Properties

Label 546.2.q.c.335.1
Level $546$
Weight $2$
Character 546.335
Analytic conductor $4.360$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Defining polynomial: \(x^{2} - x + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 335.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 546.335
Dual form 546.2.q.c.251.1

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-1.50000 + 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} -3.46410i q^{5} +(-1.50000 - 0.866025i) q^{6} +(0.500000 + 2.59808i) q^{7} -1.00000 q^{8} +(1.50000 - 2.59808i) q^{9} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{2} +(-1.50000 + 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} -3.46410i q^{5} +(-1.50000 - 0.866025i) q^{6} +(0.500000 + 2.59808i) q^{7} -1.00000 q^{8} +(1.50000 - 2.59808i) q^{9} +(3.00000 - 1.73205i) q^{10} +(-1.50000 - 2.59808i) q^{11} -1.73205i q^{12} +(-3.50000 - 0.866025i) q^{13} +(-2.00000 + 1.73205i) q^{14} +(3.00000 + 5.19615i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(1.50000 - 2.59808i) q^{17} +3.00000 q^{18} +(3.50000 - 6.06218i) q^{19} +(3.00000 + 1.73205i) q^{20} +(-3.00000 - 3.46410i) q^{21} +(1.50000 - 2.59808i) q^{22} +(6.00000 - 3.46410i) q^{23} +(1.50000 - 0.866025i) q^{24} -7.00000 q^{25} +(-1.00000 - 3.46410i) q^{26} +5.19615i q^{27} +(-2.50000 - 0.866025i) q^{28} +(-1.50000 + 0.866025i) q^{29} +(-3.00000 + 5.19615i) q^{30} +4.00000 q^{31} +(0.500000 - 0.866025i) q^{32} +(4.50000 + 2.59808i) q^{33} +3.00000 q^{34} +(9.00000 - 1.73205i) q^{35} +(1.50000 + 2.59808i) q^{36} +(-6.00000 + 3.46410i) q^{37} +7.00000 q^{38} +(6.00000 - 1.73205i) q^{39} +3.46410i q^{40} +(4.50000 - 2.59808i) q^{41} +(1.50000 - 4.33013i) q^{42} +(4.00000 - 6.92820i) q^{43} +3.00000 q^{44} +(-9.00000 - 5.19615i) q^{45} +(6.00000 + 3.46410i) q^{46} +8.66025i q^{47} +(1.50000 + 0.866025i) q^{48} +(-6.50000 + 2.59808i) q^{49} +(-3.50000 - 6.06218i) q^{50} +5.19615i q^{51} +(2.50000 - 2.59808i) q^{52} -8.66025i q^{53} +(-4.50000 + 2.59808i) q^{54} +(-9.00000 + 5.19615i) q^{55} +(-0.500000 - 2.59808i) q^{56} +12.1244i q^{57} +(-1.50000 - 0.866025i) q^{58} +(-9.00000 - 5.19615i) q^{59} -6.00000 q^{60} +(-4.50000 - 2.59808i) q^{61} +(2.00000 + 3.46410i) q^{62} +(7.50000 + 2.59808i) q^{63} +1.00000 q^{64} +(-3.00000 + 12.1244i) q^{65} +5.19615i q^{66} +(1.50000 + 2.59808i) q^{68} +(-6.00000 + 10.3923i) q^{69} +(6.00000 + 6.92820i) q^{70} +(3.00000 - 5.19615i) q^{71} +(-1.50000 + 2.59808i) q^{72} +4.00000 q^{73} +(-6.00000 - 3.46410i) q^{74} +(10.5000 - 6.06218i) q^{75} +(3.50000 + 6.06218i) q^{76} +(6.00000 - 5.19615i) q^{77} +(4.50000 + 4.33013i) q^{78} -11.0000 q^{79} +(-3.00000 + 1.73205i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(4.50000 + 2.59808i) q^{82} +13.8564i q^{83} +(4.50000 - 0.866025i) q^{84} +(-9.00000 - 5.19615i) q^{85} +8.00000 q^{86} +(1.50000 - 2.59808i) q^{87} +(1.50000 + 2.59808i) q^{88} +(7.50000 - 4.33013i) q^{89} -10.3923i q^{90} +(0.500000 - 9.52628i) q^{91} +6.92820i q^{92} +(-6.00000 + 3.46410i) q^{93} +(-7.50000 + 4.33013i) q^{94} +(-21.0000 - 12.1244i) q^{95} +1.73205i q^{96} +(-1.00000 + 1.73205i) q^{97} +(-5.50000 - 4.33013i) q^{98} -9.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + q^{2} - 3q^{3} - q^{4} - 3q^{6} + q^{7} - 2q^{8} + 3q^{9} + O(q^{10}) \) \( 2q + q^{2} - 3q^{3} - q^{4} - 3q^{6} + q^{7} - 2q^{8} + 3q^{9} + 6q^{10} - 3q^{11} - 7q^{13} - 4q^{14} + 6q^{15} - q^{16} + 3q^{17} + 6q^{18} + 7q^{19} + 6q^{20} - 6q^{21} + 3q^{22} + 12q^{23} + 3q^{24} - 14q^{25} - 2q^{26} - 5q^{28} - 3q^{29} - 6q^{30} + 8q^{31} + q^{32} + 9q^{33} + 6q^{34} + 18q^{35} + 3q^{36} - 12q^{37} + 14q^{38} + 12q^{39} + 9q^{41} + 3q^{42} + 8q^{43} + 6q^{44} - 18q^{45} + 12q^{46} + 3q^{48} - 13q^{49} - 7q^{50} + 5q^{52} - 9q^{54} - 18q^{55} - q^{56} - 3q^{58} - 18q^{59} - 12q^{60} - 9q^{61} + 4q^{62} + 15q^{63} + 2q^{64} - 6q^{65} + 3q^{68} - 12q^{69} + 12q^{70} + 6q^{71} - 3q^{72} + 8q^{73} - 12q^{74} + 21q^{75} + 7q^{76} + 12q^{77} + 9q^{78} - 22q^{79} - 6q^{80} - 9q^{81} + 9q^{82} + 9q^{84} - 18q^{85} + 16q^{86} + 3q^{87} + 3q^{88} + 15q^{89} + q^{91} - 12q^{93} - 15q^{94} - 42q^{95} - 2q^{97} - 11q^{98} - 18q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) −1.50000 + 0.866025i −0.866025 + 0.500000i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 3.46410i 1.54919i −0.632456 0.774597i \(-0.717953\pi\)
0.632456 0.774597i \(-0.282047\pi\)
\(6\) −1.50000 0.866025i −0.612372 0.353553i
\(7\) 0.500000 + 2.59808i 0.188982 + 0.981981i
\(8\) −1.00000 −0.353553
\(9\) 1.50000 2.59808i 0.500000 0.866025i
\(10\) 3.00000 1.73205i 0.948683 0.547723i
\(11\) −1.50000 2.59808i −0.452267 0.783349i 0.546259 0.837616i \(-0.316051\pi\)
−0.998526 + 0.0542666i \(0.982718\pi\)
\(12\) 1.73205i 0.500000i
\(13\) −3.50000 0.866025i −0.970725 0.240192i
\(14\) −2.00000 + 1.73205i −0.534522 + 0.462910i
\(15\) 3.00000 + 5.19615i 0.774597 + 1.34164i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 1.50000 2.59808i 0.363803 0.630126i −0.624780 0.780801i \(-0.714811\pi\)
0.988583 + 0.150675i \(0.0481447\pi\)
\(18\) 3.00000 0.707107
\(19\) 3.50000 6.06218i 0.802955 1.39076i −0.114708 0.993399i \(-0.536593\pi\)
0.917663 0.397360i \(-0.130073\pi\)
\(20\) 3.00000 + 1.73205i 0.670820 + 0.387298i
\(21\) −3.00000 3.46410i −0.654654 0.755929i
\(22\) 1.50000 2.59808i 0.319801 0.553912i
\(23\) 6.00000 3.46410i 1.25109 0.722315i 0.279761 0.960070i \(-0.409745\pi\)
0.971325 + 0.237754i \(0.0764114\pi\)
\(24\) 1.50000 0.866025i 0.306186 0.176777i
\(25\) −7.00000 −1.40000
\(26\) −1.00000 3.46410i −0.196116 0.679366i
\(27\) 5.19615i 1.00000i
\(28\) −2.50000 0.866025i −0.472456 0.163663i
