# Properties

 Label 546.2.q.d.335.1 Level $546$ Weight $2$ Character 546.335 Analytic conductor $4.360$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$546 = 2 \cdot 3 \cdot 7 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 546.q (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$4.35983195036$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 335.1 Root $$0.500000 - 0.866025i$$ of defining polynomial Character $$\chi$$ $$=$$ 546.335 Dual form 546.2.q.d.251.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.500000 + 0.866025i) q^{2} +(1.50000 - 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +3.46410i q^{5} +(1.50000 + 0.866025i) q^{6} +(2.50000 - 0.866025i) q^{7} -1.00000 q^{8} +(1.50000 - 2.59808i) q^{9} +O(q^{10})$$ $$q+(0.500000 + 0.866025i) q^{2} +(1.50000 - 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +3.46410i q^{5} +(1.50000 + 0.866025i) q^{6} +(2.50000 - 0.866025i) q^{7} -1.00000 q^{8} +(1.50000 - 2.59808i) q^{9} +(-3.00000 + 1.73205i) q^{10} +(-1.50000 - 2.59808i) q^{11} +1.73205i q^{12} +(3.50000 + 0.866025i) q^{13} +(2.00000 + 1.73205i) q^{14} +(3.00000 + 5.19615i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-1.50000 + 2.59808i) q^{17} +3.00000 q^{18} +(-3.50000 + 6.06218i) q^{19} +(-3.00000 - 1.73205i) q^{20} +(3.00000 - 3.46410i) q^{21} +(1.50000 - 2.59808i) q^{22} +(6.00000 - 3.46410i) q^{23} +(-1.50000 + 0.866025i) q^{24} -7.00000 q^{25} +(1.00000 + 3.46410i) q^{26} -5.19615i q^{27} +(-0.500000 + 2.59808i) q^{28} +(-1.50000 + 0.866025i) q^{29} +(-3.00000 + 5.19615i) q^{30} -4.00000 q^{31} +(0.500000 - 0.866025i) q^{32} +(-4.50000 - 2.59808i) q^{33} -3.00000 q^{34} +(3.00000 + 8.66025i) q^{35} +(1.50000 + 2.59808i) q^{36} +(-6.00000 + 3.46410i) q^{37} -7.00000 q^{38} +(6.00000 - 1.73205i) q^{39} -3.46410i q^{40} +(-4.50000 + 2.59808i) q^{41} +(4.50000 + 0.866025i) q^{42} +(4.00000 - 6.92820i) q^{43} +3.00000 q^{44} +(9.00000 + 5.19615i) q^{45} +(6.00000 + 3.46410i) q^{46} -8.66025i q^{47} +(-1.50000 - 0.866025i) q^{48} +(5.50000 - 4.33013i) q^{49} +(-3.50000 - 6.06218i) q^{50} +5.19615i q^{51} +(-2.50000 + 2.59808i) q^{52} -8.66025i q^{53} +(4.50000 - 2.59808i) q^{54} +(9.00000 - 5.19615i) q^{55} +(-2.50000 + 0.866025i) q^{56} +12.1244i q^{57} +(-1.50000 - 0.866025i) q^{58} +(9.00000 + 5.19615i) q^{59} -6.00000 q^{60} +(4.50000 + 2.59808i) q^{61} +(-2.00000 - 3.46410i) q^{62} +(1.50000 - 7.79423i) q^{63} +1.00000 q^{64} +(-3.00000 + 12.1244i) q^{65} -5.19615i q^{66} +(-1.50000 - 2.59808i) q^{68} +(6.00000 - 10.3923i) q^{69} +(-6.00000 + 6.92820i) q^{70} +(3.00000 - 5.19615i) q^{71} +(-1.50000 + 2.59808i) q^{72} -4.00000 q^{73} +(-6.00000 - 3.46410i) q^{74} +(-10.5000 + 6.06218i) q^{75} +(-3.50000 - 6.06218i) q^{76} +(-6.00000 - 5.19615i) q^{77} +(4.50000 + 4.33013i) q^{78} -11.0000 q^{79} +(3.00000 - 1.73205i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(-4.50000 - 2.59808i) q^{82} -13.8564i q^{83} +(1.50000 + 4.33013i) q^{84} +(-9.00000 - 5.19615i) q^{85} +8.00000 q^{86} +(-1.50000 + 2.59808i) q^{87} +(1.50000 + 2.59808i) q^{88} +(-7.50000 + 4.33013i) q^{89} +10.3923i q^{90} +(9.50000 - 0.866025i) q^{91} +6.92820i q^{92} +(-6.00000 + 3.46410i) q^{93} +(7.50000 - 4.33013i) q^{94} +(-21.0000 - 12.1244i) q^{95} -1.73205i q^{96} +(1.00000 - 1.73205i) q^{97} +(6.50000 + 2.59808i) q^{98} -9.00000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + q^{2} + 3 q^{3} - q^{4} + 3 q^{6} + 5 q^{7} - 2 q^{8} + 3 q^{9}+O(q^{10})$$ 2 * q + q^2 + 3 * q^3 - q^4 + 3 * q^6 + 5 * q^7 - 2 * q^8 + 3 * q^9 $$2 q + q^{2} + 3 q^{3} - q^{4} + 3 q^{6} + 5 q^{7} - 2 q^{8} + 3 q^{9} - 6 q^{10} - 3 q^{11} + 7 q^{13} + 4 q^{14} + 6 q^{15} - q^{16} - 3 q^{17} + 6 q^{18} - 7 q^{19} - 6 q^{20} + 6 q^{21} + 3 q^{22} + 12 q^{23} - 3 q^{24} - 14 q^{25} + 2 q^{26} - q^{28} - 3 q^{29} - 6 q^{30} - 8 q^{31} + q^{32} - 9 q^{33} - 6 q^{34} + 6 q^{35} + 3 q^{36} - 12 q^{37} - 14 q^{38} + 12 q^{39} - 9 q^{41} + 9 q^{42} + 8 q^{43} + 6 q^{44} + 18 q^{45} + 12 q^{46} - 3 q^{48} + 11 q^{49} - 7 q^{50} - 5 q^{52} + 9 q^{54} + 18 q^{55} - 5 q^{56} - 3 q^{58} + 18 q^{59} - 12 q^{60} + 9 q^{61} - 4 q^{62} + 3 q^{63} + 2 q^{64} - 6 q^{65} - 3 q^{68} + 12 q^{69} - 12 q^{70} + 6 q^{71} - 3 q^{72} - 8 q^{73} - 12 q^{74} - 21 q^{75} - 7 q^{76} - 12 q^{77} + 9 q^{78} - 22 q^{79} + 6 q^{80} - 9 q^{81} - 9 q^{82} + 3 q^{84} - 18 q^{85} + 16 q^{86} - 3 q^{87} + 3 q^{88} - 15 q^{89} + 19 q^{91} - 12 q^{93} + 15 q^{94} - 42 q^{95} + 2 q^{97} + 13 q^{98} - 18 q^{99}+O(q^{100})$$ 2 * q + q^2 + 3 * q^3 - q^4 + 3 * q^6 + 5 * q^7 - 2 * q^8 + 3 * q^9 - 6 * q^10 - 3 * q^11 + 7 * q^13 + 4 * q^14 + 6 * q^15 - q^16 - 3 * q^17 + 6 * q^18 - 7 * q^19 - 6 * q^20 + 6 * q^21 + 3 * q^22 + 12 * q^23 - 3 * q^24 - 14 * q^25 + 2 * q^26 - q^28 - 3 * q^29 - 6 * q^30 - 8 * q^31 + q^32 - 9 * q^33 - 6 * q^34 + 6 * q^35 + 3 * q^36 - 12 * q^37 - 14 * q^38 + 12 * q^39 - 9 * q^41 + 9 * q^42 + 8 * q^43 + 6 * q^44 + 18 * q^45 + 12 * q^46 - 3 * q^48 + 11 * q^49 - 7 * q^50 - 5 * q^52 + 9 * q^54 + 18 * q^55 - 5 * q^56 - 3 * q^58 + 18 * q^59 - 12 * q^60 + 9 * q^61 - 4 * q^62 + 3 * q^63 + 2 * q^64 - 6 * q^65 - 3 * q^68 + 12 * q^69 - 12 * q^70 + 6 * q^71 - 3 * q^72 - 8 * q^73 - 12 * q^74 - 21 * q^75 - 7 * q^76 - 12 * q^77 + 9 * q^78 - 22 * q^79 + 6 * q^80 - 9 * q^81 - 9 * q^82 + 3 * q^84 - 18 * q^85 + 16 * q^86 - 3 * q^87 + 3 * q^88 - 15 * q^89 + 19 * q^91 - 12 * q^93 + 15 * q^94 - 42 * q^95 + 2 * q^97 + 13 * q^98 - 18 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/546\mathbb{Z}\right)^\times$$.

