
\(282\) 7.05842 2.12819i 0.420323 0.126732i
\(283\) 6.55842 3.78651i 0.389858 0.225084i −0.292241 0.956345i \(-0.594401\pi\)
0.682098 + 0.731260i \(0.261068\pi\)
\(284\) −0.558422 0.967215i −0.0331362 0.0573937i
\(285\) 10.7446 + 10.0974i 0.636453 + 0.598115i
\(286\) 3.43070 3.56529i 0.202862 0.210820i
\(287\) 10.6277 + 12.2718i 0.627334 + 0.724383i
\(288\) −2.50000 + 1.65831i −0.147314 + 0.0977170i
\(289\) 7.55842 + 13.0916i 0.444613 + 0.770092i
\(290\) −1.00000 + 1.73205i −0.0587220 + 0.101710i
\(291\) −12.7446 + 13.5615i −0.747099 + 0.794986i
\(292\) −0.372281 + 0.644810i −0.0217861 + 0.0377347i
\(293\) 14.7446 + 8.51278i 0.861387 + 0.497322i 0.864476 0.502673i \(-0.167650\pi\)
−0.00308982 + 0.999995i \(0.500984\pi\)
\(294\) −7.55842 9.47999i −0.440816 0.552884i
\(295\) 11.9307 20.6646i 0.694632 1.20314i
\(296\) 7.11684 4.10891i 0.413658 0.238826i
\(297\) 1.19702 7.02939i 0.0694579 0.407887i
\(298\) −6.00000 −0.347571
\(299\) −3.25544 + 0.939764i −0.188267 + 0.0543479i
\(300\) −1.62772 + 1.73205i −0.0939764 + 0.100000i
\(301\) 10.0000 + 3.46410i 0.576390 + 0.199667i
\(302\) 2.61684 1.51084i 0.150582 0.0869388i
\(303\) −1.62772 5.39853i −0.0935100 0.310138i
\(304\) −3.37228 −0.193414
\(305\) 6.55842 11.3595i 0.375534 0.650444i
\(306\) −3.68614 1.83324i −0.210723 0.104799i
\(307\) −13.2337 −0.755286 −0.377643 0.925951i \(-0.623265\pi\)
−0.377643 + 0.925951i \(0.623265\pi\)
\(308\) −0.686141 3.56529i −0.0390965 0.203151i
\(309\) 4.62772 19.6974i 0.263262 1.12054i
\(310\) 10.3723 5.98844i 0.589106 0.340121i
\(311\) 4.62772 0.262414 0.131207 0.991355i \(-0.458115\pi\)
0.131207 + 0.991355i \(0.458115\pi\)
\(312\) −5.55842 2.84674i −0.314684 0.161165i
\(313\) 13.8564i 0.783210i 0.920133 + 0.391605i \(0.128080\pi\)
−0.920133 + 0.391605i \(0.871920\pi\)
\(314\) 0 0
\(315\) 19.3030 + 5.37108i 1.08760 + 0.302626i
\(316\) −7.68614 + 13.3128i −0.432379 + 0.748903i
\(317\) 26.7446 1.50212 0.751062 0.660232i \(-0.229542\pi\)
0.751062 + 0.660232i \(0.229542\pi\)
\(318\) 23.8030 7.17687i 1.33481 0.402459i
\(319\) 0.941578 + 0.543620i 0.0527182 + 0.0304369i
\(320\) 2.52434i 0.141115i
\(321\) −7.05842 + 2.12819i −0.393963 + 0.118784i
\(322\) −0.813859 + 2.34941i −0.0453546 + 0.130927i
\(323\) −2.31386 4.00772i −0.128747 0.222996i
\(324\) −8.93070 + 1.11469i −0.496150 + 0.0619273i
\(325\) −4.80298 1.18843i −0.266422 0.0659223i
\(326\) 10.3923i 0.575577i
\(327\) 7.88316 33.5538i 0.435940 1.85553i
\(328\) 5.31386 3.06796i 0.293409 0.169400i
\(329\) 11.0584 2.12819i 0.609671 0.117331i
\(330\) 4.37228 + 4.10891i 0.240686 + 0.226188i
\(331\) −19.1168 11.0371i −1.05076 0.606655i −0.127896 0.991788i \(-0.540822\pi\)
−0.922861 + 0.385133i \(0.874156\pi\)
\(332\) −4.37228 2.52434i −0.239960 0.138541i
\(333\) 24.6060 1.52967i 1.34840 0.0838255i
\(334\) 5.74456 + 3.31662i 0.314328 + 0.181478i
\(335\) 10.3723 + 17.9653i 0.566698 + 0.981550i
\(336\) −4.05842 + 2.12819i −0.221405 + 0.116103i
\(337\) 29.6060 1.61274 0.806370 0.591411i \(-0.201429\pi\)
0.806370 + 0.591411i \(0.201429\pi\)
\(338\) −0.500000 12.9904i −0.0271964 0.706584i
\(339\) 21.4891 + 20.1947i 1.16713 + 1.09683i
\(340\) 3.00000 1.73205i 0.162698 0.0939336i
\(341\) −3.25544 5.63858i −0.176292 0.305346i
\(342\) −9.05842 4.50506i −0.489823 0.243605i
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) 2.00000 3.46410i 0.107833 0.186772i
\(345\) −1.18614 3.93398i −0.0638597 0.211799i