\(29\) −1.50000 + 0.866025i −0.278543 + 0.160817i −0.632764 0.774345i \(-0.718080\pi\)
0.354221 + 0.935162i \(0.384746\pi\)
\(30\) −3.00000 + 5.19615i −0.547723 + 0.948683i
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 4.50000 + 2.59808i 0.783349 + 0.452267i
\(34\) 3.00000 0.514496
\(35\) 9.00000 1.73205i 1.52128 0.292770i
\(36\) 1.50000 + 2.59808i 0.250000 + 0.433013i
\(37\) −6.00000 + 3.46410i −0.986394 + 0.569495i −0.904194 0.427121i \(-0.859528\pi\)
−0.0821995 + 0.996616i \(0.526194\pi\)
\(38\) 7.00000 1.13555
\(39\) 6.00000 1.73205i 0.960769 0.277350i
\(40\) 3.46410i 0.547723i
\(41\) 4.50000 2.59808i 0.702782 0.405751i −0.105601 0.994409i \(-0.533677\pi\)
0.808383 + 0.588657i \(0.200343\pi\)
\(42\) 1.50000 4.33013i 0.231455 0.668153i
\(43\) 4.00000 6.92820i 0.609994 1.05654i −0.381246 0.924473i \(-0.624505\pi\)
0.991241 0.132068i \(-0.0421616\pi\)
\(44\) 3.00000 0.452267
\(45\) −9.00000 5.19615i −1.34164 0.774597i
\(46\) 6.00000 + 3.46410i 0.884652 + 0.510754i
\(47\) 8.66025i 1.26323i 0.775283 + 0.631614i \(0.217607\pi\)
−0.775283 + 0.631614i \(0.782393\pi\)
\(48\) 1.50000 + 0.866025i 0.216506 + 0.125000i
\(49\) −6.50000 + 2.59808i −0.928571 + 0.371154i
\(50\) −3.50000 6.06218i −0.494975 0.857321i
\(51\) 5.19615i 0.727607i
\(52\) 2.50000 2.59808i 0.346688 0.360288i
\(53\) 8.66025i 1.18958i −0.803882 0.594789i \(-0.797236\pi\)
0.803882 0.594789i \(-0.202764\pi\)
\(54\) −4.50000 + 2.59808i −0.612372 + 0.353553i
\(55\) −9.00000 + 5.19615i −1.21356 + 0.700649i
\(56\) −0.500000 2.59808i −0.0668153 0.347183i
\(57\) 12.1244i 1.60591i
\(58\) −1.50000 0.866025i −0.196960 0.113715i
\(59\) −9.00000 5.19615i −1.17170 0.676481i −0.217620 0.976034i \(-0.569829\pi\)
−0.954080 + 0.299552i \(0.903163\pi\)
\(60\) −6.00000 −0.774597
\(61\) −4.50000 2.59808i −0.576166 0.332650i 0.183442 0.983030i \(-0.441276\pi\)
−0.759608 + 0.650381i \(0.774609\pi\)
\(62\) 2.00000 + 3.46410i 0.254000 + 0.439941i
\(63\) 7.50000 + 2.59808i 0.944911 + 0.327327i
\(64\) 1.00000 0.125000
\(65\) −3.00000 + 12.1244i −0.372104 + 1.50384i
\(66\) 5.19615i 0.639602i
\(67\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(68\) 1.50000 + 2.59808i 0.181902 + 0.315063i
\(69\) −6.00000 + 10.3923i −0.722315 + 1.25109i
\(70\) 6.00000 + 6.92820i 0.717137 + 0.828079i
\(71\) 3.00000 5.19615i 0.356034 0.616670i −0.631260 0.775571i \(-0.717462\pi\)
0.987294 + 0.158901i \(0.0507952\pi\)
\(72\) −1.50000 + 2.59808i −0.176777 + 0.306186i
\(73\) 4.00000 0.468165 0.234082 0.972217i \(-0.424791\pi\)
0.234082 + 0.972217i \(0.424791\pi\)
\(74\) −6.00000 3.46410i −0.697486 0.402694i
\(75\) 10.5000 6.06218i 1.21244 0.700000i
\(76\) 3.50000 + 6.06218i 0.401478 + 0.695379i
\(77\) 6.00000 5.19615i 0.683763 0.592157i
\(78\) 4.50000 + 4.33013i 0.509525 + 0.490290i
\(79\) −11.0000 −1.23760 −0.618798 0.785550i \(-0.712380\pi\)
−0.618798 + 0.785550i \(0.712380\pi\)
\(80\) −3.00000 + 1.73205i −0.335410 + 0.193649i
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) 4.50000 + 2.59808i 0.496942 + 0.286910i
\(83\) 13.8564i 1.52094i 0.649374 + 0.760469i \(0.275031\pi\)
−0.649374 + 0.760469i \(0.724969\pi\)
\(84\) 4.50000 0.866025i 0.490990 0.0944911i
\(85\) −9.00000 5.19615i −0.976187 0.563602i
\(86\) 8.00000 0.862662
\(87\) 1.50000 2.59808i 0.160817 0.278543i
\(88\) 1.50000 + 2.59808i 0.159901 + 0.276956i
\(89\) 7.50000 4.33013i 0.794998 0.458993i −0.0467209 0.998908i \(-0.514877\pi\)
0.841719 + 0.539915i \(0.181544\pi\)
\(90\) 10.3923i 1.09545i
\(91\) 0.500000 9.52628i 0.0524142 0.998625i
\(92\) 6.92820i 0.722315i
\(93\) −6.00000 + 3.46410i −0.622171 + 0.359211i
\(94\) −7.50000 + 4.33013i −0.773566 + 0.446619i
\(95\) −21.0000 12.1244i −2.15455 1.24393i
\(96\) 1.73205i 0.176777i
\(97\) −1.00000 + 1.73205i −0.101535 + 0.175863i −0.912317 0.409484i \(-0.865709\pi\)
0.810782 + 0.585348i \(0.199042\pi\)
\(98\) −5.50000 4.33013i −0.555584 0.437409i
\(99\) −9.00000 −0.904534
\(100\) 3.50000 6.06218i 0.350000 0.606218i
\(101\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(102\) −4.50000 + 2.59808i −0.445566 + 0.257248i
\(103\) 3.46410i 0.341328i 0.985329 + 0.170664i \(0.0545913\pi\)
−0.985329 + 0.170664i \(0.945409\pi\)
\(104\) 3.50000 + 0.866025i 0.343203 + 0.0849208i
\(105\) −12.0000 + 10.3923i −1.17108 + 1.01419i
\(106\) 7.50000 4.33013i 0.728464 0.420579i
\(107\) −4.50000 + 2.59808i −0.435031 + 0.251166i −0.701488 0.712681i \(-0.747481\pi\)
0.266456 + 0.963847i \(0.414147\pi\)
\(108\) −4.50000 2.59808i −0.433013 0.250000i
\(109\) 3.46410i 0.331801i −0.986143 0.165900i \(-0.946947\pi\)
0.986143 0.165900i \(-0.0530530\pi\)
\(110\) −9.00000 5.19615i −0.858116 0.495434i
\(111\) 6.00000 10.3923i 0.569495 0.986394i
\(112\) 2.00000 1.73205i 0.188982 0.163663i
\(113\) −12.0000 6.92820i −1.12887 0.651751i −0.185216 0.982698i \(-0.559298\pi\)
−0.943649 + 0.330947i \(0.892632\pi\)
\(114\) −10.5000 + 6.06218i −0.983415 + 0.567775i
\(115\) −12.0000 20.7846i −1.11901 1.93817i
\(116\) 1.73205i 0.160817i
\(117\) −7.50000 + 7.79423i −0.693375 + 0.720577i
\(118\) 10.3923i 0.956689i
\(119\) 7.50000 + 2.59808i 0.687524 + 0.238165i
\(120\) −3.00000 5.19615i −0.273861 0.474342i
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) 5.19615i 0.470438i
\(123\) −4.50000 + 7.79423i −0.405751 + 0.702782i
\(124\) −2.00000 + 3.46410i −0.179605 + 0.311086i
\(125\) 6.92820i 0.619677i
\(126\) 1.50000 + 7.79423i 0.133631 + 0.694365i
\(127\) 4.00000 + 6.92820i 0.354943 + 0.614779i 0.987108 0.160055i \(-0.0511671\pi\)
−0.632166 + 0.774833i \(0.717834\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 13.8564i 1.21999i
\(130\) −12.0000 + 3.46410i −1.05247 + 0.303822i