 $$n$$ $$157$$ $$365$$ $$379$$ $$\chi(n)$$ $$-1$$ $$-1$$ $$e\left(\frac{5}{6}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.500000 + 0.866025i 0.353553 + 0.612372i
$$3$$ 1.50000 0.866025i 0.866025 0.500000i
$$4$$ −0.500000 + 0.866025i −0.250000 + 0.433013i
$$5$$ 3.46410i 1.54919i 0.632456 + 0.774597i $$0.282047\pi$$
−0.632456 + 0.774597i $$0.717953\pi$$
$$6$$ 1.50000 + 0.866025i 0.612372 + 0.353553i
$$7$$ 2.50000 0.866025i 0.944911 0.327327i
$$8$$ −1.00000 −0.353553
$$9$$ 1.50000 2.59808i 0.500000 0.866025i
$$10$$ −3.00000 + 1.73205i −0.948683 + 0.547723i
$$11$$ −1.50000 2.59808i −0.452267 0.783349i 0.546259 0.837616i $$-0.316051\pi$$
−0.998526 + 0.0542666i $$0.982718\pi$$
$$12$$ 1.73205i 0.500000i
$$13$$ 3.50000 + 0.866025i 0.970725 + 0.240192i
$$14$$ 2.00000 + 1.73205i 0.534522 + 0.462910i
$$15$$ 3.00000 + 5.19615i 0.774597 + 1.34164i
$$16$$ −0.500000 0.866025i −0.125000 0.216506i
$$17$$ −1.50000 + 2.59808i −0.363803 + 0.630126i −0.988583 0.150675i $$-0.951855\pi$$
0.624780 + 0.780801i $$0.285189\pi$$
$$18$$ 3.00000 0.707107
$$19$$ −3.50000 + 6.06218i −0.802955 + 1.39076i 0.114708 + 0.993399i $$0.463407\pi$$
−0.917663 + 0.397360i $$0.869927\pi$$
$$20$$ −3.00000 1.73205i −0.670820 0.387298i
$$21$$ 3.00000 3.46410i 0.654654 0.755929i
$$22$$ 1.50000 2.59808i 0.319801 0.553912i
$$23$$ 6.00000 3.46410i 1.25109 0.722315i 0.279761 0.960070i $$-0.409745\pi$$
0.971325 + 0.237754i $$0.0764114\pi$$
$$24$$ −1.50000 + 0.866025i −0.306186 + 0.176777i
$$25$$ −7.00000 −1.40000
$$26$$ 1.00000 + 3.46410i 0.196116 + 0.679366i
$$27$$ 5.19615i 1.00000i
$$28$$ −0.500000 + 2.59808i −0.0944911 + 0.490990i
$$29$$ −1.50000 + 0.866025i −0.278543 + 0.160817i −0.632764 0.774345i $$-0.718080\pi$$
0.354221 + 0.935162i $$0.384746\pi$$
$$30$$ −3.00000 + 5.19615i −0.547723 + 0.948683i
$$31$$ −4.00000 −0.718421 −0.359211 0.933257i $$-0.616954\pi$$
−0.359211 + 0.933257i $$0.616954\pi$$
$$32$$ 0.500000 0.866025i 0.0883883 0.153093i
$$33$$ −4.50000 2.59808i −0.783349 0.452267i
$$34$$ −3.00000 −0.514496
$$35$$ 3.00000 + 8.66025i 0.507093 + 1.46385i
$$36$$ 1.50000 + 2.59808i 0.250000 + 0.433013i
$$37$$ −6.00000 + 3.46410i −0.986394 + 0.569495i −0.904194 0.427121i $$-0.859528\pi$$
−0.0821995 + 0.996616i $$0.526194\pi$$
$$38$$ −7.00000 −1.13555
$$39$$ 6.00000 1.73205i 0.960769 0.277350i
$$40$$ 3.46410i 0.547723i
$$41$$ −4.50000 + 2.59808i −0.702782 + 0.405751i −0.808383 0.588657i $$-0.799657\pi$$
0.105601 + 0.994409i $$0.466323\pi$$
$$42$$ 4.50000 + 0.866025i 0.694365 + 0.133631i
$$43$$ 4.00000 6.92820i 0.609994 1.05654i −0.381246 0.924473i $$-0.624505\pi$$
0.991241 0.132068i $$-0.0421616\pi$$
$$44$$ 3.00000 0.452267
$$45$$ 9.00000 + 5.19615i 1.34164 + 0.774597i
$$46$$ 6.00000 + 3.46410i 0.884652 + 0.510754i
$$47$$ 8.66025i 1.26323i −0.775283 0.631614i $$-0.782393\pi$$
0.775283 0.631614i $$-0.217607\pi$$
$$48$$ −1.50000 0.866025i −0.216506 0.125000i
$$49$$ 5.50000 4.33013i 0.785714 0.618590i
$$50$$ −3.50000 6.06218i −0.494975 0.857321i
$$51$$ 5.19615i 0.727607i
$$52$$ −2.50000 + 2.59808i −0.346688 + 0.360288i
$$53$$ 8.66025i 1.18958i −0.803882 0.594789i $$-0.797236\pi$$
0.803882 0.594789i $$-0.202764\pi$$
$$54$$ 4.50000 2.59808i 0.612372 0.353553i
$$55$$ 9.00000 5.19615i 1.21356 0.700649i
$$56$$ −2.50000 + 0.866025i −0.334077 + 0.115728i
$$57$$ 12.1244i 1.60591i
$$58$$ −1.50000 0.866025i −0.196960 0.113715i
$$59$$ 9.00000 + 5.19615i 1.17170 + 0.676481i 0.954080 0.299552i $$-0.0968372\pi$$
0.217620 + 0.976034i $$0.430171\pi$$
$$60$$ −6.00000 −0.774597
$$61$$ 4.50000 + 2.59808i 0.576166 + 0.332650i 0.759608 0.650381i $$-0.225391\pi$$
−0.183442 + 0.983030i $$0.558724\pi$$
$$62$$ −2.00000 3.46410i −0.254000 0.439941i
$$63$$ 1.50000 7.79423i 0.188982 0.981981i
$$64$$ 1.00000 0.125000
$$65$$ −3.00000 + 12.1244i −0.372104 + 1.50384i
$$66$$ 5.19615i 0.639602i
$$67$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$68$$ −1.50000 2.59808i −0.181902 0.315063i
$$69$$ 6.00000 10.3923i 0.722315 1.25109i
$$70$$ −6.00000 + 6.92820i −0.717137 + 0.828079i
$$71$$ 3.00000 5.19615i 0.356034 0.616670i −0.631260 0.775571i $$-0.717462\pi$$
0.987294 + 0.158901i $$0.0507952\pi$$
$$72$$ −1.50000 + 2.59808i −0.176777 + 0.306186i
$$73$$ −4.00000 −0.468165 −0.234082 0.972217i $$-0.575209\pi$$
−0.234082 + 0.972217i $$0.575209\pi$$
$$74$$ −6.00000 3.46410i −0.697486 0.402694i
$$75$$ −10.5000 + 6.06218i −1.21244 + 0.700000i
$$76$$ −3.50000 6.06218i −0.401478 0.695379i
$$77$$ −6.00000 5.19615i −0.683763 0.592157i
$$78$$ 4.50000 + 4.33013i 0.509525 + 0.490290i
$$79$$ −11.0000 −1.23760 −0.618798 0.785550i $$-0.712380\pi$$
−0.618798 + 0.785550i $$0.712380\pi$$
$$80$$ 3.00000 1.73205i 0.335410 0.193649i
$$81$$ −4.50000 7.79423i −0.500000 0.866025i
$$82$$ −4.50000 2.59808i −0.496942 0.286910i
$$83$$ 13.8564i 1.52094i −0.649374 0.760469i $$-0.724969\pi$$
0.649374 0.760469i $$-0.275031\pi$$
$$84$$ 1.50000 + 4.33013i 0.163663 + 0.472456i
$$85$$ −9.00000 5.19615i −0.976187 0.563602i
$$86$$ 8.00000 0.862662
$$87$$ −1.50000 + 2.59808i −0.160817 + 0.278543i
$$88$$ 1.50000 + 2.59808i 0.159901 + 0.276956i
$$89$$ −7.50000 + 4.33013i −0.794998 + 0.458993i −0.841719 0.539915i $$-0.818456\pi$$
0.0467209 + 0.998908i $$0.485123\pi$$
$$90$$ 10.3923i 1.09545i
$$91$$ 9.50000 0.866025i 0.995871 0.0907841i
$$92$$ 6.92820i 0.722315i
$$93$$ −6.00000 + 3.46410i −0.622171 + 0.359211i
$$94$$ 7.50000 4.33013i 0.773566 0.446619i
$$95$$ −21.0000 12.1244i −2.15455 1.24393i
$$96$$ 1.73205i 0.176777i
$$97$$ 1.00000 1.73205i 0.101535 0.175863i −0.810782 0.585348i $$-0.800958\pi$$
0.912317 + 0.409484i $$0.134291\pi$$
$$98$$ 6.50000 + 2.59808i 0.656599 + 0.262445i
$$99$$ −9.00000 −0.904534
$$100$$ 3.50000 6.06218i 0.350000 0.606218i
$$101$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$102$$ −4.50000 + 2.59808i −0.445566 + 0.257248i
$$103$$ 3.46410i 0.341328i −0.985329 0.170664i $$-0.945409\pi$$
0.985329 0.170664i $$-0.0545913\pi$$
