# Properties

 Label 546.2.q.c.251.1 Level $546$ Weight $2$ Character 546.251 Analytic conductor $4.360$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$546 = 2 \cdot 3 \cdot 7 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 546.q (of order $$6$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$4.35983195036$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ Defining polynomial: $$x^{2} - x + 1$$ Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

## Embedding invariants

 Embedding label 251.1 Root $$0.500000 + 0.866025i$$ of defining polynomial Character $$\chi$$ $$=$$ 546.251 Dual form 546.2.q.c.335.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.500000 - 0.866025i) q^{2} +(-1.50000 - 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +3.46410i q^{5} +(-1.50000 + 0.866025i) q^{6} +(0.500000 - 2.59808i) q^{7} -1.00000 q^{8} +(1.50000 + 2.59808i) q^{9} +O(q^{10})$$ $$q+(0.500000 - 0.866025i) q^{2} +(-1.50000 - 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +3.46410i q^{5} +(-1.50000 + 0.866025i) q^{6} +(0.500000 - 2.59808i) q^{7} -1.00000 q^{8} +(1.50000 + 2.59808i) q^{9} +(3.00000 + 1.73205i) q^{10} +(-1.50000 + 2.59808i) q^{11} +1.73205i q^{12} +(-3.50000 + 0.866025i) q^{13} +(-2.00000 - 1.73205i) q^{14} +(3.00000 - 5.19615i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(1.50000 + 2.59808i) q^{17} +3.00000 q^{18} +(3.50000 + 6.06218i) q^{19} +(3.00000 - 1.73205i) q^{20} +(-3.00000 + 3.46410i) q^{21} +(1.50000 + 2.59808i) q^{22} +(6.00000 + 3.46410i) q^{23} +(1.50000 + 0.866025i) q^{24} -7.00000 q^{25} +(-1.00000 + 3.46410i) q^{26} -5.19615i q^{27} +(-2.50000 + 0.866025i) q^{28} +(-1.50000 - 0.866025i) q^{29} +(-3.00000 - 5.19615i) q^{30} +4.00000 q^{31} +(0.500000 + 0.866025i) q^{32} +(4.50000 - 2.59808i) q^{33} +3.00000 q^{34} +(9.00000 + 1.73205i) q^{35} +(1.50000 - 2.59808i) q^{36} +(-6.00000 - 3.46410i) q^{37} +7.00000 q^{38} +(6.00000 + 1.73205i) q^{39} -3.46410i q^{40} +(4.50000 + 2.59808i) q^{41} +(1.50000 + 4.33013i) q^{42} +(4.00000 + 6.92820i) q^{43} +3.00000 q^{44} +(-9.00000 + 5.19615i) q^{45} +(6.00000 - 3.46410i) q^{46} -8.66025i q^{47} +(1.50000 - 0.866025i) q^{48} +(-6.50000 - 2.59808i) q^{49} +(-3.50000 + 6.06218i) q^{50} -5.19615i q^{51} +(2.50000 + 2.59808i) q^{52} +8.66025i q^{53} +(-4.50000 - 2.59808i) q^{54} +(-9.00000 - 5.19615i) q^{55} +(-0.500000 + 2.59808i) q^{56} -12.1244i q^{57} +(-1.50000 + 0.866025i) q^{58} +(-9.00000 + 5.19615i) q^{59} -6.00000 q^{60} +(-4.50000 + 2.59808i) q^{61} +(2.00000 - 3.46410i) q^{62} +(7.50000 - 2.59808i) q^{63} +1.00000 q^{64} +(-3.00000 - 12.1244i) q^{65} -5.19615i q^{66} +(1.50000 - 2.59808i) q^{68} +(-6.00000 - 10.3923i) q^{69} +(6.00000 - 6.92820i) q^{70} +(3.00000 + 5.19615i) q^{71} +(-1.50000 - 2.59808i) q^{72} +4.00000 q^{73} +(-6.00000 + 3.46410i) q^{74} +(10.5000 + 6.06218i) q^{75} +(3.50000 - 6.06218i) q^{76} +(6.00000 + 5.19615i) q^{77} +(4.50000 - 4.33013i) q^{78} -11.0000 q^{79} +(-3.00000 - 1.73205i) q^{80} +(-4.50000 + 7.79423i) q^{81} +(4.50000 - 2.59808i) q^{82} -13.8564i q^{83} +(4.50000 + 0.866025i) q^{84} +(-9.00000 + 5.19615i) q^{85} +8.00000 q^{86} +(1.50000 + 2.59808i) q^{87} +(1.50000 - 2.59808i) q^{88} +(7.50000 + 4.33013i) q^{89} +10.3923i q^{90} +(0.500000 + 9.52628i) q^{91} -6.92820i q^{92} +(-6.00000 - 3.46410i) q^{93} +(-7.50000 - 4.33013i) q^{94} +(-21.0000 + 12.1244i) q^{95} -1.73205i q^{96} +(-1.00000 - 1.73205i) q^{97} +(-5.50000 + 4.33013i) q^{98} -9.00000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2q + q^{2} - 3q^{3} - q^{4} - 3q^{6} + q^{7} - 2q^{8} + 3q^{9} + O(q^{10})$$ $$2q + q^{2} - 3q^{3} - q^{4} - 3q^{6} + q^{7} - 2q^{8} + 3q^{9} + 6q^{10} - 3q^{11} - 7q^{13} - 4q^{14} + 6q^{15} - q^{16} + 3q^{17} + 6q^{18} + 7q^{19} + 6q^{20} - 6q^{21} + 3q^{22} + 12q^{23} + 3q^{24} - 14q^{25} - 2q^{26} - 5q^{28} - 3q^{29} - 6q^{30} + 8q^{31} + q^{32} + 9q^{33} + 6q^{34} + 18q^{35} + 3q^{36} - 12q^{37} + 14q^{38} + 12q^{39} + 9q^{41} + 3q^{42} + 8q^{43} + 6q^{44} - 18q^{45} + 12q^{46} + 3q^{48} - 13q^{49} - 7q^{50} + 5q^{52} - 9q^{54} - 18q^{55} - q^{56} - 3q^{58} - 18q^{59} - 12q^{60} - 9q^{61} + 4q^{62} + 15q^{63} + 2q^{64} - 6q^{65} + 3q^{68} - 12q^{69} + 12q^{70} + 6q^{71} - 3q^{72} + 8q^{73} - 12q^{74} + 21q^{75} + 7q^{76} + 12q^{77} + 9q^{78} - 22q^{79} - 6q^{80} - 9q^{81} + 9q^{82} + 9q^{84} - 18q^{85} + 16q^{86} + 3q^{87} + 3q^{88} + 15q^{89} + q^{91} - 12q^{93} - 15q^{94} - 42q^{95} - 2q^{97} - 11q^{98} - 18q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/546\mathbb{Z}\right)^\times$$.

 $$n$$ $$157$$ $$365$$ $$379$$ $$\chi(n)$$ $$-1$$ $$-1$$ $$e\left(\frac{1}{6}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.500000 0.866025i 0.353553 0.612372i
$$3$$ −1.50000 0.866025i −0.866025 0.500000i
$$4$$ −0.500000 0.866025i −0.250000 0.433013i
$$5$$ 3.46410i 1.54919i 0.632456 + 0.774597i $$0.282047\pi$$
−0.632456 + 0.774597i $$0.717953\pi$$
$$6$$ −1.50000 + 0.866025i −0.612372 + 0.353553i
$$7$$ 0.500000 2.59808i 0.188982 0.981981i
$$8$$ −1.00000 −0.353553
$$9$$ 1.50000 + 2.59808i 0.500000 + 0.866025i
$$10$$ 3.00000 + 1.73205i 0.948683 + 0.547723i
$$11$$ −1.50000 + 2.59808i −0.452267 + 0.783349i −0.998526 0.0542666i $$-0.982718\pi$$
0.546259 + 0.837616i $$0.316051\pi$$
$$12$$ 1.73205i 0.500000i
$$13$$ −3.50000 + 0.866025i −0.970725 + 0.240192i
$$14$$ −2.00000 1.73205i −0.534522 0.462910i
$$15$$ 3.00000 5.19615i 0.774597 1.34164i
$$16$$ −0.500000 + 0.866025i −0.125000 + 0.216506i
$$17$$ 1.50000 + 2.59808i 0.363803 + 0.630126i 0.988583 0.150675i $$-0.0481447\pi$$