\(131\) −6.00000 −0.524222 −0.262111 0.965038i \(-0.584419\pi\)
−0.262111 + 0.965038i \(0.584419\pi\)
\(132\) −4.50000 + 2.59808i −0.391675 + 0.226134i
\(133\) 17.5000 + 6.06218i 1.51744 + 0.525657i
\(134\) 0 0
\(135\) 18.0000 1.54919
\(136\) −1.50000 + 2.59808i −0.128624 + 0.222783i
\(137\) 6.00000 10.3923i 0.512615 0.887875i −0.487278 0.873247i \(-0.662010\pi\)
0.999893 0.0146279i \(-0.00465636\pi\)
\(138\) −12.0000 −1.02151
\(139\) 4.50000 + 2.59808i 0.381685 + 0.220366i 0.678551 0.734553i \(-0.262608\pi\)
−0.296866 + 0.954919i \(0.595942\pi\)
\(140\) −3.00000 + 8.66025i −0.253546 + 0.731925i
\(141\) −7.50000 12.9904i −0.631614 1.09399i
\(142\) 6.00000 0.503509
\(143\) 3.00000 + 10.3923i 0.250873 + 0.869048i
\(144\) −3.00000 −0.250000
\(145\) 3.00000 + 5.19615i 0.249136 + 0.431517i
\(146\) 2.00000 + 3.46410i 0.165521 + 0.286691i
\(147\) 7.50000 9.52628i 0.618590 0.785714i
\(148\) 6.92820i 0.569495i
\(149\) −3.00000 + 5.19615i −0.245770 + 0.425685i −0.962348 0.271821i \(-0.912374\pi\)
0.716578 + 0.697507i \(0.245707\pi\)
\(150\) 10.5000 + 6.06218i 0.857321 + 0.494975i
\(151\) 8.66025i 0.704761i 0.935857 + 0.352381i \(0.114628\pi\)
−0.935857 + 0.352381i \(0.885372\pi\)
\(152\) −3.50000 + 6.06218i −0.283887 + 0.491708i
\(153\) −4.50000 7.79423i −0.363803 0.630126i
\(154\) 7.50000 + 2.59808i 0.604367 + 0.209359i
\(155\) 13.8564i 1.11297i
\(156\) −1.50000 + 6.06218i −0.120096 + 0.485363i
\(157\) 13.8564i 1.10586i 0.833227 + 0.552931i \(0.186491\pi\)
−0.833227 + 0.552931i \(0.813509\pi\)
\(158\) −5.50000 9.52628i −0.437557 0.757870i
\(159\) 7.50000 + 12.9904i 0.594789 + 1.03020i
\(160\) −3.00000 1.73205i −0.237171 0.136931i
\(161\) 12.0000 + 13.8564i 0.945732 + 1.09204i
\(162\) 4.50000 7.79423i 0.353553 0.612372i
\(163\) 21.0000 + 12.1244i 1.64485 + 0.949653i 0.979076 + 0.203497i \(0.0652307\pi\)
0.665771 + 0.746156i \(0.268103\pi\)
\(164\) 5.19615i 0.405751i
\(165\) 9.00000 15.5885i 0.700649 1.21356i
\(166\) −12.0000 + 6.92820i −0.931381 + 0.537733i
\(167\) 15.0000 8.66025i 1.16073 0.670151i 0.209255 0.977861i \(-0.432896\pi\)
0.951480 + 0.307711i \(0.0995628\pi\)
\(168\) 3.00000 + 3.46410i 0.231455 + 0.267261i
\(169\) 11.5000 + 6.06218i 0.884615 + 0.466321i
\(170\) 10.3923i 0.797053i
\(171\) −10.5000 18.1865i −0.802955 1.39076i
\(172\) 4.00000 + 6.92820i 0.304997 + 0.528271i
\(173\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(174\) 3.00000 0.227429
\(175\) −3.50000 18.1865i −0.264575 1.37477i
\(176\) −1.50000 + 2.59808i −0.113067 + 0.195837i
\(177\) 18.0000 1.35296
\(178\) 7.50000 + 4.33013i 0.562149 + 0.324557i
\(179\) −21.0000 + 12.1244i −1.56961 + 0.906217i −0.573400 + 0.819275i \(0.694376\pi\)
−0.996213 + 0.0869415i \(0.972291\pi\)
\(180\) 9.00000 5.19615i 0.670820 0.387298i
\(181\) 1.73205i 0.128742i −0.997926 0.0643712i \(-0.979496\pi\)
0.997926 0.0643712i \(-0.0205042\pi\)
\(182\) 8.50000 4.33013i 0.630062 0.320970i
\(183\) 9.00000 0.665299
\(184\) −6.00000 + 3.46410i −0.442326 + 0.255377i
\(185\) 12.0000 + 20.7846i 0.882258 + 1.52811i
\(186\) −6.00000 3.46410i −0.439941 0.254000i
\(187\) −9.00000 −0.658145
\(188\) −7.50000 4.33013i −0.546994 0.315807i
\(189\) −13.5000 + 2.59808i −0.981981 + 0.188982i
\(190\) 24.2487i 1.75919i
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) −1.50000 + 0.866025i −0.108253 + 0.0625000i
\(193\) −10.5000 + 6.06218i −0.755807 + 0.436365i −0.827788 0.561041i \(-0.810401\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) −2.00000 −0.143592
\(195\) −6.00000 20.7846i −0.429669 1.48842i
\(196\) 1.00000 6.92820i 0.0714286 0.494872i
\(197\) 13.5000 + 23.3827i 0.961835 + 1.66595i 0.717888 + 0.696159i \(0.245109\pi\)
0.243947 + 0.969788i \(0.421558\pi\)
\(198\) −4.50000 7.79423i −0.319801 0.553912i
\(199\) 9.00000 + 5.19615i 0.637993 + 0.368345i 0.783841 0.620962i \(-0.213258\pi\)
−0.145848 + 0.989307i \(0.546591\pi\)
\(200\) 7.00000 0.494975
\(201\) 0 0
\(202\) 0 0
\(203\) −3.00000 3.46410i −0.210559 0.243132i
\(204\) −4.50000 2.59808i −0.315063 0.181902i
\(205\) −9.00000 15.5885i −0.628587 1.08875i
\(206\) −3.00000 + 1.73205i −0.209020 + 0.120678i
\(207\) 20.7846i 1.44463i
\(208\) 1.00000 + 3.46410i 0.0693375 + 0.240192i
\(209\) −21.0000 −1.45260
\(210\) −15.0000 5.19615i −1.03510 0.358569i
\(211\) 11.0000 + 19.0526i 0.757271 + 1.31163i 0.944237 + 0.329266i \(0.106801\pi\)
−0.186966 + 0.982366i \(0.559865\pi\)
\(212\) 7.50000 + 4.33013i 0.515102 + 0.297394i
\(213\) 10.3923i 0.712069i
\(214\) −4.50000 2.59808i −0.307614 0.177601i
\(215\) −24.0000 13.8564i −1.63679 0.944999i
\(216\) 5.19615i 0.353553i
\(217\) 2.00000 + 10.3923i 0.135769 + 0.705476i
\(218\) 3.00000 1.73205i 0.203186 0.117309i
\(219\) −6.00000 + 3.46410i −0.405442 + 0.234082i
\(220\) 10.3923i 0.700649i
\(221\) −7.50000 + 7.79423i −0.504505 + 0.524297i
\(222\) 12.0000 0.805387
\(223\) 8.00000 + 13.8564i 0.535720 + 0.927894i 0.999128 + 0.0417488i \(0.0132929\pi\)
−0.463409 + 0.886145i \(0.653374\pi\)
\(224\) 2.50000 + 0.866025i 0.167038 + 0.0578638i
\(225\) −10.5000 + 18.1865i −0.700000 + 1.21244i
\(226\) 13.8564i 0.921714i
\(227\) −9.00000 5.19615i −0.597351 0.344881i 0.170648 0.985332i \(-0.445414\pi\)
−0.767999 + 0.640451i \(0.778747\pi\)
\(228\) −10.5000 6.06218i −0.695379 0.401478i
\(229\) 13.0000 0.859064 0.429532 0.903052i \(-0.358679\pi\)
0.429532 + 0.903052i \(0.358679\pi\)
\(230\) 12.0000 20.7846i 0.791257 1.37050i
\(231\) −4.50000 + 12.9904i −0.296078 + 0.854704i
\(232\) 1.50000 0.866025i 0.0984798 0.0568574i
\(233\) 6.92820i 0.453882i −0.973909 0.226941i \(-0.927128\pi\)
0.973909 0.226941i \(-0.0728724\pi\)
\(234\) −10.5000 2.59808i −0.686406 0.169842i
\(235\) 30.0000 1.95698