$$104$$ −3.50000 0.866025i −0.343203 0.0849208i
$$105$$ 12.0000 + 10.3923i 1.17108 + 1.01419i
$$106$$ 7.50000 4.33013i 0.728464 0.420579i
$$107$$ −4.50000 + 2.59808i −0.435031 + 0.251166i −0.701488 0.712681i $$-0.747481\pi$$
0.266456 + 0.963847i $$0.414147\pi$$
$$108$$ 4.50000 + 2.59808i 0.433013 + 0.250000i
$$109$$ 3.46410i 0.331801i −0.986143 0.165900i $$-0.946947\pi$$
0.986143 0.165900i $$-0.0530530\pi$$
$$110$$ 9.00000 + 5.19615i 0.858116 + 0.495434i
$$111$$ −6.00000 + 10.3923i −0.569495 + 0.986394i
$$112$$ −2.00000 1.73205i −0.188982 0.163663i
$$113$$ −12.0000 6.92820i −1.12887 0.651751i −0.185216 0.982698i $$-0.559298\pi$$
−0.943649 + 0.330947i $$0.892632\pi$$
$$114$$ −10.5000 + 6.06218i −0.983415 + 0.567775i
$$115$$ 12.0000 + 20.7846i 1.11901 + 1.93817i
$$116$$ 1.73205i 0.160817i
$$117$$ 7.50000 7.79423i 0.693375 0.720577i
$$118$$ 10.3923i 0.956689i
$$119$$ −1.50000 + 7.79423i −0.137505 + 0.714496i
$$120$$ −3.00000 5.19615i −0.273861 0.474342i
$$121$$ 1.00000 1.73205i 0.0909091 0.157459i
$$122$$ 5.19615i 0.470438i
$$123$$ −4.50000 + 7.79423i −0.405751 + 0.702782i
$$124$$ 2.00000 3.46410i 0.179605 0.311086i
$$125$$ 6.92820i 0.619677i
$$126$$ 7.50000 2.59808i 0.668153 0.231455i
$$127$$ 4.00000 + 6.92820i 0.354943 + 0.614779i 0.987108 0.160055i $$-0.0511671\pi$$
−0.632166 + 0.774833i $$0.717834\pi$$
$$128$$ 0.500000 + 0.866025i 0.0441942 + 0.0765466i
$$129$$ 13.8564i 1.21999i
$$130$$ −12.0000 + 3.46410i −1.05247 + 0.303822i
$$131$$ 6.00000 0.524222 0.262111 0.965038i $$-0.415581\pi$$
0.262111 + 0.965038i $$0.415581\pi$$
$$132$$ 4.50000 2.59808i 0.391675 0.226134i
$$133$$ −3.50000 + 18.1865i −0.303488 + 1.57697i
$$134$$ 0 0
$$135$$ 18.0000 1.54919
$$136$$ 1.50000 2.59808i 0.128624 0.222783i
$$137$$ 6.00000 10.3923i 0.512615 0.887875i −0.487278 0.873247i $$-0.662010\pi$$
0.999893 0.0146279i $$-0.00465636\pi$$
$$138$$ 12.0000 1.02151
$$139$$ −4.50000 2.59808i −0.381685 0.220366i 0.296866 0.954919i $$-0.404058\pi$$
−0.678551 + 0.734553i $$0.737392\pi$$
$$140$$ −9.00000 1.73205i −0.760639 0.146385i
$$141$$ −7.50000 12.9904i −0.631614 1.09399i
$$142$$ 6.00000 0.503509
$$143$$ −3.00000 10.3923i −0.250873 0.869048i
$$144$$ −3.00000 −0.250000
$$145$$ −3.00000 5.19615i −0.249136 0.431517i
$$146$$ −2.00000 3.46410i −0.165521 0.286691i
$$147$$ 4.50000 11.2583i 0.371154 0.928571i
$$148$$ 6.92820i 0.569495i
$$149$$ −3.00000 + 5.19615i −0.245770 + 0.425685i −0.962348 0.271821i $$-0.912374\pi$$
0.716578 + 0.697507i $$0.245707\pi$$
$$150$$ −10.5000 6.06218i −0.857321 0.494975i
$$151$$ 8.66025i 0.704761i 0.935857 + 0.352381i $$0.114628\pi$$
−0.935857 + 0.352381i $$0.885372\pi$$
$$152$$ 3.50000 6.06218i 0.283887 0.491708i
$$153$$ 4.50000 + 7.79423i 0.363803 + 0.630126i
$$154$$ 1.50000 7.79423i 0.120873 0.628077i
$$155$$ 13.8564i 1.11297i
$$156$$ −1.50000 + 6.06218i −0.120096 + 0.485363i
$$157$$ 13.8564i 1.10586i −0.833227 0.552931i $$-0.813509\pi$$
0.833227 0.552931i $$-0.186491\pi$$
$$158$$ −5.50000 9.52628i −0.437557 0.757870i
$$159$$ −7.50000 12.9904i −0.594789 1.03020i
$$160$$ 3.00000 + 1.73205i 0.237171 + 0.136931i
$$161$$ 12.0000 13.8564i 0.945732 1.09204i
$$162$$ 4.50000 7.79423i 0.353553 0.612372i
$$163$$ 21.0000 + 12.1244i 1.64485 + 0.949653i 0.979076 + 0.203497i $$0.0652307\pi$$
0.665771 + 0.746156i $$0.268103\pi$$
$$164$$ 5.19615i 0.405751i
$$165$$ 9.00000 15.5885i 0.700649 1.21356i
$$166$$ 12.0000 6.92820i 0.931381 0.537733i
$$167$$ −15.0000 + 8.66025i −1.16073 + 0.670151i −0.951480 0.307711i $$-0.900437\pi$$
−0.209255 + 0.977861i $$0.567104\pi$$
$$168$$ −3.00000 + 3.46410i −0.231455 + 0.267261i
$$169$$ 11.5000 + 6.06218i 0.884615 + 0.466321i
$$170$$ 10.3923i 0.797053i
$$171$$ 10.5000 + 18.1865i 0.802955 + 1.39076i
$$172$$ 4.00000 + 6.92820i 0.304997 + 0.528271i
$$173$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$174$$ −3.00000 −0.227429
$$175$$ −17.5000 + 6.06218i −1.32288 + 0.458258i
$$176$$ −1.50000 + 2.59808i −0.113067 + 0.195837i
$$177$$ 18.0000 1.35296
$$178$$ −7.50000 4.33013i −0.562149 0.324557i
$$179$$ −21.0000 + 12.1244i −1.56961 + 0.906217i −0.573400 + 0.819275i $$0.694376\pi$$
−0.996213 + 0.0869415i $$0.972291\pi$$
$$180$$ −9.00000 + 5.19615i −0.670820 + 0.387298i
$$181$$ 1.73205i 0.128742i 0.997926 + 0.0643712i $$0.0205042\pi$$
−0.997926 + 0.0643712i $$0.979496\pi$$
$$182$$ 5.50000 + 7.79423i 0.407687 + 0.577747i
$$183$$ 9.00000 0.665299
$$184$$ −6.00000 + 3.46410i −0.442326 + 0.255377i
$$185$$ −12.0000 20.7846i −0.882258 1.52811i
$$186$$ −6.00000 3.46410i −0.439941 0.254000i
$$187$$ 9.00000 0.658145
$$188$$ 7.50000 + 4.33013i 0.546994 + 0.315807i
$$189$$ −4.50000 12.9904i −0.327327 0.944911i
$$190$$ 24.2487i 1.75919i
$$191$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$192$$ 1.50000 0.866025i 0.108253 0.0625000i
$$193$$ −10.5000 + 6.06218i −0.755807 + 0.436365i −0.827788 0.561041i $$-0.810401\pi$$
0.0719816 + 0.997406i $$0.477068\pi$$
$$194$$ 2.00000 0.143592
$$195$$ 6.00000 + 20.7846i 0.429669 + 1.48842i
$$196$$ 1.00000 + 6.92820i 0.0714286 + 0.494872i
$$197$$ 13.5000 + 23.3827i 0.961835 + 1.66595i 0.717888 + 0.696159i $$0.245109\pi$$
0.243947 + 0.969788i $$0.421558\pi$$
$$198$$ −4.50000 7.79423i −0.319801 0.553912i
$$199$$ −9.00000 5.19615i −0.637993 0.368345i 0.145848 0.989307i $$-0.453409\pi$$
−0.783841 + 0.620962i $$0.786742\pi$$
$$200$$ 7.00000 0.494975
$$201$$ 0 0
$$202$$ 0 0
$$203$$ −3.00000 + 3.46410i −0.210559 + 0.243132i
$$204$$ −4.50000 2.59808i −0.315063 0.181902i
$$205$$ −9.00000 15.5885i −0.628587 1.08875i
$$206$$ 3.00000 1.73205i 0.209020 0.120678i
$$207$$ 20.7846i 1.44463i
$$208$$ −1.00000 3.46410i −0.0693375 0.240192i
$$209$$ 21.0000 1.45260
$$210$$ −3.00000 + 15.5885i −0.207020 + 1.07571i
$$211$$ 11.0000 + 19.0526i 0.757271 + 1.31163i 0.944237 + 0.329266i $$0.106801\pi$$
−0.186966 + 0.982366i $$0.559865\pi$$
$$212$$ 7.50000 + 4.33013i 0.515102 + 0.297394i
$$213$$ 10.3923i 0.712069i