\(346\) 19.1168 1.02773
\(347\) 13.5475 + 7.82168i 0.727270 + 0.419890i 0.817423 0.576038i \(-0.195402\pi\)
−0.0901523 + 0.995928i \(0.528735\pi\)
\(348\) 0.313859 1.33591i 0.0168246 0.0716121i
\(349\) −1.44158 2.49689i −0.0771659 0.133655i 0.824860 0.565337i \(-0.191254\pi\)
−0.902026 + 0.431682i \(0.857920\pi\)
\(350\) −2.74456 + 2.37686i −0.146703 + 0.127049i
\(351\) −11.1277 15.0723i −0.593954 0.804499i
\(352\) −1.37228 −0.0731428
\(353\) −19.6277 + 11.3321i −1.04468 + 0.603145i −0.921155 0.389197i \(-0.872753\pi\)
−0.123523 + 0.992342i \(0.539419\pi\)
\(354\) −3.74456 + 15.9383i −0.199021 + 0.847112i
\(355\) 2.44158 + 1.40965i 0.129586 + 0.0748162i
\(356\) 12.4742i 0.661132i
\(357\) −5.31386 3.36291i −0.281239 0.177984i
\(358\) 1.37228 + 0.792287i 0.0725273 + 0.0418737i
\(359\) −22.3723 −1.18076 −0.590382 0.807124i \(-0.701023\pi\)
−0.590382 + 0.807124i \(0.701023\pi\)
\(360\) 3.37228 6.78073i 0.177735 0.357376i
\(361\) 3.81386 + 6.60580i 0.200729 + 0.347674i
\(362\) −10.5000 + 6.06218i −0.551868 + 0.318621i
\(363\) −10.8139 + 11.5070i −0.567580 + 0.603961i
\(364\) −8.00000 5.19615i −0.419314 0.272352i
\(365\) 1.87953i 0.0983790i
\(366\) −2.05842 + 8.76144i −0.107595 + 0.457968i
\(367\) −8.23369 + 4.75372i −0.429795 + 0.248142i −0.699259 0.714868i \(-0.746487\pi\)
0.269464 + 0.963010i \(0.413153\pi\)
\(368\) 0.813859 + 0.469882i 0.0424254 + 0.0244943i
\(369\) 18.3723 1.14214i 0.956423 0.0594576i
\(370\) −10.3723 + 17.9653i −0.539229 + 0.933972i
\(371\) 37.2921 7.17687i 1.93611 0.372605i
\(372\) −5.62772 + 5.98844i −0.291784 + 0.310486i
\(373\) −4.00000 + 6.92820i −0.207112 + 0.358729i −0.950804 0.309794i \(-0.899740\pi\)
0.743691 + 0.668523i \(0.233073\pi\)
\(374\) −0.941578 1.63086i −0.0486878 0.0843298i
\(375\) −3.62772 + 15.4410i −0.187335 + 0.797369i
\(376\) 4.25639i 0.219506i
\(377\) 2.74456 0.792287i 0.141352 0.0408049i
\(378\) −13.7446 + 0.294954i −0.706944 + 0.0151708i
\(379\) −22.1168 + 12.7692i −1.13607 + 0.655908i −0.945453 0.325757i \(-0.894381\pi\)
−0.190613 + 0.981665i \(0.561047\pi\)
\(380\) 7.37228 4.25639i 0.378190 0.218348i
\(381\) 7.55842 + 25.0684i 0.387230 + 1.28430i
\(382\) 18.9051i 0.967268i
\(383\) −27.4307 15.8371i −1.40164 0.809239i −0.407082 0.913392i \(-0.633454\pi\)
−0.994561 + 0.104152i \(0.966787\pi\)
\(384\) 0.500000 + 1.65831i 0.0255155 + 0.0846254i
\(385\) 6.00000 + 6.92820i 0.305788 + 0.353094i
\(386\) 5.61684 + 3.24289i 0.285890 + 0.165059i
\(387\) 10.0000 6.63325i 0.508329 0.337187i
\(388\) 5.37228 + 9.30506i 0.272736 + 0.472393i
\(389\) 22.6641i 1.14912i 0.818463 + 0.574559i \(0.194826\pi\)
−0.818463 + 0.574559i \(0.805174\pi\)
\(390\) 15.7446 0.792287i 0.797257 0.0401190i
\(391\) 1.28962i 0.0652189i
\(392\) −6.50000 + 2.59808i −0.328300 + 0.131223i
\(393\) −31.3723 7.37063i −1.58252 0.371799i
\(394\) −7.80298 + 13.5152i −0.393109 + 0.680884i
\(395\) 38.8048i 1.95248i
\(396\) −3.68614 1.83324i −0.185236 0.0921238i
\(397\) 6.87228 11.9031i 0.344910 0.597401i −0.640427 0.768019i \(-0.721243\pi\)
0.985337 + 0.170617i \(0.0545761\pi\)
\(398\) 3.46410i 0.173640i
\(399\) −13.0584 8.26411i −0.653739 0.413723i
\(400\) 0.686141 + 1.18843i 0.0343070 + 0.0594215i
\(401\) 5.74456 + 9.94987i 0.286870 + 0.496873i 0.973061 0.230548i \(-0.0740520\pi\)
−0.686191 + 0.727421i \(0.740719\pi\)
\(402\) −10.3723 9.74749i −0.517322 0.486161i
\(403\) −16.6060 4.10891i −0.827202 0.204679i
\(404\) −3.25544 −0.161964