\(236\) 9.00000 5.19615i 0.585850 0.338241i
\(237\) 16.5000 9.52628i 1.07179 0.618798i
\(238\) 1.50000 + 7.79423i 0.0972306 + 0.505225i
\(239\) 12.0000 0.776215 0.388108 0.921614i \(-0.373129\pi\)
0.388108 + 0.921614i \(0.373129\pi\)
\(240\) 3.00000 5.19615i 0.193649 0.335410i
\(241\) −5.00000 + 8.66025i −0.322078 + 0.557856i −0.980917 0.194429i \(-0.937715\pi\)
0.658838 + 0.752285i \(0.271048\pi\)
\(242\) 2.00000 0.128565
\(243\) 13.5000 + 7.79423i 0.866025 + 0.500000i
\(244\) 4.50000 2.59808i 0.288083 0.166325i
\(245\) 9.00000 + 22.5167i 0.574989 + 1.43854i
\(246\) −9.00000 −0.573819
\(247\) −17.5000 + 18.1865i −1.11350 + 1.15718i
\(248\) −4.00000 −0.254000
\(249\) −12.0000 20.7846i −0.760469 1.31717i
\(250\) −6.00000 + 3.46410i −0.379473 + 0.219089i
\(251\) 15.0000 25.9808i 0.946792 1.63989i 0.194668 0.980869i \(-0.437637\pi\)
0.752124 0.659022i \(-0.229030\pi\)
\(252\) −6.00000 + 5.19615i −0.377964 + 0.327327i
\(253\) −18.0000 10.3923i −1.13165 0.653359i
\(254\) −4.00000 + 6.92820i −0.250982 + 0.434714i
\(255\) 18.0000 1.12720
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −13.5000 23.3827i −0.842107 1.45857i −0.888110 0.459631i \(-0.847982\pi\)
0.0460033 0.998941i \(-0.485352\pi\)
\(258\) −12.0000 + 6.92820i −0.747087 + 0.431331i
\(259\) −12.0000 13.8564i −0.745644 0.860995i
\(260\) −9.00000 8.66025i −0.558156 0.537086i
\(261\) 5.19615i 0.321634i
\(262\) −3.00000 5.19615i −0.185341 0.321019i
\(263\) 21.0000 12.1244i 1.29492 0.747620i 0.315394 0.948961i \(-0.397863\pi\)
0.979521 + 0.201341i \(0.0645299\pi\)
\(264\) −4.50000 2.59808i −0.276956 0.159901i
\(265\) −30.0000 −1.84289
\(266\) 3.50000 + 18.1865i 0.214599 + 1.11509i
\(267\) −7.50000 + 12.9904i −0.458993 + 0.794998i
\(268\) 0 0
\(269\) 12.0000 20.7846i 0.731653 1.26726i −0.224523 0.974469i \(-0.572083\pi\)
0.956176 0.292791i \(-0.0945841\pi\)
\(270\) 9.00000 + 15.5885i 0.547723 + 0.948683i
\(271\) −4.00000 6.92820i −0.242983 0.420858i 0.718580 0.695444i \(-0.244792\pi\)
−0.961563 + 0.274586i \(0.911459\pi\)
\(272\) −3.00000 −0.181902
\(273\) 7.50000 + 14.7224i 0.453921 + 0.891042i
\(274\) 12.0000 0.724947
\(275\) 10.5000 + 18.1865i 0.633174 + 1.09669i
\(276\) −6.00000 10.3923i −0.361158 0.625543i
\(277\) 8.00000 13.8564i 0.480673 0.832551i −0.519081 0.854725i \(-0.673726\pi\)
0.999754 + 0.0221745i \(0.00705893\pi\)
\(278\) 5.19615i 0.311645i
\(279\) 6.00000 10.3923i 0.359211 0.622171i
\(280\) −9.00000 + 1.73205i −0.537853 + 0.103510i
\(281\) 12.0000 0.715860 0.357930 0.933748i \(-0.383483\pi\)
0.357930 + 0.933748i \(0.383483\pi\)
\(282\) 7.50000 12.9904i 0.446619 0.773566i
\(283\) −3.00000 + 1.73205i −0.178331 + 0.102960i −0.586509 0.809943i \(-0.699498\pi\)
0.408177 + 0.912903i \(0.366165\pi\)
\(284\) 3.00000 + 5.19615i 0.178017 + 0.308335i
\(285\) 42.0000 2.48787
\(286\) −7.50000 + 7.79423i −0.443484 + 0.460882i
\(287\) 9.00000 + 10.3923i 0.531253 + 0.613438i
\(288\) −1.50000 2.59808i −0.0883883 0.153093i
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) −3.00000 + 5.19615i −0.176166 + 0.305129i
\(291\) 3.46410i 0.203069i
\(292\) −2.00000 + 3.46410i −0.117041 + 0.202721i
\(293\) 6.00000 + 3.46410i 0.350524 + 0.202375i 0.664916 0.746918i \(-0.268467\pi\)
−0.314392 + 0.949293i \(0.601801\pi\)
\(294\) 12.0000 + 1.73205i 0.699854 + 0.101015i
\(295\) −18.0000 + 31.1769i −1.04800 + 1.81519i
\(296\) 6.00000 3.46410i 0.348743 0.201347i
\(297\) 13.5000 7.79423i 0.783349 0.452267i
\(298\) −6.00000 −0.347571
\(299\) −24.0000 + 6.92820i −1.38796 + 0.400668i
\(300\) 12.1244i 0.700000i
\(301\) 20.0000 + 6.92820i 1.15278 + 0.399335i
\(302\) −7.50000 + 4.33013i −0.431577 + 0.249171i
\(303\) 0 0
\(304\) −7.00000 −0.401478
\(305\) −9.00000 + 15.5885i −0.515339 + 0.892592i
\(306\) 4.50000 7.79423i 0.257248 0.445566i
\(307\) 7.00000 0.399511 0.199756 0.979846i \(-0.435985\pi\)
0.199756 + 0.979846i \(0.435985\pi\)
\(308\) 1.50000 + 7.79423i 0.0854704 + 0.444117i
\(309\) −3.00000 5.19615i −0.170664 0.295599i
\(310\) 12.0000 6.92820i 0.681554 0.393496i
\(311\) 3.00000 0.170114 0.0850572 0.996376i \(-0.472893\pi\)
0.0850572 + 0.996376i \(0.472893\pi\)
\(312\) −6.00000 + 1.73205i −0.339683 + 0.0980581i
\(313\) 20.7846i 1.17482i −0.809291 0.587408i \(-0.800148\pi\)
0.809291 0.587408i \(-0.199852\pi\)
\(314\) −12.0000 + 6.92820i −0.677199 + 0.390981i
\(315\) 9.00000 25.9808i 0.507093 1.46385i
\(316\) 5.50000 9.52628i 0.309399 0.535895i
\(317\) 18.0000 1.01098 0.505490 0.862832i \(-0.331312\pi\)
0.505490 + 0.862832i \(0.331312\pi\)
\(318\) −7.50000 + 12.9904i −0.420579 + 0.728464i
\(319\) 4.50000 + 2.59808i 0.251952 + 0.145464i
\(320\) 3.46410i 0.193649i
\(321\) 4.50000 7.79423i 0.251166 0.435031i
\(322\) −6.00000 + 17.3205i −0.334367 + 0.965234i
\(323\) −10.5000 18.1865i −0.584236 1.01193i
\(324\) 9.00000 0.500000
\(325\) 24.5000 + 6.06218i 1.35902 + 0.336269i
\(326\) 24.2487i 1.34301i
\(327\) 3.00000 + 5.19615i 0.165900 + 0.287348i
\(328\) −4.50000 + 2.59808i −0.248471 + 0.143455i
\(329\) −22.5000 + 4.33013i −1.24047 + 0.238728i
\(330\) 18.0000 0.990867
\(331\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(332\) −12.0000 6.92820i −0.658586 0.380235i
\(333\) 20.7846i 1.13899i
\(334\) 15.0000 + 8.66025i 0.820763 + 0.473868i
\(335\) 0 0
\(336\) −1.50000 + 4.33013i −0.0818317 + 0.236228i
\(337\) −19.0000 −1.03500 −0.517498 0.855684i \(-0.673136\pi\)
−0.517498 + 0.855684i \(0.673136\pi\)
\(338\) 0.500000 + 12.9904i 0.0271964 + 0.706584i
\(339\) 24.0000 1.30350
\(340\) 9.00000 5.19615i 0.488094 0.281801i
\(341\) −6.00000 10.3923i −0.324918 0.562775i
\(342\) 10.5000 18.1865i 0.567775 0.983415i
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) −4.00000 + 6.92820i −0.215666 + 0.373544i