$$214$$ −4.50000 2.59808i −0.307614 0.177601i
$$215$$ 24.0000 + 13.8564i 1.63679 + 0.944999i
$$216$$ 5.19615i 0.353553i
$$217$$ −10.0000 + 3.46410i −0.678844 + 0.235159i
$$218$$ 3.00000 1.73205i 0.203186 0.117309i
$$219$$ −6.00000 + 3.46410i −0.405442 + 0.234082i
$$220$$ 10.3923i 0.700649i
$$221$$ −7.50000 + 7.79423i −0.504505 + 0.524297i
$$222$$ −12.0000 −0.805387
$$223$$ −8.00000 13.8564i −0.535720 0.927894i −0.999128 0.0417488i $$-0.986707\pi$$
0.463409 0.886145i $$-0.346626\pi$$
$$224$$ 0.500000 2.59808i 0.0334077 0.173591i
$$225$$ −10.5000 + 18.1865i −0.700000 + 1.21244i
$$226$$ 13.8564i 0.921714i
$$227$$ 9.00000 + 5.19615i 0.597351 + 0.344881i 0.767999 0.640451i $$-0.221253\pi$$
−0.170648 + 0.985332i $$0.554586\pi$$
$$228$$ −10.5000 6.06218i −0.695379 0.401478i
$$229$$ −13.0000 −0.859064 −0.429532 0.903052i $$-0.641321\pi$$
−0.429532 + 0.903052i $$0.641321\pi$$
$$230$$ −12.0000 + 20.7846i −0.791257 + 1.37050i
$$231$$ −13.5000 2.59808i −0.888235 0.170941i
$$232$$ 1.50000 0.866025i 0.0984798 0.0568574i
$$233$$ 6.92820i 0.453882i −0.973909 0.226941i $$-0.927128\pi$$
0.973909 0.226941i $$-0.0728724\pi$$
$$234$$ 10.5000 + 2.59808i 0.686406 + 0.169842i
$$235$$ 30.0000 1.95698
$$236$$ −9.00000 + 5.19615i −0.585850 + 0.338241i
$$237$$ −16.5000 + 9.52628i −1.07179 + 0.618798i
$$238$$ −7.50000 + 2.59808i −0.486153 + 0.168408i
$$239$$ 12.0000 0.776215 0.388108 0.921614i $$-0.373129\pi$$
0.388108 + 0.921614i $$0.373129\pi$$
$$240$$ 3.00000 5.19615i 0.193649 0.335410i
$$241$$ 5.00000 8.66025i 0.322078 0.557856i −0.658838 0.752285i $$-0.728952\pi$$
0.980917 + 0.194429i $$0.0622852\pi$$
$$242$$ 2.00000 0.128565
$$243$$ −13.5000 7.79423i −0.866025 0.500000i
$$244$$ −4.50000 + 2.59808i −0.288083 + 0.166325i
$$245$$ 15.0000 + 19.0526i 0.958315 + 1.21722i
$$246$$ −9.00000 −0.573819
$$247$$ −17.5000 + 18.1865i −1.11350 + 1.15718i
$$248$$ 4.00000 0.254000
$$249$$ −12.0000 20.7846i −0.760469 1.31717i
$$250$$ 6.00000 3.46410i 0.379473 0.219089i
$$251$$ −15.0000 + 25.9808i −0.946792 + 1.63989i −0.194668 + 0.980869i $$0.562363\pi$$
−0.752124 + 0.659022i $$0.770970\pi$$
$$252$$ 6.00000 + 5.19615i 0.377964 + 0.327327i
$$253$$ −18.0000 10.3923i −1.13165 0.653359i
$$254$$ −4.00000 + 6.92820i −0.250982 + 0.434714i
$$255$$ −18.0000 −1.12720
$$256$$ −0.500000 + 0.866025i −0.0312500 + 0.0541266i
$$257$$ 13.5000 + 23.3827i 0.842107 + 1.45857i 0.888110 + 0.459631i $$0.152018\pi$$
−0.0460033 + 0.998941i $$0.514648\pi$$
$$258$$ 12.0000 6.92820i 0.747087 0.431331i
$$259$$ −12.0000 + 13.8564i −0.745644 + 0.860995i
$$260$$ −9.00000 8.66025i −0.558156 0.537086i
$$261$$ 5.19615i 0.321634i
$$262$$ 3.00000 + 5.19615i 0.185341 + 0.321019i
$$263$$ 21.0000 12.1244i 1.29492 0.747620i 0.315394 0.948961i $$-0.397863\pi$$
0.979521 + 0.201341i $$0.0645299\pi$$
$$264$$ 4.50000 + 2.59808i 0.276956 + 0.159901i
$$265$$ 30.0000 1.84289
$$266$$ −17.5000 + 6.06218i −1.07299 + 0.371696i
$$267$$ −7.50000 + 12.9904i −0.458993 + 0.794998i
$$268$$ 0 0
$$269$$ −12.0000 + 20.7846i −0.731653 + 1.26726i 0.224523 + 0.974469i $$0.427917\pi$$
−0.956176 + 0.292791i $$0.905416\pi$$
$$270$$ 9.00000 + 15.5885i 0.547723 + 0.948683i
$$271$$ 4.00000 + 6.92820i 0.242983 + 0.420858i 0.961563 0.274586i $$-0.0885408\pi$$
−0.718580 + 0.695444i $$0.755208\pi$$
$$272$$ 3.00000 0.181902
$$273$$ 13.5000 9.52628i 0.817057 0.576557i
$$274$$ 12.0000 0.724947
$$275$$ 10.5000 + 18.1865i 0.633174 + 1.09669i
$$276$$ 6.00000 + 10.3923i 0.361158 + 0.625543i
$$277$$ 8.00000 13.8564i 0.480673 0.832551i −0.519081 0.854725i $$-0.673726\pi$$
0.999754 + 0.0221745i $$0.00705893\pi$$
$$278$$ 5.19615i 0.311645i
$$279$$ −6.00000 + 10.3923i −0.359211 + 0.622171i
$$280$$ −3.00000 8.66025i −0.179284 0.517549i
$$281$$ 12.0000 0.715860 0.357930 0.933748i $$-0.383483\pi$$
0.357930 + 0.933748i $$0.383483\pi$$
$$282$$ 7.50000 12.9904i 0.446619 0.773566i
$$283$$ 3.00000 1.73205i 0.178331 0.102960i −0.408177 0.912903i $$-0.633835\pi$$
0.586509 + 0.809943i $$0.300502\pi$$
$$284$$ 3.00000 + 5.19615i 0.178017 + 0.308335i
$$285$$ −42.0000 −2.48787
$$286$$ 7.50000 7.79423i 0.443484 0.460882i
$$287$$ −9.00000 + 10.3923i −0.531253 + 0.613438i
$$288$$ −1.50000 2.59808i −0.0883883 0.153093i
$$289$$ 4.00000 + 6.92820i 0.235294 + 0.407541i
$$290$$ 3.00000 5.19615i 0.176166 0.305129i
$$291$$ 3.46410i 0.203069i
$$292$$ 2.00000 3.46410i 0.117041 0.202721i
$$293$$ −6.00000 3.46410i −0.350524 0.202375i 0.314392 0.949293i $$-0.398199\pi$$
−0.664916 + 0.746918i $$0.731533\pi$$
$$294$$ 12.0000 1.73205i 0.699854 0.101015i
$$295$$ −18.0000 + 31.1769i −1.04800 + 1.81519i
$$296$$ 6.00000 3.46410i 0.348743 0.201347i
$$297$$ −13.5000 + 7.79423i −0.783349 + 0.452267i
$$298$$ −6.00000 −0.347571
$$299$$ 24.0000 6.92820i 1.38796 0.400668i
$$300$$ 12.1244i 0.700000i
$$301$$ 4.00000 20.7846i 0.230556 1.19800i
$$302$$ −7.50000 + 4.33013i −0.431577 + 0.249171i
$$303$$ 0 0
$$304$$ 7.00000 0.401478
$$305$$ −9.00000 + 15.5885i −0.515339 + 0.892592i
$$306$$ −4.50000 + 7.79423i −0.257248 + 0.445566i
$$307$$ −7.00000 −0.399511 −0.199756 0.979846i $$-0.564015\pi$$
−0.199756 + 0.979846i $$0.564015\pi$$
$$308$$ 7.50000 2.59808i 0.427352 0.148039i
$$309$$ −3.00000 5.19615i −0.170664 0.295599i
$$310$$ 12.0000 6.92820i 0.681554 0.393496i
$$311$$ −3.00000 −0.170114 −0.0850572 0.996376i $$-0.527107\pi$$
−0.0850572 + 0.996376i $$0.527107\pi$$
$$312$$ −6.00000 + 1.73205i −0.339683 + 0.0980581i
$$313$$ 20.7846i 1.17482i 0.809291 + 0.587408i $$0.199852\pi$$
−0.809291 + 0.587408i $$0.800148\pi$$
$$314$$ 12.0000 6.92820i 0.677199 0.390981i
$$315$$ 27.0000 + 5.19615i 1.52128 + 0.292770i
$$316$$ 5.50000 9.52628i 0.309399 0.535895i
$$317$$ 18.0000 1.01098 0.505490 0.862832i $$-0.331312\pi$$
0.505490 + 0.862832i $$0.331312\pi$$
$$318$$ 7.50000 12.9904i 0.420579 0.728464i
$$319$$ 4.50000 + 2.59808i 0.251952 + 0.145464i
$$320$$ 3.46410i 0.193649i
$$321$$ −4.50000 + 7.79423i −0.251166 + 0.435031i