\(405\) 18.1168 13.7089i 0.900233 0.681202i
\(406\) 0.686141 1.98072i 0.0340526 0.0983014i
\(407\) 9.76631 + 5.63858i 0.484098 + 0.279494i
\(408\) −1.62772 + 1.73205i −0.0805841 + 0.0857493i
\(409\) 0.744563 1.28962i 0.0368163 0.0637676i −0.847030 0.531545i \(-0.821612\pi\)
0.883846 + 0.467777i \(0.154945\pi\)
\(410\) −7.74456 + 13.4140i −0.382477 + 0.662469i
\(411\) 1.93070 2.05446i 0.0952346 0.101339i
\(412\) −10.1168 5.84096i −0.498421 0.287764i
\(413\) −8.18614 + 23.6314i −0.402814 + 1.16282i
\(414\) 1.55842 + 2.34941i 0.0765923 + 0.115467i
\(415\) 12.7446 0.625606
\(416\) −2.50000 + 2.59808i −0.122573 + 0.127381i
\(417\) −26.4891 24.8935i −1.29718 1.21904i
\(418\) −2.31386 4.00772i −0.113175 0.196024i
\(419\) −8.74456 15.1460i −0.427200 0.739932i 0.569423 0.822045i \(-0.307167\pi\)
−0.996623 + 0.0821127i \(0.973833\pi\)
\(420\) 6.18614 9.77495i 0.301853 0.476969i
\(421\) 12.9715i 0.632194i 0.948727 + 0.316097i \(0.102373\pi\)
−0.948727 + 0.316097i \(0.897627\pi\)
\(422\) −11.3723 + 19.6974i −0.553594 + 0.958853i
\(423\) 5.68614 11.4333i 0.276470 0.555904i
\(424\) 14.3537i 0.697079i
\(425\) −0.941578 + 1.63086i −0.0456732 + 0.0791084i
\(426\) −1.88316 0.442430i −0.0912392 0.0214358i
\(427\) −4.50000 + 12.9904i −0.217770 + 0.628649i
\(428\) 4.25639i 0.205740i
\(429\) −0.430703 8.55906i −0.0207946 0.413236i
\(430\) 10.0974i 0.486938i
\(431\) −9.81386 16.9981i −0.472717 0.818770i 0.526795 0.849992i \(-0.323393\pi\)
−0.999512 + 0.0312223i \(0.990060\pi\)
\(432\) −0.872281 + 5.12241i −0.0419677 + 0.246452i
\(433\) 30.3505 + 17.5229i 1.45855 + 0.842096i 0.998940 0.0460230i \(-0.0146548\pi\)
0.459613 + 0.888119i \(0.347988\pi\)
\(434\) −9.48913 + 8.21782i −0.455493 + 0.394468i
\(435\) 1.00000 + 3.31662i 0.0479463 + 0.159020i
\(436\) −17.2337 9.94987i −0.825344 0.476513i
\(437\) 3.16915i 0.151601i
\(438\) 0.372281 + 1.23472i 0.0177883 + 0.0589971i
\(439\) 30.3505 17.5229i 1.44855 0.836322i 0.450157 0.892950i \(-0.351368\pi\)
0.998395 + 0.0566279i \(0.0180349\pi\)
\(440\) 3.00000 1.73205i 0.143019 0.0825723i
\(441\) −20.9307 1.70460i −0.996700 0.0811714i
\(442\) −4.80298 1.18843i −0.228455 0.0565279i
\(443\) 11.1846i 0.531396i 0.964056 + 0.265698i \(0.0856024\pi\)
−0.964056 + 0.265698i \(0.914398\pi\)
\(444\) 3.25544 13.8564i 0.154496 0.657596i
\(445\) 15.7446 + 27.2704i 0.746364 + 1.29274i
\(446\) −3.11684 + 5.39853i −0.147587 + 0.255628i
\(447\) −7.11684 + 7.57301i −0.336615 + 0.358191i
\(448\) 0.500000 + 2.59808i 0.0236228 + 0.122748i
\(449\) 0.302985 0.524785i 0.0142987 0.0247661i −0.858788 0.512332i \(-0.828782\pi\)
0.873086 + 0.487566i \(0.162115\pi\)
\(450\) 0.255437 + 4.10891i 0.0120414 + 0.193696i
\(451\) 7.29211 + 4.21010i 0.343372 + 0.198246i
\(452\) 14.7446 8.51278i 0.693526 0.400407i
\(453\) 1.19702 5.09496i 0.0562407 0.239382i
\(454\) 3.81396i 0.178998i
\(455\) 24.0475 + 1.26217i 1.12737 + 0.0591714i
\(456\) −4.00000 + 4.25639i −0.187317 + 0.199324i
\(457\) −16.6753 + 9.62747i −0.780036 + 0.450354i −0.836443 0.548054i \(-0.815369\pi\)
0.0564070 + 0.998408i \(0.482036\pi\)
\(458\) 6.05842 + 10.4935i 0.283091 + 0.490329i
\(459\) −6.68614 + 2.47805i −0.312082 + 0.115666i
\(460\) −2.37228 −0.110608
\(461\) 13.0693 + 7.54556i 0.608698 + 0.351432i 0.772456 0.635069i \(-0.219028\pi\)
−0.163758 + 0.986501i \(0.552362\pi\)
\(462\) −5.31386 3.36291i −0.247223 0.156457i
\(463\) 30.7345i 1.42835i 0.699966 + 0.714176i \(0.253199\pi\)