\(345\) 36.0000 + 20.7846i 1.93817 + 1.11901i
\(346\) 0 0
\(347\) 13.5000 + 7.79423i 0.724718 + 0.418416i 0.816487 0.577364i \(-0.195919\pi\)
−0.0917687 + 0.995780i \(0.529252\pi\)
\(348\) 1.50000 + 2.59808i 0.0804084 + 0.139272i
\(349\) 1.00000 + 1.73205i 0.0535288 + 0.0927146i 0.891548 0.452926i \(-0.149620\pi\)
−0.838019 + 0.545640i \(0.816286\pi\)
\(350\) 14.0000 12.1244i 0.748331 0.648074i
\(351\) 4.50000 18.1865i 0.240192 0.970725i
\(352\) −3.00000 −0.159901
\(353\) −18.0000 + 10.3923i −0.958043 + 0.553127i −0.895570 0.444920i \(-0.853232\pi\)
−0.0624731 + 0.998047i \(0.519899\pi\)
\(354\) 9.00000 + 15.5885i 0.478345 + 0.828517i
\(355\) −18.0000 10.3923i −0.955341 0.551566i
\(356\) 8.66025i 0.458993i
\(357\) −13.5000 + 2.59808i −0.714496 + 0.137505i
\(358\) −21.0000 12.1244i −1.10988 0.640792i
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) 9.00000 + 5.19615i 0.474342 + 0.273861i
\(361\) −15.0000 25.9808i −0.789474 1.36741i
\(362\) 1.50000 0.866025i 0.0788382 0.0455173i
\(363\) 3.46410i 0.181818i
\(364\) 8.00000 + 5.19615i 0.419314 + 0.272352i
\(365\) 13.8564i 0.725277i
\(366\) 4.50000 + 7.79423i 0.235219 + 0.407411i
\(367\) 18.0000 10.3923i 0.939592 0.542474i 0.0497598 0.998761i \(-0.484154\pi\)
0.889833 + 0.456287i \(0.150821\pi\)
\(368\) −6.00000 3.46410i −0.312772 0.180579i
\(369\) 15.5885i 0.811503i
\(370\) −12.0000 + 20.7846i −0.623850 + 1.08054i
\(371\) 22.5000 4.33013i 1.16814 0.224809i
\(372\) 6.92820i 0.359211i
\(373\) 10.0000 17.3205i 0.517780 0.896822i −0.482006 0.876168i \(-0.660092\pi\)
0.999787 0.0206542i \(-0.00657489\pi\)
\(374\) −4.50000 7.79423i −0.232689 0.403030i
\(375\) −6.00000 10.3923i −0.309839 0.536656i
\(376\) 8.66025i 0.446619i
\(377\) 6.00000 1.73205i 0.309016 0.0892052i
\(378\) −9.00000 10.3923i −0.462910 0.534522i
\(379\) −9.00000 + 5.19615i −0.462299 + 0.266908i −0.713010 0.701153i \(-0.752669\pi\)
0.250711 + 0.968062i \(0.419335\pi\)
\(380\) 21.0000 12.1244i 1.07728 0.621966i
\(381\) −12.0000 6.92820i −0.614779 0.354943i
\(382\) 0 0
\(383\) 4.50000 + 2.59808i 0.229939 + 0.132755i 0.610544 0.791982i \(-0.290951\pi\)
−0.380605 + 0.924738i \(0.624284\pi\)
\(384\) −1.50000 0.866025i −0.0765466 0.0441942i
\(385\) −18.0000 20.7846i −0.917365 1.05928i
\(386\) −10.5000 6.06218i −0.534436 0.308557i
\(387\) −12.0000 20.7846i −0.609994 1.05654i
\(388\) −1.00000 1.73205i −0.0507673 0.0879316i
\(389\) 20.7846i 1.05382i −0.849921 0.526911i \(-0.823350\pi\)
0.849921 0.526911i \(-0.176650\pi\)
\(390\) 15.0000 15.5885i 0.759555 0.789352i
\(391\) 20.7846i 1.05112i
\(392\) 6.50000 2.59808i 0.328300 0.131223i
\(393\) 9.00000 5.19615i 0.453990 0.262111i
\(394\) −13.5000 + 23.3827i −0.680120 + 1.17800i
\(395\) 38.1051i 1.91728i
\(396\) 4.50000 7.79423i 0.226134 0.391675i
\(397\) 3.50000 6.06218i 0.175660 0.304252i −0.764730 0.644351i \(-0.777127\pi\)
0.940389 + 0.340099i \(0.110461\pi\)
\(398\) 10.3923i 0.520919i
\(399\) −31.5000 + 6.06218i −1.57697 + 0.303488i
\(400\) 3.50000 + 6.06218i 0.175000 + 0.303109i
\(401\) −9.00000 15.5885i −0.449439 0.778450i 0.548911 0.835881i \(-0.315043\pi\)
−0.998350 + 0.0574304i \(0.981709\pi\)
\(402\) 0 0
\(403\) −14.0000 3.46410i −0.697390 0.172559i
\(404\) 0 0
\(405\) −27.0000 + 15.5885i −1.34164 + 0.774597i
\(406\) 1.50000 4.33013i 0.0744438 0.214901i
\(407\) 18.0000 + 10.3923i 0.892227 + 0.515127i
\(408\) 5.19615i 0.257248i
\(409\) 2.00000 3.46410i 0.0988936 0.171289i −0.812333 0.583193i \(-0.801803\pi\)
0.911227 + 0.411905i \(0.135136\pi\)
\(410\) 9.00000 15.5885i 0.444478 0.769859i
\(411\) 20.7846i 1.02523i
\(412\) −3.00000 1.73205i −0.147799 0.0853320i
\(413\) 9.00000 25.9808i 0.442861 1.27843i
\(414\) 18.0000 10.3923i 0.884652 0.510754i
\(415\) 48.0000 2.35623
\(416\) −2.50000 + 2.59808i −0.122573 + 0.127381i
\(417\) −9.00000 −0.440732
\(418\) −10.5000 18.1865i −0.513572 0.889532i
\(419\) 6.00000 + 10.3923i 0.293119 + 0.507697i 0.974546 0.224189i \(-0.0719734\pi\)
−0.681426 + 0.731887i \(0.738640\pi\)
\(420\) −3.00000 15.5885i −0.146385 0.760639i
\(421\) 24.2487i 1.18181i 0.806741 + 0.590905i \(0.201229\pi\)
−0.806741 + 0.590905i \(0.798771\pi\)
\(422\) −11.0000 + 19.0526i −0.535472 + 0.927464i
\(423\) 22.5000 + 12.9904i 1.09399 + 0.631614i
\(424\) 8.66025i 0.420579i
\(425\) −10.5000 + 18.1865i −0.509325 + 0.882176i
\(426\) −9.00000 + 5.19615i −0.436051 + 0.251754i
\(427\) 4.50000 12.9904i 0.217770 0.628649i
\(428\) 5.19615i 0.251166i
\(429\) −13.5000 12.9904i −0.651786 0.627182i
\(430\) 27.7128i 1.33643i
\(431\) 9.00000 + 15.5885i 0.433515 + 0.750870i 0.997173 0.0751385i \(-0.0239399\pi\)
−0.563658 + 0.826008i \(0.690607\pi\)
\(432\) 4.50000 2.59808i 0.216506 0.125000i
\(433\) 15.0000 + 8.66025i 0.720854 + 0.416185i 0.815067 0.579367i \(-0.196700\pi\)
−0.0942129 + 0.995552i \(0.530033\pi\)
\(434\) −8.00000 + 6.92820i −0.384012 + 0.332564i
\(435\) −9.00000 5.19615i −0.431517 0.249136i
\(436\) 3.00000 + 1.73205i 0.143674 + 0.0829502i
\(437\) 48.4974i 2.31995i
\(438\) −6.00000 3.46410i −0.286691 0.165521i
\(439\) 3.00000 1.73205i 0.143182 0.0826663i −0.426698 0.904394i \(-0.640323\pi\)
0.569880 + 0.821728i \(0.306990\pi\)
\(440\) 9.00000 5.19615i 0.429058 0.247717i
\(441\) −3.00000 + 20.7846i −0.142857 + 0.989743i
\(442\) −10.5000 2.59808i −0.499434 0.123578i
\(443\) 29.4449i 1.39897i 0.714648 + 0.699484i \(0.246587\pi\)
−0.714648 + 0.699484i \(0.753413\pi\)
\(444\) 6.00000 + 10.3923i 0.284747 + 0.493197i
\(445\) −15.0000 25.9808i −0.711068 1.23161i
\(446\) −8.00000 + 13.8564i −0.378811 + 0.656120i
\(447\) 10.3923i 0.491539i
\(448\) 0.500000 + 2.59808i 0.0236228 + 0.122748i