$$322$$ 18.0000 + 3.46410i 1.00310 + 0.193047i
$$323$$ −10.5000 18.1865i −0.584236 1.01193i
$$324$$ 9.00000 0.500000
$$325$$ −24.5000 6.06218i −1.35902 0.336269i
$$326$$ 24.2487i 1.34301i
$$327$$ −3.00000 5.19615i −0.165900 0.287348i
$$328$$ 4.50000 2.59808i 0.248471 0.143455i
$$329$$ −7.50000 21.6506i −0.413488 1.19364i
$$330$$ 18.0000 0.990867
$$331$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$332$$ 12.0000 + 6.92820i 0.658586 + 0.380235i
$$333$$ 20.7846i 1.13899i
$$334$$ −15.0000 8.66025i −0.820763 0.473868i
$$335$$ 0 0
$$336$$ −4.50000 0.866025i −0.245495 0.0472456i
$$337$$ −19.0000 −1.03500 −0.517498 0.855684i $$-0.673136\pi$$
−0.517498 + 0.855684i $$0.673136\pi$$
$$338$$ 0.500000 + 12.9904i 0.0271964 + 0.706584i
$$339$$ −24.0000 −1.30350
$$340$$ 9.00000 5.19615i 0.488094 0.281801i
$$341$$ 6.00000 + 10.3923i 0.324918 + 0.562775i
$$342$$ −10.5000 + 18.1865i −0.567775 + 0.983415i
$$343$$ 10.0000 15.5885i 0.539949 0.841698i
$$344$$ −4.00000 + 6.92820i −0.215666 + 0.373544i
$$345$$ 36.0000 + 20.7846i 1.93817 + 1.11901i
$$346$$ 0 0
$$347$$ 13.5000 + 7.79423i 0.724718 + 0.418416i 0.816487 0.577364i $$-0.195919\pi$$
−0.0917687 + 0.995780i $$0.529252\pi$$
$$348$$ −1.50000 2.59808i −0.0804084 0.139272i
$$349$$ −1.00000 1.73205i −0.0535288 0.0927146i 0.838019 0.545640i $$-0.183714\pi$$
−0.891548 + 0.452926i $$0.850380\pi$$
$$350$$ −14.0000 12.1244i −0.748331 0.648074i
$$351$$ 4.50000 18.1865i 0.240192 0.970725i
$$352$$ −3.00000 −0.159901
$$353$$ 18.0000 10.3923i 0.958043 0.553127i 0.0624731 0.998047i $$-0.480101\pi$$
0.895570 + 0.444920i $$0.146768\pi$$
$$354$$ 9.00000 + 15.5885i 0.478345 + 0.828517i
$$355$$ 18.0000 + 10.3923i 0.955341 + 0.551566i
$$356$$ 8.66025i 0.458993i
$$357$$ 4.50000 + 12.9904i 0.238165 + 0.687524i
$$358$$ −21.0000 12.1244i −1.10988 0.640792i
$$359$$ −24.0000 −1.26667 −0.633336 0.773877i $$-0.718315\pi$$
−0.633336 + 0.773877i $$0.718315\pi$$
$$360$$ −9.00000 5.19615i −0.474342 0.273861i
$$361$$ −15.0000 25.9808i −0.789474 1.36741i
$$362$$ −1.50000 + 0.866025i −0.0788382 + 0.0455173i
$$363$$ 3.46410i 0.181818i
$$364$$ −4.00000 + 8.66025i −0.209657 + 0.453921i
$$365$$ 13.8564i 0.725277i
$$366$$ 4.50000 + 7.79423i 0.235219 + 0.407411i
$$367$$ −18.0000 + 10.3923i −0.939592 + 0.542474i −0.889833 0.456287i $$-0.849179\pi$$
−0.0497598 + 0.998761i $$0.515846\pi$$
$$368$$ −6.00000 3.46410i −0.312772 0.180579i
$$369$$ 15.5885i 0.811503i
$$370$$ 12.0000 20.7846i 0.623850 1.08054i
$$371$$ −7.50000 21.6506i −0.389381 1.12404i
$$372$$ 6.92820i 0.359211i
$$373$$ 10.0000 17.3205i 0.517780 0.896822i −0.482006 0.876168i $$-0.660092\pi$$
0.999787 0.0206542i $$-0.00657489\pi$$
$$374$$ 4.50000 + 7.79423i 0.232689 + 0.403030i
$$375$$ −6.00000 10.3923i −0.309839 0.536656i
$$376$$ 8.66025i 0.446619i
$$377$$ −6.00000 + 1.73205i −0.309016 + 0.0892052i
$$378$$ 9.00000 10.3923i 0.462910 0.534522i
$$379$$ −9.00000 + 5.19615i −0.462299 + 0.266908i −0.713010 0.701153i $$-0.752669\pi$$
0.250711 + 0.968062i $$0.419335\pi$$
$$380$$ 21.0000 12.1244i 1.07728 0.621966i
$$381$$ 12.0000 + 6.92820i 0.614779 + 0.354943i
$$382$$ 0 0
$$383$$ −4.50000 2.59808i −0.229939 0.132755i 0.380605 0.924738i $$-0.375716\pi$$
−0.610544 + 0.791982i $$0.709049\pi$$
$$384$$ 1.50000 + 0.866025i 0.0765466 + 0.0441942i
$$385$$ 18.0000 20.7846i 0.917365 1.05928i
$$386$$ −10.5000 6.06218i −0.534436 0.308557i
$$387$$ −12.0000 20.7846i −0.609994 1.05654i
$$388$$ 1.00000 + 1.73205i 0.0507673 + 0.0879316i
$$389$$ 20.7846i 1.05382i −0.849921 0.526911i $$-0.823350\pi$$
0.849921 0.526911i $$-0.176650\pi$$
$$390$$ −15.0000 + 15.5885i −0.759555 + 0.789352i
$$391$$ 20.7846i 1.05112i
$$392$$ −5.50000 + 4.33013i −0.277792 + 0.218704i
$$393$$ 9.00000 5.19615i 0.453990 0.262111i
$$394$$ −13.5000 + 23.3827i −0.680120 + 1.17800i
$$395$$ 38.1051i 1.91728i
$$396$$ 4.50000 7.79423i 0.226134 0.391675i
$$397$$ −3.50000 + 6.06218i −0.175660 + 0.304252i −0.940389 0.340099i $$-0.889539\pi$$
0.764730 + 0.644351i $$0.222873\pi$$
$$398$$ 10.3923i 0.520919i
$$399$$ 10.5000 + 30.3109i 0.525657 + 1.51744i
$$400$$ 3.50000 + 6.06218i 0.175000 + 0.303109i
$$401$$ −9.00000 15.5885i −0.449439 0.778450i 0.548911 0.835881i $$-0.315043\pi$$
−0.998350 + 0.0574304i $$0.981709\pi$$
$$402$$ 0 0
$$403$$ −14.0000 3.46410i −0.697390 0.172559i
$$404$$ 0 0
$$405$$ 27.0000 15.5885i 1.34164 0.774597i
$$406$$ −4.50000 0.866025i −0.223331 0.0429801i
$$407$$ 18.0000 + 10.3923i 0.892227 + 0.515127i
$$408$$ 5.19615i 0.257248i
$$409$$ −2.00000 + 3.46410i −0.0988936 + 0.171289i −0.911227 0.411905i $$-0.864864\pi$$
0.812333 + 0.583193i $$0.198197\pi$$
$$410$$ 9.00000 15.5885i 0.444478 0.769859i
$$411$$ 20.7846i 1.02523i
$$412$$ 3.00000 + 1.73205i 0.147799 + 0.0853320i
$$413$$ 27.0000 + 5.19615i 1.32858 + 0.255686i
$$414$$ 18.0000 10.3923i 0.884652 0.510754i
$$415$$ 48.0000 2.35623
$$416$$ 2.50000 2.59808i 0.122573 0.127381i
$$417$$ −9.00000 −0.440732
$$418$$ 10.5000 + 18.1865i 0.513572 + 0.889532i
$$419$$ −6.00000 10.3923i −0.293119 0.507697i 0.681426 0.731887i $$-0.261360\pi$$
−0.974546 + 0.224189i $$0.928027\pi$$
$$420$$ −15.0000 + 5.19615i −0.731925 + 0.253546i
$$421$$ 24.2487i 1.18181i 0.806741 + 0.590905i $$0.201229\pi$$
−0.806741 + 0.590905i $$0.798771\pi$$
$$422$$ −11.0000 + 19.0526i −0.535472 + 0.927464i
$$423$$ −22.5000 12.9904i −1.09399 0.631614i
$$424$$ 8.66025i 0.420579i
$$425$$ 10.5000 18.1865i 0.509325 0.882176i
$$426$$ 9.00000 5.19615i 0.436051 0.251754i
$$427$$ 13.5000 + 2.59808i 0.653311 + 0.125730i
$$428$$ 5.19615i 0.251166i
$$429$$ −13.5000 12.9904i −0.651786 0.627182i
$$430$$ 27.7128i 1.33643i
$$431$$ 9.00000 + 15.5885i 0.433515 + 0.750870i 0.997173 0.0751385i $$-0.0239399\pi$$
−0.563658 + 0.826008i $$0.690607\pi$$
$$432$$ −4.50000 + 2.59808i −0.216506 + 0.125000i
$$433$$ −15.0000 8.66025i −0.720854 0.416185i 0.0942129 0.995552i $$-0.469967\pi$$
−0.815067 + 0.579367i $$0.803300\pi$$
$$434$$ −8.00000 6.92820i −0.384012 0.332564i