−0.699966 + 0.714176i \(0.746801\pi\)
\(464\) −0.686141 0.396143i −0.0318533 0.0183905i
\(465\) 4.74456 20.1947i 0.220024 0.936507i
\(466\) 24.3030 14.0313i 1.12581 0.649989i
\(467\) −19.6277 −0.908263 −0.454131 0.890935i \(-0.650050\pi\)
−0.454131 + 0.890935i \(0.650050\pi\)
\(468\) −10.1861 + 3.63903i −0.470855 + 0.168214i
\(469\) −14.2337 16.4356i −0.657251 0.758928i
\(470\) 5.37228 + 9.30506i 0.247805 + 0.429211i
\(471\) 0 0
\(472\) 8.18614 + 4.72627i 0.376798 + 0.217544i
\(473\) 5.48913 0.252390
\(474\) 7.68614 + 25.4920i 0.353036 + 1.17089i
\(475\) −2.31386 + 4.00772i −0.106167 + 0.183887i
\(476\) −2.74456 + 2.37686i −0.125797 + 0.108943i
\(477\) 19.1753 38.5562i 0.877975 1.76537i
\(478\) 12.3030 + 21.3094i 0.562725 + 0.974669i
\(479\) −22.8030 + 13.1653i −1.04189 + 0.601538i −0.920369 0.391050i \(-0.872112\pi\)
−0.121526 + 0.992588i \(0.538779\pi\)
\(480\) −3.18614 2.99422i −0.145427 0.136667i
\(481\) 28.4674 8.21782i 1.29800 0.374701i
\(482\) 1.25544 0.0571836
\(483\) 2.00000 + 3.81396i 0.0910032 + 0.173541i
\(484\) 4.55842 + 7.89542i 0.207201 + 0.358883i
\(485\) −23.4891 13.5615i −1.06659 0.615794i
\(486\) −9.18614 + 12.5942i −0.416692 + 0.571286i
\(487\) −9.38316 5.41737i −0.425191 0.245484i 0.272105 0.962268i \(-0.412280\pi\)
−0.697296 + 0.716783i \(0.745614\pi\)
\(488\) 4.50000 + 2.59808i 0.203705 + 0.117609i
\(489\) 13.1168 + 12.3267i 0.593164 + 0.557434i
\(490\) 10.9307 13.8839i 0.493799 0.627209i
\(491\) −33.6060 + 19.4024i −1.51662 + 0.875619i −0.516807 + 0.856102i \(0.672879\pi\)
−0.999810 + 0.0195166i \(0.993787\pi\)
\(492\) 2.43070 10.3460i 0.109585 0.466435i
\(493\) 1.08724i 0.0489669i
\(494\) −11.8030 2.92048i −0.531041 0.131399i
\(495\) 10.3723 0.644810i 0.466199 0.0289821i
\(496\) 2.37228 + 4.10891i 0.106519 + 0.184496i
\(497\) −2.79211 0.967215i −0.125243 0.0433855i
\(498\) −8.37228 + 2.52434i −0.375171 + 0.113118i
\(499\) 23.3639i 1.04591i 0.852360 + 0.522955i \(0.175170\pi\)
−0.852360 + 0.522955i \(0.824830\pi\)
\(500\) 7.93070 + 4.57879i 0.354672 + 0.204770i
\(501\) 11.0000 3.31662i 0.491444 0.148176i
\(502\) −1.11684 −0.0498472
\(503\) −11.4891 + 19.8997i −0.512275 + 0.887286i 0.487624 + 0.873054i \(0.337864\pi\)
−0.999899 + 0.0142322i \(0.995470\pi\)
\(504\) −2.12772 + 7.64675i −0.0947761 + 0.340613i
\(505\) 7.11684 4.10891i 0.316695 0.182844i
\(506\) 1.28962i 0.0573306i
\(507\) −16.9891 14.7773i −0.754514 0.656284i
\(508\) 15.1168 0.670701
\(509\) −23.1861 + 13.3865i −1.02771 + 0.593347i −0.916327 0.400431i \(-0.868861\pi\)
−0.111381 + 0.993778i \(0.535527\pi\)
\(510\) 1.37228 5.84096i 0.0607656 0.258642i
\(511\) 0.372281 + 1.93443i 0.0164688 + 0.0855742i
\(512\) 1.00000 0.0441942
\(513\) −16.4307 + 6.08963i −0.725433 + 0.268864i
\(514\) −11.0584 + 19.1537i −0.487766 + 0.844836i
\(515\) 29.4891 1.29945
\(516\) −2.00000 6.63325i −0.0880451 0.292013i
\(517\) 5.05842 2.92048i 0.222469 0.128443i
\(518\) 7.11684 20.5446i 0.312696 0.902676i
\(519\) 22.6753 24.1287i 0.995334 1.05913i
\(520\) 2.18614 8.83518i 0.0958686 0.387448i
\(521\) −16.1168 −0.706092 −0.353046 0.935606i \(-0.614854\pi\)
−0.353046 + 0.935606i \(0.614854\pi\)
\(522\) −1.31386 1.98072i −0.0575061 0.0866936i
\(523\) −7.50000 + 4.33013i −0.327952 + 0.189343i −0.654932 0.755688i \(-0.727303\pi\)
0.326979 + 0.945031i \(0.393969\pi\)
\(524\) −9.30298 + 16.1132i −0.406403 + 0.703910i
\(525\) −0.255437 + 6.28339i −0.0111482 + 0.274230i