\(449\) −18.0000 + 31.1769i −0.849473 + 1.47133i 0.0322072 + 0.999481i \(0.489746\pi\)
−0.881680 + 0.471848i \(0.843587\pi\)
\(450\) −21.0000 −0.989949
\(451\) −13.5000 7.79423i −0.635690 0.367016i
\(452\) 12.0000 6.92820i 0.564433 0.325875i
\(453\) −7.50000 12.9904i −0.352381 0.610341i
\(454\) 10.3923i 0.487735i
\(455\) −33.0000 1.73205i −1.54706 0.0811998i
\(456\) 12.1244i 0.567775i
\(457\) −6.00000 + 3.46410i −0.280668 + 0.162044i −0.633726 0.773558i \(-0.718475\pi\)
0.353058 + 0.935602i \(0.385142\pi\)
\(458\) 6.50000 + 11.2583i 0.303725 + 0.526067i
\(459\) 13.5000 + 7.79423i 0.630126 + 0.363803i
\(460\) 24.0000 1.11901
\(461\) 27.0000 + 15.5885i 1.25752 + 0.726027i 0.972591 0.232523i \(-0.0746981\pi\)
0.284925 + 0.958550i \(0.408031\pi\)
\(462\) −13.5000 + 2.59808i −0.628077 + 0.120873i
\(463\) 36.3731i 1.69040i 0.534450 + 0.845200i \(0.320519\pi\)
−0.534450 + 0.845200i \(0.679481\pi\)
\(464\) 1.50000 + 0.866025i 0.0696358 + 0.0402042i
\(465\) 12.0000 + 20.7846i 0.556487 + 0.963863i
\(466\) 6.00000 3.46410i 0.277945 0.160471i
\(467\) −6.00000 −0.277647 −0.138823 0.990317i \(-0.544332\pi\)
−0.138823 + 0.990317i \(0.544332\pi\)
\(468\) −3.00000 10.3923i −0.138675 0.480384i
\(469\) 0 0
\(470\) 15.0000 + 25.9808i 0.691898 + 1.19840i
\(471\) −12.0000 20.7846i −0.552931 0.957704i
\(472\) 9.00000 + 5.19615i 0.414259 + 0.239172i
\(473\) −24.0000 −1.10352
\(474\) 16.5000 + 9.52628i 0.757870 + 0.437557i
\(475\) −24.5000 + 42.4352i −1.12414 + 1.94706i
\(476\) −6.00000 + 5.19615i −0.275010 + 0.238165i
\(477\) −22.5000 12.9904i −1.03020 0.594789i
\(478\) 6.00000 + 10.3923i 0.274434 + 0.475333i
\(479\) −28.5000 + 16.4545i −1.30220 + 0.751825i −0.980781 0.195113i \(-0.937493\pi\)
−0.321417 + 0.946938i \(0.604159\pi\)
\(480\) 6.00000 0.273861
\(481\) 24.0000 6.92820i 1.09431 0.315899i
\(482\) −10.0000 −0.455488
\(483\) −30.0000 10.3923i −1.36505 0.472866i
\(484\) 1.00000 + 1.73205i 0.0454545 + 0.0787296i
\(485\) 6.00000 + 3.46410i 0.272446 + 0.157297i
\(486\) 15.5885i 0.707107i
\(487\) 7.50000 + 4.33013i 0.339857 + 0.196217i 0.660209 0.751082i \(-0.270468\pi\)
−0.320352 + 0.947299i \(0.603801\pi\)
\(488\) 4.50000 + 2.59808i 0.203705 + 0.117609i
\(489\) −42.0000 −1.89931
\(490\) −15.0000 + 19.0526i −0.677631 + 0.860707i
\(491\) 9.00000 5.19615i 0.406164 0.234499i −0.282976 0.959127i \(-0.591322\pi\)
0.689140 + 0.724628i \(0.257988\pi\)
\(492\) −4.50000 7.79423i −0.202876 0.351391i
\(493\) 5.19615i 0.234023i
\(494\) −24.5000 6.06218i −1.10231 0.272750i
\(495\) 31.1769i 1.40130i
\(496\) −2.00000 3.46410i −0.0898027 0.155543i
\(497\) 15.0000 + 5.19615i 0.672842 + 0.233079i
\(498\) 12.0000 20.7846i 0.537733 0.931381i
\(499\) 41.5692i 1.86089i −0.366427 0.930447i \(-0.619419\pi\)
0.366427 0.930447i \(-0.380581\pi\)
\(500\) −6.00000 3.46410i −0.268328 0.154919i
\(501\) −15.0000 + 25.9808i −0.670151 + 1.16073i
\(502\) 30.0000 1.33897
\(503\) −6.00000 + 10.3923i −0.267527 + 0.463370i −0.968223 0.250090i \(-0.919540\pi\)
0.700696 + 0.713460i \(0.252873\pi\)
\(504\) −7.50000 2.59808i −0.334077 0.115728i
\(505\) 0 0
\(506\) 20.7846i 0.923989i
\(507\) −22.5000 + 0.866025i −0.999260 + 0.0384615i
\(508\) −8.00000 −0.354943
\(509\) −24.0000 + 13.8564i −1.06378 + 0.614174i −0.926476 0.376354i \(-0.877178\pi\)
−0.137305 + 0.990529i \(0.543844\pi\)
\(510\) 9.00000 + 15.5885i 0.398527 + 0.690268i
\(511\) 2.00000 + 10.3923i 0.0884748 + 0.459728i
\(512\) −1.00000 −0.0441942
\(513\) 31.5000 + 18.1865i 1.39076 + 0.802955i
\(514\) 13.5000 23.3827i 0.595459 1.03137i
\(515\) 12.0000 0.528783
\(516\) −12.0000 6.92820i −0.528271 0.304997i
\(517\) 22.5000 12.9904i 0.989549 0.571316i
\(518\) 6.00000 17.3205i 0.263625 0.761019i
\(519\) 0 0
\(520\) 3.00000 12.1244i 0.131559 0.531688i
\(521\) 3.00000 0.131432 0.0657162 0.997838i \(-0.479067\pi\)
0.0657162 + 0.997838i \(0.479067\pi\)
\(522\) −4.50000 + 2.59808i −0.196960 + 0.113715i
\(523\) −28.5000 + 16.4545i −1.24622 + 0.719504i −0.970353 0.241692i \(-0.922298\pi\)
−0.275865 + 0.961196i \(0.588964\pi\)
\(524\) 3.00000 5.19615i 0.131056 0.226995i
\(525\) 21.0000 + 24.2487i 0.916515 + 1.05830i
\(526\) 21.0000 + 12.1244i 0.915644 + 0.528647i
\(527\) 6.00000 10.3923i 0.261364 0.452696i
\(528\) 5.19615i 0.226134i
\(529\) 12.5000 21.6506i 0.543478 0.941332i
\(530\) −15.0000 25.9808i −0.651558 1.12853i
\(531\) −27.0000 + 15.5885i −1.17170 + 0.676481i
\(532\) −14.0000 + 12.1244i −0.606977 + 0.525657i
\(533\) −18.0000 + 5.19615i −0.779667 + 0.225070i
\(534\) −15.0000 −0.649113
\(535\) 9.00000 + 15.5885i 0.389104 + 0.673948i
\(536\) 0 0
\(537\) 21.0000 36.3731i 0.906217 1.56961i
\(538\) 24.0000 1.03471
\(539\) 16.5000 + 12.9904i 0.710705 + 0.559535i
\(540\) −9.00000 + 15.5885i −0.387298 + 0.670820i
\(541\) 31.1769i 1.34040i 0.742180 + 0.670200i \(0.233792\pi\)
−0.742180 + 0.670200i \(0.766208\pi\)
\(542\) 4.00000 6.92820i 0.171815 0.297592i
\(543\) 1.50000 + 2.59808i 0.0643712 + 0.111494i
\(544\) −1.50000 2.59808i −0.0643120 0.111392i
\(545\) −12.0000 −0.514024
\(546\) −9.00000 + 13.8564i −0.385164 + 0.592999i
\(547\) 2.00000 0.0855138 0.0427569 0.999086i \(-0.486386\pi\)
0.0427569 + 0.999086i \(0.486386\pi\)
\(548\) 6.00000 + 10.3923i 0.256307 + 0.443937i
\(549\) −13.5000 + 7.79423i −0.576166 + 0.332650i
\(550\) −10.5000 + 18.1865i −0.447722 + 0.775476i
\(551\) 12.1244i 0.516515i
\(552\) 6.00000 10.3923i 0.255377 0.442326i
\(553\) −5.50000 28.5788i −0.233884 1.21530i
\(554\) 16.0000 0.679775
\(555\) −36.0000 20.7846i −1.52811 0.882258i
\(556\) −4.50000 + 2.59808i −0.190843 + 0.110183i
\(557\) −1.50000 2.59808i −0.0635570 0.110084i 0.832496 0.554031i \(-0.186911\pi\)
−0.896053 + 0.443947i \(0.853578\pi\)
\(558\) 12.0000 0.508001