−0.624780 + 0.780801i $$0.714811\pi$$
$$18$$ 3.00000 0.707107
$$19$$ 3.50000 + 6.06218i 0.802955 + 1.39076i 0.917663 + 0.397360i $$0.130073\pi$$
−0.114708 + 0.993399i $$0.536593\pi$$
$$20$$ 3.00000 1.73205i 0.670820 0.387298i
$$21$$ −3.00000 + 3.46410i −0.654654 + 0.755929i
$$22$$ 1.50000 + 2.59808i 0.319801 + 0.553912i
$$23$$ 6.00000 + 3.46410i 1.25109 + 0.722315i 0.971325 0.237754i $$-0.0764114\pi$$
0.279761 + 0.960070i $$0.409745\pi$$
$$24$$ 1.50000 + 0.866025i 0.306186 + 0.176777i
$$25$$ −7.00000 −1.40000
$$26$$ −1.00000 + 3.46410i −0.196116 + 0.679366i
$$27$$ 5.19615i 1.00000i
$$28$$ −2.50000 + 0.866025i −0.472456 + 0.163663i
$$29$$ −1.50000 0.866025i −0.278543 0.160817i 0.354221 0.935162i $$-0.384746\pi$$
−0.632764 + 0.774345i $$0.718080\pi$$
$$30$$ −3.00000 5.19615i −0.547723 0.948683i
$$31$$ 4.00000 0.718421 0.359211 0.933257i $$-0.383046\pi$$
0.359211 + 0.933257i $$0.383046\pi$$
$$32$$ 0.500000 + 0.866025i 0.0883883 + 0.153093i
$$33$$ 4.50000 2.59808i 0.783349 0.452267i
$$34$$ 3.00000 0.514496
$$35$$ 9.00000 + 1.73205i 1.52128 + 0.292770i
$$36$$ 1.50000 2.59808i 0.250000 0.433013i
$$37$$ −6.00000 3.46410i −0.986394 0.569495i −0.0821995 0.996616i $$-0.526194\pi$$
−0.904194 + 0.427121i $$0.859528\pi$$
$$38$$ 7.00000 1.13555
$$39$$ 6.00000 + 1.73205i 0.960769 + 0.277350i
$$40$$ 3.46410i 0.547723i
$$41$$ 4.50000 + 2.59808i 0.702782 + 0.405751i 0.808383 0.588657i $$-0.200343\pi$$
−0.105601 + 0.994409i $$0.533677\pi$$
$$42$$ 1.50000 + 4.33013i 0.231455 + 0.668153i
$$43$$ 4.00000 + 6.92820i 0.609994 + 1.05654i 0.991241 + 0.132068i $$0.0421616\pi$$
−0.381246 + 0.924473i $$0.624505\pi$$
$$44$$ 3.00000 0.452267
$$45$$ −9.00000 + 5.19615i −1.34164 + 0.774597i
$$46$$ 6.00000 3.46410i 0.884652 0.510754i
$$47$$ 8.66025i 1.26323i −0.775283 0.631614i $$-0.782393\pi$$
0.775283 0.631614i $$-0.217607\pi$$
$$48$$ 1.50000 0.866025i 0.216506 0.125000i
$$49$$ −6.50000 2.59808i −0.928571 0.371154i
$$50$$ −3.50000 + 6.06218i −0.494975 + 0.857321i
$$51$$ 5.19615i 0.727607i
$$52$$ 2.50000 + 2.59808i 0.346688 + 0.360288i
$$53$$ 8.66025i 1.18958i 0.803882 + 0.594789i $$0.202764\pi$$
−0.803882 + 0.594789i $$0.797236\pi$$
$$54$$ −4.50000 2.59808i −0.612372 0.353553i
$$55$$ −9.00000 5.19615i −1.21356 0.700649i
$$56$$ −0.500000 + 2.59808i −0.0668153 + 0.347183i
$$57$$ 12.1244i 1.60591i
$$58$$ −1.50000 + 0.866025i −0.196960 + 0.113715i
$$59$$ −9.00000 + 5.19615i −1.17170 + 0.676481i −0.954080 0.299552i $$-0.903163\pi$$
−0.217620 + 0.976034i $$0.569829\pi$$
$$60$$ −6.00000 −0.774597
$$61$$ −4.50000 + 2.59808i −0.576166 + 0.332650i −0.759608 0.650381i $$-0.774609\pi$$
0.183442 + 0.983030i $$0.441276\pi$$
$$62$$ 2.00000 3.46410i 0.254000 0.439941i
$$63$$ 7.50000 2.59808i 0.944911 0.327327i