\(526\) 12.0475 + 6.95565i 0.525298 + 0.303281i
\(527\) −3.25544 + 5.63858i −0.141809 + 0.245621i
\(528\) −1.62772 + 1.73205i −0.0708374 + 0.0753778i
\(529\) −11.0584 + 19.1537i −0.480801 + 0.832772i
\(530\) 18.1168 + 31.3793i 0.786945 + 1.36303i
\(531\) 15.6753 + 23.6314i 0.680249 + 1.02551i
\(532\) −6.74456 + 5.84096i −0.292414 + 0.253238i
\(533\) 21.2554 6.13592i 0.920675 0.265776i
\(534\) −15.7446 14.7962i −0.681334 0.640293i
\(535\) −5.37228 9.30506i −0.232264 0.402293i
\(536\) −7.11684 + 4.10891i −0.307401 + 0.177478i
\(537\) 2.62772 0.792287i 0.113394 0.0341897i
\(538\) 27.8614 1.20119
\(539\) −7.54755 5.94215i −0.325096 0.255947i
\(540\) −4.55842 12.2993i −0.196163 0.529277i
\(541\) 18.6101i 0.800112i 0.916491 + 0.400056i \(0.131009\pi\)
−0.916491 + 0.400056i \(0.868991\pi\)
\(542\) −2.00000 + 3.46410i −0.0859074 + 0.148796i
\(543\) −4.80298 + 20.4434i −0.206116 + 0.877309i
\(544\) 0.686141 + 1.18843i 0.0294180 + 0.0509535i
\(545\) 50.2337 2.15177
\(546\) −16.0475 + 3.93398i −0.686772 + 0.168359i
\(547\) 31.4891 1.34638 0.673189 0.739471i \(-0.264924\pi\)
0.673189 + 0.739471i \(0.264924\pi\)
\(548\) −0.813859 1.40965i −0.0347663 0.0602171i
\(549\) 8.61684 + 12.9904i 0.367758 + 0.554416i
\(550\) −0.941578 + 1.63086i −0.0401490 + 0.0695401i
\(551\) 2.67181i 0.113823i
\(552\) 1.55842 0.469882i 0.0663308 0.0199995i
\(553\) 7.68614 + 39.9384i 0.326848 + 1.69835i
\(554\) −9.48913 −0.403154
\(555\) 10.3723 + 34.4010i 0.440279 + 1.46024i
\(556\) −18.1753 + 10.4935i −0.770803 + 0.445023i
\(557\) 7.80298 + 13.5152i 0.330623 + 0.572656i 0.982634 0.185553i \(-0.0594078\pi\)
−0.652011 + 0.758209i \(0.726074\pi\)
\(558\) 0.883156 + 14.2063i 0.0373870 + 0.601399i
\(559\) 10.0000 10.3923i 0.422955 0.439548i
\(560\) −4.37228 5.04868i −0.184763 0.213345i
\(561\) −3.17527 0.746000i −0.134060 0.0314961i
\(562\) −1.62772 2.81929i −0.0686612 0.118925i
\(563\) 18.0000 31.1769i 0.758610 1.31395i −0.184950 0.982748i \(-0.559212\pi\)
0.943560 0.331202i \(-0.107454\pi\)
\(564\) −5.37228 5.04868i −0.226214 0.212588i
\(565\) −21.4891 + 37.2203i −0.904054 + 1.56587i
\(566\) −6.55842 3.78651i −0.275671 0.159159i
\(567\) −15.9307 + 17.6978i −0.669027 + 0.743238i
\(568\) −0.558422 + 0.967215i −0.0234309 + 0.0405835i
\(569\) −19.1644 + 11.0646i −0.803413 + 0.463851i −0.844663 0.535298i \(-0.820199\pi\)
0.0412501 + 0.999149i \(0.486866\pi\)
\(570\) 3.37228 14.3537i 0.141249 0.601212i
\(571\) 13.4891 0.564502 0.282251 0.959341i \(-0.408919\pi\)
0.282251 + 0.959341i \(0.408919\pi\)
\(572\) −4.80298 1.18843i −0.200823 0.0496908i
\(573\) −23.8614 22.4241i −0.996825 0.936780i
\(574\) 5.31386 15.3398i 0.221796 0.640270i
\(575\) 1.11684 0.644810i 0.0465756 0.0268904i
\(576\) 2.68614 + 1.33591i 0.111923 + 0.0556628i
\(577\) −40.2337 −1.67495 −0.837475 0.546475i \(-0.815969\pi\)
−0.837475 + 0.546475i \(0.815969\pi\)
\(578\) 7.55842 13.0916i 0.314389 0.544538i
\(579\) 10.7554 3.24289i 0.446981 0.134770i
\(580\) 2.00000 0.0830455
\(581\) −13.1168 + 2.52434i −0.544178 + 0.104727i
\(582\) 18.1168 + 4.25639i 0.750967 + 0.176433i
\(583\) 17.0584 9.84868i 0.706488 0.407891i
\(584\) 0.744563 0.0308102
\(585\) 17.6753 20.8121i 0.730782 0.860473i
\(586\) 17.0256i 0.703319i
\(587\) −5.95245 + 3.43665i −0.245684 + 0.141846i −0.617786 0.786346i \(-0.711970\pi\)
0.372102 + 0.928192i \(0.378637\pi\)
\(588\) −4.43070 + 11.2858i −0.182719 + 0.465418i