\(559\) −20.0000 + 20.7846i −0.845910 + 0.879095i
\(560\) −6.00000 6.92820i −0.253546 0.292770i
\(561\) 13.5000 7.79423i 0.569970 0.329073i
\(562\) 6.00000 + 10.3923i 0.253095 + 0.438373i
\(563\) 12.0000 20.7846i 0.505740 0.875967i −0.494238 0.869326i \(-0.664553\pi\)
0.999978 0.00664037i \(-0.00211371\pi\)
\(564\) 15.0000 0.631614
\(565\) −24.0000 + 41.5692i −1.00969 + 1.74883i
\(566\) −3.00000 1.73205i −0.126099 0.0728035i
\(567\) 18.0000 15.5885i 0.755929 0.654654i
\(568\) −3.00000 + 5.19615i −0.125877 + 0.218026i
\(569\) −15.0000 + 8.66025i −0.628833 + 0.363057i −0.780300 0.625406i \(-0.784934\pi\)
0.151467 + 0.988462i \(0.451600\pi\)
\(570\) 21.0000 + 36.3731i 0.879593 + 1.52350i
\(571\) 40.0000 1.67395 0.836974 0.547243i \(-0.184323\pi\)
0.836974 + 0.547243i \(0.184323\pi\)
\(572\) −10.5000 2.59808i −0.439027 0.108631i
\(573\) 0 0
\(574\) −4.50000 + 12.9904i −0.187826 + 0.542208i
\(575\) −42.0000 + 24.2487i −1.75152 + 1.01124i
\(576\) 1.50000 2.59808i 0.0625000 0.108253i
\(577\) −10.0000 −0.416305 −0.208153 0.978096i \(-0.566745\pi\)
−0.208153 + 0.978096i \(0.566745\pi\)
\(578\) −4.00000 + 6.92820i −0.166378 + 0.288175i
\(579\) 10.5000 18.1865i 0.436365 0.755807i
\(580\) −6.00000 −0.249136
\(581\) −36.0000 + 6.92820i −1.49353 + 0.287430i
\(582\) 3.00000 1.73205i 0.124354 0.0717958i
\(583\) −22.5000 + 12.9904i −0.931855 + 0.538007i
\(584\) −4.00000 −0.165521
\(585\) 27.0000 + 25.9808i 1.11631 + 1.07417i
\(586\) 6.92820i 0.286201i
\(587\) 15.0000 8.66025i 0.619116 0.357447i −0.157409 0.987534i \(-0.550314\pi\)
0.776525 + 0.630087i \(0.216981\pi\)
\(588\) 4.50000 + 11.2583i 0.185577 + 0.464286i
\(589\) 14.0000 24.2487i 0.576860 0.999151i
\(590\) −36.0000 −1.48210
\(591\) −40.5000 23.3827i −1.66595 0.961835i
\(592\) 6.00000 + 3.46410i 0.246598 + 0.142374i
\(593\) 8.66025i 0.355634i 0.984064 + 0.177817i \(0.0569035\pi\)
−0.984064 + 0.177817i \(0.943096\pi\)
\(594\) 13.5000 + 7.79423i 0.553912 + 0.319801i
\(595\) 9.00000 25.9808i 0.368964 1.06511i
\(596\) −3.00000 5.19615i −0.122885 0.212843i
\(597\) −18.0000 −0.736691
\(598\) −18.0000 17.3205i −0.736075 0.708288i
\(599\) 3.46410i 0.141539i 0.997493 + 0.0707697i \(0.0225455\pi\)
−0.997493 + 0.0707697i \(0.977454\pi\)
\(600\) −10.5000 + 6.06218i −0.428661 + 0.247487i
\(601\) 27.0000 15.5885i 1.10135 0.635866i 0.164777 0.986331i \(-0.447310\pi\)
0.936576 + 0.350464i \(0.113976\pi\)
\(602\) 4.00000 + 20.7846i 0.163028 + 0.847117i
\(603\) 0 0
\(604\) −7.50000 4.33013i −0.305171 0.176190i
\(605\) −6.00000 3.46410i −0.243935 0.140836i
\(606\) 0 0
\(607\) 6.00000 + 3.46410i 0.243532 + 0.140604i 0.616799 0.787121i \(-0.288429\pi\)
−0.373267 + 0.927724i \(0.621762\pi\)
\(608\) −3.50000 6.06218i −0.141944 0.245854i
\(609\) 7.50000 + 2.59808i 0.303915 + 0.105279i
\(610\) −18.0000 −0.728799
\(611\) 7.50000 30.3109i 0.303418 1.22625i
\(612\) 9.00000 0.363803
\(613\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(614\) 3.50000 + 6.06218i 0.141249 + 0.244650i
\(615\) 27.0000 + 15.5885i 1.08875 + 0.628587i
\(616\) −6.00000 + 5.19615i −0.241747 + 0.209359i
\(617\) 3.00000 5.19615i 0.120775 0.209189i −0.799298 0.600935i \(-0.794795\pi\)
0.920074 + 0.391745i \(0.128129\pi\)
\(618\) 3.00000 5.19615i 0.120678 0.209020i
\(619\) −31.0000 −1.24600 −0.622998 0.782224i \(-0.714085\pi\)
−0.622998 + 0.782224i \(0.714085\pi\)
\(620\) 12.0000 + 6.92820i 0.481932 + 0.278243i
\(621\) 18.0000 + 31.1769i 0.722315 + 1.25109i
\(622\) 1.50000 + 2.59808i 0.0601445 + 0.104173i
\(623\) 15.0000 + 17.3205i 0.600962 + 0.693932i
\(624\) −4.50000 4.33013i −0.180144 0.173344i
\(625\) −11.0000 −0.440000
\(626\) 18.0000 10.3923i 0.719425 0.415360i
\(627\) 31.5000 18.1865i 1.25799 0.726300i
\(628\) −12.0000 6.92820i −0.478852 0.276465i
\(629\) 20.7846i 0.828737i
\(630\) 27.0000 5.19615i 1.07571 0.207020i
\(631\) −40.5000 23.3827i −1.61228 0.930850i −0.988841 0.148978i \(-0.952402\pi\)
−0.623439 0.781872i \(-0.714265\pi\)
\(632\) 11.0000 0.437557
\(633\) −33.0000 19.0526i −1.31163 0.757271i
\(634\) 9.00000 + 15.5885i 0.357436 + 0.619097i
\(635\) 24.0000 13.8564i 0.952411 0.549875i
\(636\) −15.0000 −0.594789
\(637\) 25.0000 3.46410i 0.990536 0.137253i
\(638\) 5.19615i 0.205718i
\(639\) −9.00000 15.5885i −0.356034 0.616670i
\(640\) 3.00000 1.73205i 0.118585 0.0684653i
\(641\) 3.00000 + 1.73205i 0.118493 + 0.0684119i 0.558075 0.829790i \(-0.311540\pi\)
−0.439582 + 0.898202i \(0.644873\pi\)
\(642\) 9.00000 0.355202
\(643\) 23.5000 40.7032i 0.926750 1.60518i 0.138027 0.990429i \(-0.455924\pi\)
0.788723 0.614749i \(-0.210743\pi\)
\(644\) −18.0000 + 3.46410i −0.709299 + 0.136505i
\(645\) 48.0000 1.89000
\(646\) 10.5000 18.1865i 0.413117 0.715540i
\(647\) −10.5000 18.1865i −0.412798 0.714986i 0.582397 0.812905i \(-0.302115\pi\)
−0.995194 + 0.0979182i \(0.968782\pi\)
\(648\) 4.50000 + 7.79423i 0.176777 + 0.306186i
\(649\) 31.1769i 1.22380i
\(650\) 7.00000 + 24.2487i 0.274563 + 0.951113i
\(651\) −12.0000 13.8564i −0.470317 0.543075i
\(652\) −21.0000 + 12.1244i −0.822423 + 0.474826i
\(653\) −4.50000 + 2.59808i −0.176099 + 0.101671i −0.585458 0.810702i \(-0.699085\pi\)
0.409360 + 0.912373i \(0.365752\pi\)
\(654\) −3.00000 + 5.19615i −0.117309 + 0.203186i
\(655\) 20.7846i 0.812122i
\(656\) −4.50000 2.59808i −0.175695 0.101438i
\(657\) 6.00000 10.3923i 0.234082 0.405442i
\(658\) −15.0000 17.3205i −0.584761 0.675224i
\(659\) −1.50000 0.866025i −0.0584317 0.0337356i 0.470500 0.882400i \(-0.344074\pi\)
−0.528931 + 0.848665i \(0.677407\pi\)
\(660\) 9.00000 + 15.5885i 0.350325 + 0.606780i
\(661\) 7.00000 + 12.1244i 0.272268 + 0.471583i 0.969442 0.245319i \(-0.0788928\pi\)
−0.697174 + 0.716902i \(0.745559\pi\)