$$64$$ 1.00000 0.125000
$$65$$ −3.00000 12.1244i −0.372104 1.50384i
$$66$$ 5.19615i 0.639602i
$$67$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$68$$ 1.50000 2.59808i 0.181902 0.315063i
$$69$$ −6.00000 10.3923i −0.722315 1.25109i
$$70$$ 6.00000 6.92820i 0.717137 0.828079i
$$71$$ 3.00000 + 5.19615i 0.356034 + 0.616670i 0.987294 0.158901i $$-0.0507952\pi$$
−0.631260 + 0.775571i $$0.717462\pi$$
$$72$$ −1.50000 2.59808i −0.176777 0.306186i
$$73$$ 4.00000 0.468165 0.234082 0.972217i $$-0.424791\pi$$
0.234082 + 0.972217i $$0.424791\pi$$
$$74$$ −6.00000 + 3.46410i −0.697486 + 0.402694i
$$75$$ 10.5000 + 6.06218i 1.21244 + 0.700000i
$$76$$ 3.50000 6.06218i 0.401478 0.695379i
$$77$$ 6.00000 + 5.19615i 0.683763 + 0.592157i
$$78$$ 4.50000 4.33013i 0.509525 0.490290i
$$79$$ −11.0000 −1.23760 −0.618798 0.785550i $$-0.712380\pi$$
−0.618798 + 0.785550i $$0.712380\pi$$
$$80$$ −3.00000 1.73205i −0.335410 0.193649i
$$81$$ −4.50000 + 7.79423i −0.500000 + 0.866025i
$$82$$ 4.50000 2.59808i 0.496942 0.286910i
$$83$$ 13.8564i 1.52094i −0.649374 0.760469i $$-0.724969\pi$$
0.649374 0.760469i $$-0.275031\pi$$
$$84$$ 4.50000 + 0.866025i 0.490990 + 0.0944911i
$$85$$ −9.00000 + 5.19615i −0.976187 + 0.563602i
$$86$$ 8.00000 0.862662
$$87$$ 1.50000 + 2.59808i 0.160817 + 0.278543i
$$88$$ 1.50000 2.59808i 0.159901 0.276956i
$$89$$ 7.50000 + 4.33013i 0.794998 + 0.458993i 0.841719 0.539915i $$-0.181544\pi$$
−0.0467209 + 0.998908i $$0.514877\pi$$
$$90$$ 10.3923i 1.09545i
$$91$$ 0.500000 + 9.52628i 0.0524142 + 0.998625i
$$92$$ 6.92820i 0.722315i
$$93$$ −6.00000 3.46410i −0.622171 0.359211i
$$94$$ −7.50000 4.33013i −0.773566 0.446619i
$$95$$ −21.0000 + 12.1244i −2.15455 + 1.24393i
$$96$$ 1.73205i 0.176777i
$$97$$ −1.00000 1.73205i −0.101535 0.175863i 0.810782 0.585348i $$-0.199042\pi$$
−0.912317 + 0.409484i $$0.865709\pi$$
$$98$$ −5.50000 + 4.33013i −0.555584 + 0.437409i
$$99$$ −9.00000 −0.904534
$$100$$ 3.50000 + 6.06218i 0.350000 + 0.606218i
$$101$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$102$$ −4.50000 2.59808i −0.445566 0.257248i
$$103$$ 3.46410i 0.341328i −0.985329 0.170664i $$-0.945409\pi$$
0.985329 0.170664i $$-0.0545913\pi$$
$$104$$ 3.50000 0.866025i 0.343203 0.0849208i
$$105$$ −12.0000 10.3923i −1.17108 1.01419i
$$106$$ 7.50000 + 4.33013i 0.728464 + 0.420579i
$$107$$ −4.50000 2.59808i −0.435031 0.251166i 0.266456 0.963847i $$-0.414147\pi$$
−0.701488 + 0.712681i $$0.747481\pi$$
$$108$$ −4.50000 + 2.59808i −0.433013 + 0.250000i
$$109$$ 3.46410i 0.331801i 0.986143 + 0.165900i $$0.0530530\pi$$
−0.986143 + 0.165900i $$0.946947\pi$$
$$110$$ −9.00000 + 5.19615i −0.858116 + 0.495434i
$$111$$ 6.00000 + 10.3923i 0.569495 + 0.986394i
$$112$$ 2.00000 + 1.73205i 0.188982 + 0.163663i