$$435$$ −9.00000 5.19615i −0.431517 0.249136i
$$436$$ 3.00000 + 1.73205i 0.143674 + 0.0829502i
$$437$$ 48.4974i 2.31995i
$$438$$ −6.00000 3.46410i −0.286691 0.165521i
$$439$$ −3.00000 + 1.73205i −0.143182 + 0.0826663i −0.569880 0.821728i $$-0.693010\pi$$
0.426698 + 0.904394i $$0.359677\pi$$
$$440$$ −9.00000 + 5.19615i −0.429058 + 0.247717i
$$441$$ −3.00000 20.7846i −0.142857 0.989743i
$$442$$ −10.5000 2.59808i −0.499434 0.123578i
$$443$$ 29.4449i 1.39897i 0.714648 + 0.699484i $$0.246587\pi$$
−0.714648 + 0.699484i $$0.753413\pi$$
$$444$$ −6.00000 10.3923i −0.284747 0.493197i
$$445$$ −15.0000 25.9808i −0.711068 1.23161i
$$446$$ 8.00000 13.8564i 0.378811 0.656120i
$$447$$ 10.3923i 0.491539i
$$448$$ 2.50000 0.866025i 0.118114 0.0409159i
$$449$$ −18.0000 + 31.1769i −0.849473 + 1.47133i 0.0322072 + 0.999481i $$0.489746\pi$$
−0.881680 + 0.471848i $$0.843587\pi$$
$$450$$ −21.0000 −0.989949
$$451$$ 13.5000 + 7.79423i 0.635690 + 0.367016i
$$452$$ 12.0000 6.92820i 0.564433 0.325875i
$$453$$ 7.50000 + 12.9904i 0.352381 + 0.610341i
$$454$$ 10.3923i 0.487735i
$$455$$ 3.00000 + 32.9090i 0.140642 + 1.54280i
$$456$$ 12.1244i 0.567775i
$$457$$ −6.00000 + 3.46410i −0.280668 + 0.162044i −0.633726 0.773558i $$-0.718475\pi$$
0.353058 + 0.935602i $$0.385142\pi$$
$$458$$ −6.50000 11.2583i −0.303725 0.526067i
$$459$$ 13.5000 + 7.79423i 0.630126 + 0.363803i
$$460$$ −24.0000 −1.11901
$$461$$ −27.0000 15.5885i −1.25752 0.726027i −0.284925 0.958550i $$-0.591969\pi$$
−0.972591 + 0.232523i $$0.925302\pi$$
$$462$$ −4.50000 12.9904i −0.209359 0.604367i
$$463$$ 36.3731i 1.69040i 0.534450 + 0.845200i $$0.320519\pi$$
−0.534450 + 0.845200i $$0.679481\pi$$
$$464$$ 1.50000 + 0.866025i 0.0696358 + 0.0402042i
$$465$$ −12.0000 20.7846i −0.556487 0.963863i
$$466$$ 6.00000 3.46410i 0.277945 0.160471i
$$467$$ 6.00000 0.277647 0.138823 0.990317i $$-0.455668\pi$$
0.138823 + 0.990317i $$0.455668\pi$$
$$468$$ 3.00000 + 10.3923i 0.138675 + 0.480384i
$$469$$ 0 0
$$470$$ 15.0000 + 25.9808i 0.691898 + 1.19840i
$$471$$ −12.0000 20.7846i −0.552931 0.957704i
$$472$$ −9.00000 5.19615i −0.414259 0.239172i
$$473$$ −24.0000 −1.10352
$$474$$ −16.5000 9.52628i −0.757870 0.437557i
$$475$$ 24.5000 42.4352i 1.12414 1.94706i
$$476$$ −6.00000 5.19615i −0.275010 0.238165i
$$477$$ −22.5000 12.9904i −1.03020 0.594789i
$$478$$ 6.00000 + 10.3923i 0.274434 + 0.475333i
$$479$$ 28.5000 16.4545i 1.30220 0.751825i 0.321417 0.946938i $$-0.395841\pi$$
0.980781 + 0.195113i $$0.0625074\pi$$
$$480$$ 6.00000 0.273861
$$481$$ −24.0000 + 6.92820i −1.09431 + 0.315899i
$$482$$ 10.0000 0.455488
$$483$$ 6.00000 31.1769i 0.273009 1.41860i
$$484$$ 1.00000 + 1.73205i 0.0454545 + 0.0787296i
$$485$$ 6.00000 + 3.46410i 0.272446 + 0.157297i
$$486$$ 15.5885i 0.707107i
$$487$$ 7.50000 + 4.33013i 0.339857 + 0.196217i 0.660209 0.751082i $$-0.270468\pi$$
−0.320352 + 0.947299i $$0.603801\pi$$
$$488$$ −4.50000 2.59808i −0.203705 0.117609i
$$489$$ 42.0000 1.89931
$$490$$ −9.00000 + 22.5167i −0.406579 + 1.01720i
$$491$$ 9.00000 5.19615i 0.406164 0.234499i −0.282976 0.959127i $$-0.591322\pi$$
0.689140 + 0.724628i $$0.257988\pi$$
$$492$$ −4.50000 7.79423i −0.202876 0.351391i
$$493$$ 5.19615i 0.234023i
$$494$$ −24.5000 6.06218i −1.10231 0.272750i
$$495$$ 31.1769i 1.40130i
$$496$$ 2.00000 + 3.46410i 0.0898027 + 0.155543i
$$497$$ 3.00000 15.5885i 0.134568 0.699238i
$$498$$ 12.0000 20.7846i 0.537733 0.931381i
$$499$$ 41.5692i 1.86089i −0.366427 0.930447i $$-0.619419\pi$$
0.366427 0.930447i $$-0.380581\pi$$
$$500$$ 6.00000 + 3.46410i 0.268328 + 0.154919i
$$501$$ −15.0000 + 25.9808i −0.670151 + 1.16073i
$$502$$ −30.0000 −1.33897
$$503$$ 6.00000 10.3923i 0.267527 0.463370i −0.700696 0.713460i $$-0.747127\pi$$
0.968223 + 0.250090i $$0.0804603\pi$$
$$504$$ −1.50000 + 7.79423i −0.0668153 + 0.347183i
$$505$$ 0 0
$$506$$ 20.7846i 0.923989i
$$507$$ 22.5000 0.866025i 0.999260 0.0384615i
$$508$$ −8.00000 −0.354943
$$509$$ 24.0000 13.8564i 1.06378 0.614174i 0.137305 0.990529i $$-0.456156\pi$$
0.926476 + 0.376354i $$0.122822\pi$$
$$510$$ −9.00000 15.5885i −0.398527 0.690268i
$$511$$ −10.0000 + 3.46410i −0.442374 + 0.153243i
$$512$$ −1.00000 −0.0441942
$$513$$ 31.5000 + 18.1865i 1.39076 + 0.802955i
$$514$$ −13.5000 + 23.3827i −0.595459 + 1.03137i
$$515$$ 12.0000 0.528783
$$516$$ 12.0000 + 6.92820i 0.528271 + 0.304997i
$$517$$ −22.5000 + 12.9904i −0.989549 + 0.571316i
$$518$$ −18.0000 3.46410i −0.790875 0.152204i
$$519$$ 0 0
$$520$$ 3.00000 12.1244i 0.131559 0.531688i
$$521$$ −3.00000 −0.131432 −0.0657162 0.997838i $$-0.520933\pi$$
−0.0657162 + 0.997838i $$0.520933\pi$$
$$522$$ −4.50000 + 2.59808i −0.196960 + 0.113715i
$$523$$ 28.5000 16.4545i 1.24622 0.719504i 0.275865 0.961196i $$-0.411036\pi$$
0.970353 + 0.241692i $$0.0777024\pi$$
$$524$$ −3.00000 + 5.19615i −0.131056 + 0.226995i
$$525$$ −21.0000 + 24.2487i −0.916515 + 1.05830i
$$526$$ 21.0000 + 12.1244i 0.915644 + 0.528647i
$$527$$ 6.00000 10.3923i 0.261364 0.452696i
$$528$$ 5.19615i 0.226134i
$$529$$ 12.5000 21.6506i 0.543478 0.941332i
$$530$$ 15.0000 + 25.9808i 0.651558 + 1.12853i
$$531$$ 27.0000 15.5885i 1.17170 0.676481i
$$532$$ −14.0000 12.1244i −0.606977 0.525657i
$$533$$ −18.0000 + 5.19615i −0.779667 + 0.225070i
$$534$$ −15.0000 −0.649113
$$535$$ −9.00000 15.5885i −0.389104 0.673948i
$$536$$ 0 0
$$537$$ −21.0000 + 36.3731i −0.906217 + 1.56961i
$$538$$ −24.0000 −1.03471
$$539$$ −19.5000 7.79423i −0.839924 0.335721i
$$540$$ −9.00000 + 15.5885i −0.387298 + 0.670820i
$$541$$ 31.1769i 1.34040i 0.742180 + 0.670200i $$0.233792\pi$$
−0.742180 + 0.670200i $$0.766208\pi$$
$$542$$ −4.00000 + 6.92820i −0.171815 + 0.297592i
$$543$$ 1.50000 + 2.59808i 0.0643712 + 0.111494i
$$544$$ 1.50000 + 2.59808i 0.0643120 + 0.111392i
$$545$$ 12.0000 0.514024
$$546$$ 15.0000 + 6.92820i 0.641941 + 0.296500i
$$547$$ 2.00000 0.0855138 0.0427569 0.999086i $$-0.486386\pi$$
0.0427569 + 0.999086i $$0.486386\pi$$