\(662\) 0 0
\(663\) 4.50000 18.1865i 0.174766 0.706306i
\(664\) 13.8564i 0.537733i
\(665\) 21.0000 60.6218i 0.814345 2.35081i
\(666\) −18.0000 + 10.3923i −0.697486 + 0.402694i
\(667\) −6.00000 + 10.3923i −0.232321 + 0.402392i
\(668\) 17.3205i 0.670151i
\(669\) −24.0000 13.8564i −0.927894 0.535720i
\(670\) 0 0
\(671\) 15.5885i 0.601786i
\(672\) −4.50000 + 0.866025i −0.173591 + 0.0334077i
\(673\) 14.5000 + 25.1147i 0.558934 + 0.968102i 0.997586 + 0.0694449i \(0.0221228\pi\)
−0.438652 + 0.898657i \(0.644544\pi\)
\(674\) −9.50000 16.4545i −0.365926 0.633803i
\(675\) 36.3731i 1.40000i
\(676\) −11.0000 + 6.92820i −0.423077 + 0.266469i
\(677\) −6.00000 −0.230599 −0.115299 0.993331i \(-0.536783\pi\)
−0.115299 + 0.993331i \(0.536783\pi\)
\(678\) 12.0000 + 20.7846i 0.460857 + 0.798228i
\(679\) −5.00000 1.73205i −0.191882 0.0664700i
\(680\) 9.00000 + 5.19615i 0.345134 + 0.199263i
\(681\) 18.0000 0.689761
\(682\) 6.00000 10.3923i 0.229752 0.397942i
\(683\) 6.00000 10.3923i 0.229584 0.397650i −0.728101 0.685470i \(-0.759597\pi\)
0.957685 + 0.287819i \(0.0929302\pi\)
\(684\) 21.0000 0.802955
\(685\) −36.0000 20.7846i −1.37549 0.794139i
\(686\) 8.50000 16.4545i 0.324532 0.628235i
\(687\) −19.5000 + 11.2583i −0.743971 + 0.429532i
\(688\) −8.00000 −0.304997
\(689\) −7.50000 + 30.3109i −0.285727 + 1.15475i
\(690\) 41.5692i 1.58251i
\(691\) −4.00000 6.92820i −0.152167 0.263561i 0.779857 0.625958i \(-0.215292\pi\)
−0.932024 + 0.362397i \(0.881959\pi\)
\(692\) 0 0
\(693\) −4.50000 23.3827i −0.170941 0.888235i
\(694\) 15.5885i 0.591730i
\(695\) 9.00000 15.5885i 0.341389 0.591304i
\(696\) −1.50000 + 2.59808i −0.0568574 + 0.0984798i
\(697\) 15.5885i 0.590455i
\(698\) −1.00000 + 1.73205i −0.0378506 + 0.0655591i
\(699\) 6.00000 + 10.3923i 0.226941 + 0.393073i
\(700\) 17.5000 + 6.06218i 0.661438 + 0.229129i
\(701\) 12.1244i 0.457931i −0.973435 0.228965i \(-0.926466\pi\)
0.973435 0.228965i \(-0.0735342\pi\)
\(702\) 18.0000 5.19615i 0.679366 0.196116i
\(703\) 48.4974i 1.82911i
\(704\) −1.50000 2.59808i −0.0565334 0.0979187i
\(705\) −45.0000 + 25.9808i −1.69480 + 0.978492i
\(706\) −18.0000 10.3923i −0.677439 0.391120i
\(707\) 0 0
\(708\) −9.00000 + 15.5885i −0.338241 + 0.585850i
\(709\) 21.0000 + 12.1244i 0.788672 + 0.455340i 0.839495 0.543368i \(-0.182851\pi\)
−0.0508231 + 0.998708i \(0.516184\pi\)
\(710\) 20.7846i 0.780033i
\(711\) −16.5000 + 28.5788i −0.618798 + 1.07179i
\(712\) −7.50000 + 4.33013i −0.281074 + 0.162278i
\(713\) 24.0000 13.8564i 0.898807 0.518927i
\(714\) −9.00000 10.3923i −0.336817 0.388922i
\(715\) 36.0000 10.3923i 1.34632 0.388650i
\(716\) 24.2487i 0.906217i
\(717\) −18.0000 + 10.3923i −0.672222 + 0.388108i
\(718\) −12.0000 20.7846i −0.447836 0.775675i
\(719\) −10.5000 + 18.1865i −0.391584 + 0.678243i −0.992659 0.120950i \(-0.961406\pi\)
0.601075 + 0.799193i \(0.294739\pi\)
\(720\) 10.3923i 0.387298i
\(721\) −9.00000 + 1.73205i −0.335178 + 0.0645049i
\(722\) 15.0000 25.9808i 0.558242 0.966904i
\(723\) 17.3205i 0.644157i
\(724\) 1.50000 + 0.866025i 0.0557471 + 0.0321856i
\(725\) 10.5000 6.06218i 0.389960 0.225144i
\(726\) −3.00000 + 1.73205i −0.111340 + 0.0642824i
\(727\) 34.6410i 1.28476i 0.766385 + 0.642382i \(0.222054\pi\)
−0.766385 + 0.642382i \(0.777946\pi\)
\(728\) −0.500000 + 9.52628i −0.0185312 + 0.353067i
\(729\) −27.0000 −1.00000
\(730\) 12.0000 6.92820i 0.444140 0.256424i
\(731\) −12.0000 20.7846i −0.443836 0.768747i
\(732\) −4.50000 + 7.79423i −0.166325 + 0.288083i
\(733\) 13.0000 0.480166 0.240083 0.970752i \(-0.422825\pi\)
0.240083 + 0.970752i \(0.422825\pi\)
\(734\) 18.0000 + 10.3923i 0.664392 + 0.383587i
\(735\) −33.0000 25.9808i −1.21722 0.958315i
\(736\) 6.92820i 0.255377i
\(737\) 0 0
\(738\) 13.5000 7.79423i 0.496942 0.286910i
\(739\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(740\) −24.0000 −0.882258
\(741\) 10.5000 42.4352i 0.385727 1.55890i
\(742\) 15.0000 + 17.3205i 0.550667 + 0.635856i
\(743\) 3.00000 + 5.19615i 0.110059 + 0.190628i 0.915794 0.401648i \(-0.131563\pi\)
−0.805735 + 0.592277i \(0.798229\pi\)
\(744\) 6.00000 3.46410i 0.219971 0.127000i
\(745\) 18.0000 + 10.3923i 0.659469 + 0.380745i
\(746\) 20.0000 0.732252
\(747\) 36.0000 + 20.7846i 1.31717 + 0.760469i
\(748\) 4.50000 7.79423i 0.164536 0.284985i
\(749\) −9.00000 10.3923i −0.328853 0.379727i
\(750\) 6.00000 10.3923i 0.219089 0.379473i
\(751\) −15.5000 26.8468i −0.565603 0.979653i −0.996993 0.0774878i \(-0.975310\pi\)
0.431390 0.902165i \(-0.358023\pi\)
\(752\) 7.50000 4.33013i 0.273497 0.157903i
\(753\) 51.9615i 1.89358i
\(754\) 4.50000 + 4.33013i 0.163880 + 0.157694i
\(755\) 30.0000 1.09181
\(756\) 4.50000 12.9904i 0.163663 0.472456i
\(757\) −10.0000 17.3205i −0.363456 0.629525i 0.625071 0.780568i \(-0.285070\pi\)
−0.988527 + 0.151043i \(0.951737\pi\)
\(758\) −9.00000 5.19615i −0.326895 0.188733i
\(759\) 36.0000 1.30672
\(760\) 21.0000 + 12.1244i 0.761750 + 0.439797i
\(761\) −6.00000 3.46410i −0.217500 0.125574i 0.387292 0.921957i \(-0.373410\pi\)
−0.604792 + 0.796383i \(0.706744\pi\)
\(762\) 13.8564i 0.501965i
\(763\) 9.00000 1.73205i 0.325822 0.0627044i
\(764\) 0 0
\(765\) −27.0000 + 15.5885i −0.976187 + 0.563602i
\(766\) 5.19615i 0.187745i
\(767\) 27.0000 + 25.9808i 0.974913 + 0.938111i
\(768\) 1.73205i 0.0625000i
\(769\) −20.0000 34.6410i −0.721218 1.24919i −0.960512 0.278240i \(-0.910249\pi\)
0.239293 0.970947i \(-0.423084\pi\)
\(770\) 9.00000 25.9808i 0.324337 0.936282i
\(771\) 40.5000 + 23.3827i 1.45857 + 0.842107i
\(772\) 12.1244i 0.436365i
\(773\) −9.00000 5.19615i −0.323708 0.186893i 0.329336 0.944213i \(-0.393175\pi\)
−0.653044 + 0.757320i \(0.726508\pi\)
\(774\) 12.0000 20.7846i