\(589\) −8.00000 + 13.8564i −0.329634 + 0.570943i
\(590\) −23.8614 −0.982359
\(591\) 7.80298 + 25.8796i 0.320972 + 1.06454i
\(592\) −7.11684 4.10891i −0.292500 0.168875i
\(593\) 26.3306i 1.08127i −0.841258 0.540634i \(-0.818184\pi\)
0.841258 0.540634i \(-0.181816\pi\)
\(594\) −6.68614 + 2.47805i −0.274336 + 0.101676i
\(595\) 3.00000 8.66025i 0.122988 0.355036i
\(596\) 3.00000 + 5.19615i 0.122885 + 0.212843i
\(597\) 4.37228 + 4.10891i 0.178946 + 0.168167i
\(598\) 2.44158 + 2.34941i 0.0998435 + 0.0960745i
\(599\) 13.9113i 0.568401i −0.958765 0.284200i \(-0.908272\pi\)
0.958765 0.284200i \(-0.0917281\pi\)
\(600\) 2.31386 + 0.543620i 0.0944629 + 0.0221932i
\(601\) 19.8832 11.4795i 0.811051 0.468260i −0.0362698 0.999342i \(-0.511548\pi\)
0.847321 + 0.531082i \(0.178214\pi\)
\(602\) −2.00000 10.3923i −0.0815139 0.423559i
\(603\) −24.6060 + 1.52967i −1.00203 + 0.0622930i
\(604\) −2.61684 1.51084i −0.106478 0.0614750i
\(605\) −19.9307 11.5070i −0.810298 0.467826i
\(606\) −3.86141 + 4.10891i −0.156859 + 0.166913i
\(607\) −21.3505 12.3267i −0.866591 0.500327i −0.000377344 1.00000i \(-0.500120\pi\)
−0.866214 + 0.499673i \(0.833453\pi\)
\(608\) 1.68614 + 2.92048i 0.0683820 + 0.118441i
\(609\) −1.68614 3.21543i −0.0683259 0.130296i
\(610\) −13.1168 −0.531085
\(611\) 3.68614 14.8974i 0.149125 0.602683i
\(612\) 0.255437 + 4.10891i 0.0103254 + 0.166093i
\(613\) 26.2337 15.1460i 1.05957 0.611742i 0.134256 0.990947i \(-0.457136\pi\)
0.925313 + 0.379204i \(0.123802\pi\)
\(614\) 6.61684 + 11.4607i 0.267034 + 0.462517i
\(615\) 7.74456 + 25.6858i 0.312291 + 1.03575i
\(616\) −2.74456 + 2.37686i −0.110582 + 0.0957665i
\(617\) 3.30298 5.72094i 0.132973 0.230316i −0.791848 0.610718i \(-0.790881\pi\)
0.924821 + 0.380402i \(0.124214\pi\)
\(618\) −19.3723 + 5.84096i −0.779267 + 0.234958i
\(619\) 35.4674 1.42555 0.712777 0.701391i \(-0.247437\pi\)
0.712777 + 0.701391i \(0.247437\pi\)
\(620\) −10.3723 5.98844i −0.416561 0.240502i
\(621\) 4.81386 + 0.819738i 0.193174 + 0.0328950i
\(622\) −2.31386 4.00772i −0.0927773 0.160695i
\(623\) −21.6060 24.9484i −0.865625 0.999538i
\(624\) 0.313859 + 6.23711i 0.0125644 + 0.249684i
\(625\) −29.9783 −1.19913
\(626\) 12.0000 6.92820i 0.479616 0.276907i
\(627\) −7.80298 1.83324i −0.311621 0.0732126i
\(628\) 0 0
\(629\) 11.2772i 0.449650i
\(630\) −5.00000 19.4024i −0.199205 0.773011i
\(631\) −28.5000 16.4545i −1.13457 0.655043i −0.189488 0.981883i \(-0.560683\pi\)
−0.945080 + 0.326841i \(0.894016\pi\)
\(632\) 15.3723 0.611477
\(633\) 11.3723 + 37.7176i 0.452008 + 1.49914i
\(634\) −13.3723 23.1615i −0.531081 0.919860i
\(635\) −33.0475 + 19.0800i −1.31145 + 0.757167i
\(636\) −18.1168 17.0256i −0.718380 0.675107i
\(637\) −25.0000 + 3.46410i −0.990536 + 0.137253i
\(638\) 1.08724i 0.0430443i
\(639\) −2.79211 + 1.85208i −0.110454 + 0.0732670i
\(640\) −2.18614 + 1.26217i −0.0864148 + 0.0498916i
\(641\) 25.1644 + 14.5287i 0.993934 + 0.573848i 0.906448 0.422318i \(-0.138783\pi\)
0.0874859 + 0.996166i \(0.472117\pi\)
\(642\) 5.37228 + 5.04868i 0.212027 + 0.199255i
\(643\) 15.6168 27.0492i 0.615868 1.06672i −0.374363 0.927282i \(-0.622139\pi\)
0.990232 0.139433i \(-0.0445280\pi\)
\(644\) 2.44158 0.469882i 0.0962117 0.0185159i
\(645\) 12.7446 + 11.9769i 0.501817 + 0.471589i
\(646\) −2.31386 + 4.00772i −0.0910376 + 0.157682i
\(647\) 5.56930 + 9.64630i 0.218952 + 0.379235i 0.954488 0.298250i \(-0.0964030\pi\)
−0.735536 + 0.677486i \(0.763070\pi\)