$$548$$ 6.00000 + 10.3923i 0.256307 + 0.443937i
$$549$$ 13.5000 7.79423i 0.576166 0.332650i
$$550$$ −10.5000 + 18.1865i −0.447722 + 0.775476i
$$551$$ 12.1244i 0.516515i
$$552$$ −6.00000 + 10.3923i −0.255377 + 0.442326i
$$553$$ −27.5000 + 9.52628i −1.16942 + 0.405099i
$$554$$ 16.0000 0.679775
$$555$$ −36.0000 20.7846i −1.52811 0.882258i
$$556$$ 4.50000 2.59808i 0.190843 0.110183i
$$557$$ −1.50000 2.59808i −0.0635570 0.110084i 0.832496 0.554031i $$-0.186911\pi$$
−0.896053 + 0.443947i $$0.853578\pi$$
$$558$$ −12.0000 −0.508001
$$559$$ 20.0000 20.7846i 0.845910 0.879095i
$$560$$ 6.00000 6.92820i 0.253546 0.292770i
$$561$$ 13.5000 7.79423i 0.569970 0.329073i
$$562$$ 6.00000 + 10.3923i 0.253095 + 0.438373i
$$563$$ −12.0000 + 20.7846i −0.505740 + 0.875967i 0.494238 + 0.869326i $$0.335447\pi$$
−0.999978 + 0.00664037i $$0.997886\pi$$
$$564$$ 15.0000 0.631614
$$565$$ 24.0000 41.5692i 1.00969 1.74883i
$$566$$ 3.00000 + 1.73205i 0.126099 + 0.0728035i
$$567$$ −18.0000 15.5885i −0.755929 0.654654i
$$568$$ −3.00000 + 5.19615i −0.125877 + 0.218026i
$$569$$ −15.0000 + 8.66025i −0.628833 + 0.363057i −0.780300 0.625406i $$-0.784934\pi$$
0.151467 + 0.988462i $$0.451600\pi$$
$$570$$ −21.0000 36.3731i −0.879593 1.52350i
$$571$$ 40.0000 1.67395 0.836974 0.547243i $$-0.184323\pi$$
0.836974 + 0.547243i $$0.184323\pi$$
$$572$$ 10.5000 + 2.59808i 0.439027 + 0.108631i
$$573$$ 0 0
$$574$$ −13.5000 2.59808i −0.563479 0.108442i
$$575$$ −42.0000 + 24.2487i −1.75152 + 1.01124i
$$576$$ 1.50000 2.59808i 0.0625000 0.108253i
$$577$$ 10.0000 0.416305 0.208153 0.978096i $$-0.433255\pi$$
0.208153 + 0.978096i $$0.433255\pi$$
$$578$$ −4.00000 + 6.92820i −0.166378 + 0.288175i
$$579$$ −10.5000 + 18.1865i −0.436365 + 0.755807i
$$580$$ 6.00000 0.249136
$$581$$ −12.0000 34.6410i −0.497844 1.43715i
$$582$$ 3.00000 1.73205i 0.124354 0.0717958i
$$583$$ −22.5000 + 12.9904i −0.931855 + 0.538007i
$$584$$ 4.00000 0.165521
$$585$$ 27.0000 + 25.9808i 1.11631 + 1.07417i
$$586$$ 6.92820i 0.286201i
$$587$$ −15.0000 + 8.66025i −0.619116 + 0.357447i −0.776525 0.630087i $$-0.783019\pi$$
0.157409 + 0.987534i $$0.449686\pi$$
$$588$$ 7.50000 + 9.52628i 0.309295 + 0.392857i
$$589$$ 14.0000 24.2487i 0.576860 0.999151i
$$590$$ −36.0000 −1.48210
$$591$$ 40.5000 + 23.3827i 1.66595 + 0.961835i
$$592$$ 6.00000 + 3.46410i 0.246598 + 0.142374i
$$593$$ 8.66025i 0.355634i −0.984064 0.177817i $$-0.943096\pi$$
0.984064 0.177817i $$-0.0569035\pi$$
$$594$$ −13.5000 7.79423i −0.553912 0.319801i
$$595$$ −27.0000 5.19615i −1.10689 0.213021i
$$596$$ −3.00000 5.19615i −0.122885 0.212843i
$$597$$ −18.0000 −0.736691
$$598$$ 18.0000 + 17.3205i 0.736075 + 0.708288i
$$599$$ 3.46410i 0.141539i 0.997493 + 0.0707697i $$0.0225455\pi$$
−0.997493 + 0.0707697i $$0.977454\pi$$
$$600$$ 10.5000 6.06218i 0.428661 0.247487i
$$601$$ −27.0000 + 15.5885i −1.10135 + 0.635866i −0.936576 0.350464i $$-0.886024\pi$$
−0.164777 + 0.986331i $$0.552690\pi$$
$$602$$ 20.0000 6.92820i 0.815139 0.282372i
$$603$$ 0 0
$$604$$ −7.50000 4.33013i −0.305171 0.176190i
$$605$$ 6.00000 + 3.46410i 0.243935 + 0.140836i
$$606$$ 0 0
$$607$$ −6.00000 3.46410i −0.243532 0.140604i 0.373267 0.927724i $$-0.378238\pi$$
−0.616799 + 0.787121i $$0.711571\pi$$
$$608$$ 3.50000 + 6.06218i 0.141944 + 0.245854i
$$609$$ −1.50000 + 7.79423i −0.0607831 + 0.315838i
$$610$$ −18.0000 −0.728799
$$611$$ 7.50000 30.3109i 0.303418 1.22625i
$$612$$ −9.00000 −0.363803
$$613$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$614$$ −3.50000 6.06218i −0.141249 0.244650i
$$615$$ −27.0000 15.5885i −1.08875 0.628587i
$$616$$ 6.00000 + 5.19615i 0.241747 + 0.209359i
$$617$$ 3.00000 5.19615i 0.120775 0.209189i −0.799298 0.600935i $$-0.794795\pi$$
0.920074 + 0.391745i $$0.128129\pi$$
$$618$$ 3.00000 5.19615i 0.120678 0.209020i
$$619$$ 31.0000 1.24600 0.622998 0.782224i $$-0.285915\pi$$
0.622998 + 0.782224i $$0.285915\pi$$
$$620$$ 12.0000 + 6.92820i 0.481932 + 0.278243i
$$621$$ −18.0000 31.1769i −0.722315 1.25109i
$$622$$ −1.50000 2.59808i −0.0601445 0.104173i
$$623$$ −15.0000 + 17.3205i −0.600962 + 0.693932i
$$624$$ −4.50000 4.33013i −0.180144 0.173344i
$$625$$ −11.0000 −0.440000
$$626$$ −18.0000 + 10.3923i −0.719425 + 0.415360i
$$627$$ 31.5000 18.1865i 1.25799 0.726300i
$$628$$ 12.0000 + 6.92820i 0.478852 + 0.276465i
$$629$$ 20.7846i 0.828737i
$$630$$ 9.00000 + 25.9808i 0.358569 + 1.03510i
$$631$$ −40.5000 23.3827i −1.61228 0.930850i −0.988841 0.148978i $$-0.952402\pi$$
−0.623439 0.781872i $$-0.714265\pi$$
$$632$$ 11.0000 0.437557
$$633$$ 33.0000 + 19.0526i 1.31163 + 0.757271i
$$634$$ 9.00000 + 15.5885i 0.357436 + 0.619097i
$$635$$ −24.0000 + 13.8564i −0.952411 + 0.549875i
$$636$$ 15.0000 0.594789
$$637$$ 23.0000 10.3923i 0.911293 0.411758i
$$638$$ 5.19615i 0.205718i
$$639$$ −9.00000 15.5885i −0.356034 0.616670i
$$640$$ −3.00000 + 1.73205i −0.118585 + 0.0684653i
$$641$$ 3.00000 + 1.73205i 0.118493 + 0.0684119i 0.558075 0.829790i $$-0.311540\pi$$
−0.439582 + 0.898202i $$0.644873\pi$$
$$642$$ −9.00000 −0.355202
$$643$$ −23.5000 + 40.7032i −0.926750 + 1.60518i −0.138027 + 0.990429i $$0.544076\pi$$
−0.788723 + 0.614749i $$0.789257\pi$$
$$644$$ 6.00000 + 17.3205i 0.236433 + 0.682524i
$$645$$ 48.0000 1.89000
$$646$$ 10.5000 18.1865i 0.413117 0.715540i
$$647$$ 10.5000 + 18.1865i 0.412798 + 0.714986i 0.995194 0.0979182i $$-0.0312184\pi$$
−0.582397 + 0.812905i $$0.697885\pi$$
$$648$$ 4.50000 + 7.79423i 0.176777 + 0.306186i
$$649$$ 31.1769i 1.22380i
$$650$$ −7.00000 24.2487i −0.274563 0.951113i
$$651$$ −12.0000 + 13.8564i −0.470317 + 0.543075i
$$652$$ −21.0000 + 12.1244i −0.822423 + 0.474826i
$$653$$ −4.50000 + 2.59808i −0.176099 + 0.101671i −0.585458 0.810702i $$-0.699085\pi$$
0.409360 + 0.912373i $$0.365752\pi$$
$$654$$ 3.00000 5.19615i 0.117309 0.203186i
$$655$$ 20.7846i 0.812122i
$$656$$ 4.50000 + 2.59808i 0.175695 + 0.101438i
$$657$$ −6.00000 + 10.3923i −0.234082 + 0.405442i
$$658$$ 15.0000 17.3205i 0.584761 0.675224i
$$659$$ −1.50000 0.866025i −0.0584317 0.0337356i 0.470500 0.882400i $$-0.344074\pi$$
−0.528931 + 0.848665i $$0.677407\pi$$
$$660$$ 9.00000 + 15.5885i 0.350325 + 0.606780i
$$661$$ −7.00000 12.1244i −0.272268 0.471583i 0.697174 0.716902i $$-0.254441\pi$$
−0.969442 + 0.245319i $$0.921107\pi$$
$$662$$ 0 0
$$663$$ −4.50000 + 18.1865i −0.174766 + 0.706306i
$$664$$ 13.8564i 0.537733i
$$665$$ −63.0000 12.1244i −2.44304 0.470162i
$$666$$ −18.0000 + 10.3923i −0.697486 + 0.402694i
$$667$$ −6.00000 + 10.3923i −0.232321 + 0.402392i
$$668$$ 17.3205i 0.670151i
$$669$$ −24.0000 13.8564i −0.927894 0.535720i
$$670$$ 0 0
$$671$$ 15.5885i 0.601786i
$$672$$ −1.50000 4.33013i −0.0578638 0.167038i
$$673$$ 14.5000 + 25.1147i 0.558934 + 0.968102i 0.997586 + 0.0694449i $$0.0221228\pi$$
−0.438652 + 0.898657i $$0.644544\pi$$
$$674$$ −9.50000 16.4545i −0.365926 0.633803i
$$675$$ 36.3731i 1.40000i
$$676$$ −11.0000 + 6.92820i −0.423077 + 0.266469i
$$677$$ 6.00000 0.230599 0.115299 0.993331i $$-0.463217\pi$$
0.115299 + 0.993331i $$0.463217\pi$$
$$678$$ −12.0000 20.7846i −0.460857 0.798228i
$$679$$ 1.00000 5.19615i 0.0383765 0.199410i
$$680$$ 9.00000 + 5.19615i 0.345134 + 0.199263i
$$681$$ 18.0000 0.689761
$$682$$ −6.00000 + 10.3923i −0.229752 + 0.397942i
$$683$$ 6.00000 10.3923i 0.229584 0.397650i −0.728101 0.685470i $$-0.759597\pi$$
0.957685 + 0.287819i $$0.0929302\pi$$
$$684$$ −21.0000 −0.802955
$$685$$ 36.0000 + 20.7846i 1.37549 + 0.794139i
$$686$$ 18.5000 + 0.866025i 0.706333 + 0.0330650i
$$687$$ −19.5000 + 11.2583i −0.743971 + 0.429532i
$$688$$ −8.00000 −0.304997
$$689$$ 7.50000 30.3109i 0.285727 1.15475i
$$690$$ 41.5692i 1.58251i
$$691$$ 4.00000 + 6.92820i 0.152167 + 0.263561i 0.932024 0.362397i $$-0.118041\pi$$
−0.779857 + 0.625958i $$0.784708\pi$$
$$692$$ 0 0
$$693$$ −22.5000 + 7.79423i −0.854704 + 0.296078i
$$694$$ 15.5885i 0.591730i
$$695$$ 9.00000 15.5885i 0.341389 0.591304i
$$696$$ 1.50000 2.59808i 0.0568574 0.0984798i
$$697$$ 15.5885i 0.590455i
$$698$$ 1.00000 1.73205i 0.0378506 0.0655591i
$$699$$ −6.00000 10.3923i −0.226941 0.393073i
$$700$$ 3.50000 18.1865i 0.132288 0.687386i
$$701$$ 12.1244i 0.457931i −0.973435 0.228965i $$-0.926466\pi$$
0.973435 0.228965i $$-0.0735342\pi$$
$$702$$ 18.0000 5.19615i 0.679366 0.196116i
$$703$$ 48.4974i 1.82911i
$$704$$ −1.50000 2.59808i −0.0565334 0.0979187i
$$705$$ 45.0000 25.9808i 1.69480 0.978492i
$$706$$ 18.0000 + 10.3923i 0.677439 + 0.391120i
$$707$$ 0 0
$$708$$ −9.00000 + 15.5885i −0.338241 + 0.585850i
$$709$$ 21.0000 + 12.1244i 0.788672 + 0.455340i 0.839495 0.543368i $$-0.182851\pi$$
−0.0508231 + 0.998708i $$0.516184\pi$$
$$710$$ 20.7846i 0.780033i
$$711$$ −16.5000 + 28.5788i −0.618798 + 1.07179i
$$712$$ 7.50000 4.33013i 0.281074 0.162278i
$$713$$ −24.0000 + 13.8564i −0.898807 + 0.518927i
$$714$$ −9.00000 + 10.3923i −0.336817 + 0.388922i
$$715$$ 36.0000 10.3923i 1.34632 0.388650i
$$716$$ 24.2487i 0.906217i
$$717$$ 18.0000 10.3923i 0.672222 0.388108i
$$718$$ −12.0000 20.7846i −0.447836 0.775675i
$$719$$ 10.5000 18.1865i 0.391584 0.678243i −0.601075 0.799193i $$-0.705261\pi$$
0.992659 + 0.120950i $$0.0385939\pi$$
$$720$$ 10.3923i 0.387298i
$$721$$ −3.00000 8.66025i −0.111726 0.322525i
$$722$$ 15.0000 25.9808i 0.558242 0.966904i
$$723$$ 17.3205i 0.644157i
$$724$$ −1.50000 0.866025i −0.0557471 0.0321856i
$$725$$ 10.5000 6.06218i 0.389960 0.225144i
$$726$$ 3.00000 1.73205i 0.111340 0.0642824i
$$727$$ 34.6410i 1.28476i −0.766385 0.642382i $$-0.777946\pi$$
0.766385 0.642382i $$-0.222054\pi$$
$$728$$ −9.50000 + 0.866025i −0.352093 + 0.0320970i
$$729$$ −27.0000 −1.00000
$$730$$ 12.0000 6.92820i 0.444140 0.256424i
$$731$$ 12.0000 + 20.7846i 0.443836 + 0.768747i
$$732$$ −4.50000 + 7.79423i −0.166325 + 0.288083i
$$733$$ −13.0000 −0.480166 −0.240083 0.970752i $$-0.577175\pi$$
−0.240083 + 0.970752i $$0.577175\pi$$
$$734$$ −18.0000 10.3923i −0.664392 0.383587i
$$735$$ 39.0000 + 15.5885i 1.43854 + 0.574989i
$$736$$ 6.92820i 0.255377i
$$737$$ 0 0
$$738$$ −13.5000 + 7.79423i −0.496942 + 0.286910i
$$739$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$740$$ 24.0000 0.882258
$$741$$ −10.5000 + 42.4352i −0.385727 + 1.55890i
$$742$$ 15.0000 17.3205i 0.550667 0.635856i
$$743$$ 3.00000 + 5.19615i 0.110059 + 0.190628i 0.915794 0.401648i $$-0.131563\pi$$
−0.805735 + 0.592277i $$0.798229\pi$$
$$744$$ 6.00000 3.46410i 0.219971 0.127000i
$$745$$ −18.0000 10.3923i −0.659469 0.380745i
$$746$$ 20.0000 0.732252
$$747$$ −36.0000 20.7846i −1.31717 0.760469i
$$748$$ −4.50000 + 7.79423i −0.164536 + 0.284985i
$$749$$ −9.00000 + 10.3923i −0.328853 + 0.379727i
$$750$$ 6.00000 10.3923i 0.219089 0.379473i
$$751$$ −15.5000 26.8468i −0.565603 0.979653i −0.996993 0.0774878i $$-0.975310\pi$$
0.431390 0.902165i $$-0.358023\pi$$
$$752$$ −7.50000 + 4.33013i −0.273497 + 0.157903i
$$753$$ 51.9615i 1.89358i
$$754$$ −4.50000 4.33013i −0.163880 0.157694i
$$755$$ −30.0000 −1.09181
$$756$$ 13.5000 + 2.59808i 0.490990 + 0.0944911i
$$757$$ −10.0000 17.3205i −0.363456 0.629525i 0.625071 0.780568i $$-0.285070\pi$$
−0.988527 + 0.151043i $$0.951737\pi$$
$$758$$ −9.00000 5.19615i −0.326895 0.188733i
$$759$$ −36.0000 −1.30672
$$760$$ 21.0000 + 12.1244i 0.761750 + 0.439797i
$$761$$ 6.00000 + 3.46410i 0.217500 + 0.125574i 0.604792 0.796383i $$-0.293256\pi$$
−0.387292 + 0.921957i $$0.626590\pi$$
$$762$$ 13.8564i 0.501965i
$$763$$ −3.00000 8.66025i −0.108607 0.313522i
$$764$$ 0 0
$$765$$ −27.0000 + 15.5885i −0.976187 + 0.563602i
$$766$$ 5.19615i 0.187745i
$$767$$ 27.0000 + 25.9808i 0.974913 + 0.938111i
$$768$$ 1.73205i 0.0625000i
$$769$$ 20.0000 + 34.6410i 0.721218 + 1.24919i 0.960512 + 0.278240i $$0.0897509\pi$$
−0.239293 + 0.970947i $$0.576916\pi$$
$$770$$ 27.0000 + 5.19615i 0.973012 + 0.187256i
$$771$$ 40.5000 + 23.3827i 1.45857 + 0.842107i
$$772$$ 12.1244i 0.436365i
$$773$$ 9.00000 + 5.19615i 0.323708 + 0.186893i 0.653044 0.757320i $$-0.273492\pi$$