\(648\) 5.43070 + 7.17687i 0.213338 + 0.281934i
\(649\) 12.9715i 0.509178i
\(650\) 1.37228 + 4.75372i 0.0538253 + 0.186456i
\(651\) −0.883156 + 21.7244i −0.0346136 + 0.851445i
\(652\) 9.00000 5.19615i 0.352467 0.203497i
\(653\) −22.5475 + 13.0178i −0.882354 + 0.509427i −0.871434 0.490513i \(-0.836809\pi\)
−0.0109200 + 0.999940i \(0.503476\pi\)
\(654\) −33.0000 + 9.94987i −1.29040 + 0.389071i
\(655\) 46.9678i 1.83518i
\(656\) −5.31386 3.06796i −0.207471 0.119784i
\(657\) 2.00000 + 0.994667i 0.0780274 + 0.0388056i
\(658\) −7.37228 8.51278i −0.287401 0.331863i
\(659\) 11.6644 + 6.73444i 0.454380 + 0.262337i 0.709678 0.704526i \(-0.248840\pi\)
−0.255298 + 0.966862i \(0.582174\pi\)
\(660\) 1.37228 5.84096i 0.0534160 0.227359i
\(661\) −24.9307 43.1812i −0.969692 1.67956i −0.696443 0.717613i \(-0.745235\pi\)
−0.273249 0.961943i \(-0.588098\pi\)
\(662\) 22.0742i 0.857939i
\(663\) −7.19702 + 4.65253i −0.279509 + 0.180689i
\(664\) 5.04868i 0.195927i
\(665\) 7.37228 21.2819i 0.285885 0.825278i
\(666\) −13.6277 20.5446i −0.528063 0.796085i
\(667\) −0.372281 + 0.644810i −0.0144148 + 0.0249671i
\(668\) 6.63325i 0.256648i
\(669\) 3.11684 + 10.3374i 0.120504 + 0.399667i
\(670\) 10.3723 17.9653i 0.400716 0.694061i
\(671\) 7.13058i 0.275273i
\(672\) 3.87228 + 2.45060i 0.149376 + 0.0945339i
\(673\) 1.31386 + 2.27567i 0.0506456 + 0.0877207i 0.890237 0.455498i \(-0.150539\pi\)
−0.839591 + 0.543219i \(0.817205\pi\)
\(674\) −14.8030 25.6395i −0.570190 0.987597i
\(675\) 5.48913 + 4.55134i 0.211277 + 0.175181i
\(676\) −11.0000 + 6.92820i −0.423077 + 0.266469i
\(677\) −4.37228 −0.168040 −0.0840202 0.996464i \(-0.526776\pi\)
−0.0840202 + 0.996464i \(0.526776\pi\)
\(678\) 6.74456 28.7075i 0.259023 1.10250i
\(679\) 26.8614 + 9.30506i 1.03085 + 0.357096i
\(680\) −3.00000 1.73205i −0.115045 0.0664211i
\(681\) −4.81386 4.52389i −0.184467 0.173356i
\(682\) −3.25544 + 5.63858i −0.124657 + 0.215912i
\(683\) −21.8614 + 37.8651i −0.836503 + 1.44887i 0.0562969 + 0.998414i \(0.482071\pi\)
−0.892800 + 0.450452i \(0.851263\pi\)
\(684\) 0.627719 + 10.0974i 0.0240014 + 0.386082i
\(685\) 3.55842 + 2.05446i 0.135960 + 0.0784967i
\(686\) −8.50000 + 16.4545i −0.324532 + 0.628235i
\(687\) 20.4307 + 4.80001i 0.779480 + 0.183132i
\(688\) −4.00000 −0.152499
\(689\) 12.4307 50.2381i 0.473572 1.91392i
\(690\) −2.81386 + 2.99422i −0.107122 + 0.113988i
\(691\) 19.5584 + 33.8762i 0.744037 + 1.28871i 0.950643 + 0.310286i \(0.100425\pi\)
−0.206606 + 0.978424i \(0.566242\pi\)
\(692\) −9.55842 16.5557i −0.363357 0.629352i
\(693\) −10.5475 + 2.71810i −0.400668 + 0.103252i
\(694\) 15.6434i 0.593814i
\(695\) 26.4891 45.8805i 1.00479 1.74035i
\(696\) −1.31386 + 0.396143i −0.0498017 + 0.0150158i
\(697\) 8.42020i 0.318938i
\(698\) −1.44158 + 2.49689i −0.0545645 + 0.0945085i
\(699\) 11.1168 47.3176i 0.420478 1.78972i
\(700\) 3.43070 + 1.18843i 0.129668 + 0.0449185i
\(701\) 22.1668i 0.837229i −0.908164 0.418614i \(-0.862516\pi\)
0.908164 0.418614i \(-0.137484\pi\)
\(702\) −7.48913 + 17.1730i −0.282659 + 0.648154i
\(703\) 27.7128i 1.04521i
\(704\) 0.686141 + 1.18843i 0.0258599 + 0.0447907i
\(705\) 18.1168 + 4.25639i 0.682320 + 0.160305i
\(706\) 19.6277 + 11.3321i 0.738699 + 0.426488i
\(707\) −6.51087 + 5.63858i −0.244867 + 0.212061i
\(708\) 15.6753 4.72627i 0.589113 0.177624i
\(709\) −40.1168 23.1615i −1.50662 0.869847i −0.999970 0.00769505i \(-0.997551\pi\)
−0.506649 0.862152i \(-0.669116\pi\)
\(710\) 2.81929i 0.105806i
\(711\) 41.2921 + 20.5359i 1.54858 + 0.770158i
\(712\) −10.8030 + 6.23711i −0.404859 + 0.233745i
\(713\) 3.86141 2.22938i 0.144611 0.0834911i
\(714\) −0.255437 + 6.28339i −0.00955950 + 0.235150i
\(715\) 12.0000 3.46410i 0.448775 0.129550i
\(716\) 1.58457i 0.0592183i
\(717\) 41.4891 + 9.74749i 1.54944 + 0.364027i
\(718\) 11.1861 + 19.3750i 0.417463 + 0.723067i
\(719\) 3.94158 6.82701i 0.146996 0.254605i −0.783120 0.621871i \(-0.786373\pi\)
0.930116 + 0.367266i \(0.119706\pi\)
\(720\) −7.55842 + 0.469882i −0.281686 + 0.0175115i
\(721\) −30.3505 + 5.84096i −1.13031 + 0.217529i
\(722\) 3.81386 6.60580i 0.141937 0.245842i
\(723\) 1.48913 1.58457i 0.0553812 0.0589309i
\(724\) 10.5000 + 6.06218i 0.390229 + 0.225299i
\(725\) −0.941578 + 0.543620i −0.0349693 + 0.0201896i
\(726\) 15.3723 + 3.61158i 0.570519 + 0.134038i
\(727\) 31.5817i 1.17130i −0.810564 0.585650i \(-0.800839\pi\)
0.810564 0.585650i \(-0.199161\pi\)
\(728\) −0.500000 + 9.52628i −0.0185312 + 0.353067i
\(729\) 5.00000 + 26.5330i 0.185185 + 0.982704i
\(730\) −1.62772 + 0.939764i −0.0602446 + 0.0347822i
\(731\) −2.74456 4.75372i −0.101511 0.175823i
\(732\) 8.61684 2.59808i 0.318488 0.0960277i
\(733\) −32.2554 −1.19138 −0.595691 0.803214i \(-0.703122\pi\)
−0.595691 + 0.803214i \(0.703122\pi\)
\(734\) 8.23369 + 4.75372i 0.303911 + 0.175463i
\(735\) −4.55842 30.2646i −0.168140 1.11633i
\(736\) 0.939764i 0.0346402i
\(737\) −9.76631 5.63858i −0.359747 0.207700i
\(738\) −10.1753 15.3398i −0.374557 0.564665i
\(739\) −16.8832 + 9.74749i −0.621057 + 0.358567i −0.777280 0.629154i \(-0.783401\pi\)
0.156223 + 0.987722i \(0.450068\pi\)
\(740\) 20.7446 0.762585
\(741\) −17.6861 + 11.4333i −0.649717 + 0.420011i
\(742\) −24.8614 28.7075i −0.912691 1.05388i
\(743\) −7.37228 12.7692i −0.270463 0.468455i 0.698518 0.715593i \(-0.253843\pi\)
−0.968980 + 0.247138i \(0.920510\pi\)
\(744\) 8.00000 + 1.87953i 0.293294 + 0.0689068i
\(745\) −13.1168 7.57301i −0.480564 0.277454i
\(746\) 8.00000 0.292901
\(747\) −6.74456 + 13.5615i −0.246771 + 0.496188i
\(748\) −0.941578 + 1.63086i −0.0344275 + 0.0596302i
\(749\) 7.37228 + 8.51278i 0.269377 + 0.311050i
\(750\) 15.1861 4.57879i 0.554519 0.167194i
\(751\) 0.500000 + 0.866025i 0.0182453 + 0.0316017i 0.875004 0.484116i \(-0.160859\pi\)
−0.856759 + 0.515718i \(0.827525\pi\)
\(752\) −3.68614 + 2.12819i −0.134420 + 0.0776073i
\(753\) −1.32473 + 1.40965i −0.0482760 + 0.0513703i
\(754\) −2.05842 1.98072i −0.0749633 0.0721335i
\(755\) 7.62772 0.277601
\(756\) 7.12772 + 11.7557i 0.259233 + 0.427549i
\(757\) −19.8614 34.4010i −0.721875 1.25032i −0.960247 0.279150i \(-0.909947\pi\)
0.238372 0.971174i \(-0.423386\pi\)
\(758\) 22.1168 + 12.7692i 0.803320 + 0.463797i
\(759\) 1.62772 + 1.52967i 0.0590824 + 0.0555235i
\(760\) −7.37228 4.25639i −0.267421 0.154395i
\(761\) 14.7446 + 8.51278i 0.534490 + 0.308588i 0.742843 0.669466i \(-0.233477\pi\)
−0.208353 + 0.978054i \(0.566810\pi\)
\(762\) 17.9307 19.0800i 0.649561 0.691196i
\(763\) −51.7011 + 9.94987i −1.87170 + 0.360210i
\(764\) −16.3723 + 9.45254i −0.592328 + 0.341981i
\(765\) −5.74456 8.66025i −0.207695 0.313112i
\(766\) 31.6742i 1.14444i
\(767\) 24.5584 + 23.6314i 0.886753 + 0.853279i
\(768\) 1.18614 1.26217i 0.0428012 0.0455446i
\(769\) 5.11684 + 8.86263i 0.184518 + 0.319595i 0.943414 0.331617i \(-0.107594\pi\)
−0.758896 + 0.651212i \(0.774261\pi\)
\(770\) 3.00000 8.66025i 0.108112 0.312094i