$$113$$ −12.0000 + 6.92820i −1.12887 + 0.651751i −0.943649 0.330947i $$-0.892632\pi$$
−0.185216 + 0.982698i $$0.559298\pi$$
$$114$$ −10.5000 6.06218i −0.983415 0.567775i
$$115$$ −12.0000 + 20.7846i −1.11901 + 1.93817i
$$116$$ 1.73205i 0.160817i
$$117$$ −7.50000 7.79423i −0.693375 0.720577i
$$118$$ 10.3923i 0.956689i
$$119$$ 7.50000 2.59808i 0.687524 0.238165i
$$120$$ −3.00000 + 5.19615i −0.273861 + 0.474342i
$$121$$ 1.00000 + 1.73205i 0.0909091 + 0.157459i
$$122$$ 5.19615i 0.470438i
$$123$$ −4.50000 7.79423i −0.405751 0.702782i
$$124$$ −2.00000 3.46410i −0.179605 0.311086i
$$125$$ 6.92820i 0.619677i
$$126$$ 1.50000 7.79423i 0.133631 0.694365i
$$127$$ 4.00000 6.92820i 0.354943 0.614779i −0.632166 0.774833i $$-0.717834\pi$$
0.987108 + 0.160055i $$0.0511671\pi$$
$$128$$ 0.500000 0.866025i 0.0441942 0.0765466i
$$129$$ 13.8564i 1.21999i
$$130$$ −12.0000 3.46410i −1.05247 0.303822i
$$131$$ −6.00000 −0.524222 −0.262111 0.965038i $$-0.584419\pi$$
−0.262111 + 0.965038i $$0.584419\pi$$
$$132$$ −4.50000 2.59808i −0.391675 0.226134i
$$133$$ 17.5000 6.06218i 1.51744 0.525657i
$$134$$ 0 0
$$135$$ 18.0000 1.54919
$$136$$ −1.50000 2.59808i −0.128624 0.222783i
$$137$$ 6.00000 + 10.3923i 0.512615 + 0.887875i 0.999893 + 0.0146279i $$0.00465636\pi$$
−0.487278 + 0.873247i $$0.662010\pi$$
$$138$$ −12.0000 −1.02151
$$139$$ 4.50000 2.59808i 0.381685 0.220366i −0.296866 0.954919i $$-0.595942\pi$$
0.678551 + 0.734553i $$0.262608\pi$$
$$140$$ −3.00000 8.66025i −0.253546 0.731925i
$$141$$ −7.50000 + 12.9904i −0.631614 + 1.09399i
$$142$$ 6.00000 0.503509
$$143$$ 3.00000 10.3923i 0.250873 0.869048i
$$144$$ −3.00000 −0.250000
$$145$$ 3.00000 5.19615i 0.249136 0.431517i
$$146$$ 2.00000 3.46410i 0.165521 0.286691i
$$147$$ 7.50000 + 9.52628i 0.618590 + 0.785714i
$$148$$ 6.92820i 0.569495i
$$149$$ −3.00000 5.19615i −0.245770 0.425685i 0.716578 0.697507i $$-0.245707\pi$$
−0.962348 + 0.271821i $$0.912374\pi$$
$$150$$ 10.5000 6.06218i 0.857321 0.494975i
$$151$$ 8.66025i 0.704761i −0.935857 0.352381i $$-0.885372\pi$$
0.935857 0.352381i $$-0.114628\pi$$
$$152$$ −3.50000 6.06218i −0.283887 0.491708i
$$153$$ −4.50000 + 7.79423i −0.363803 + 0.630126i
$$154$$ 7.50000 2.59808i 0.604367 0.209359i
$$155$$ 13.8564i 1.11297i
$$156$$ −1.50000 6.06218i −0.120096 0.485363i
$$157$$ 13.8564i 1.10586i −0.833227 0.552931i $$-0.813509\pi$$
0.833227 0.552931i $$-0.186491\pi$$
$$158$$ −5.50000 + 9.52628i −0.437557 + 0.757870i
$$159$$ 7.50000 12.9904i 0.594789 1.03020i
$$160$$ −3.00000 + 1.73205i −0.237171 + 0.136931i
$$161$$ 12.0000 13.8564i 0.945732 1.09204i
$$162$$ 4.50000 + 7.79423i 0.353553 + 0.612372i
$$163$$ 21.0000 12.1244i 1.64485 0.949653i 0.665771 0.746156i $$-0.268103\pi$$
0.979076 0.203497i $$-0.0652307\pi$$
$$164$$ 5.19615i 0.405751i
$$165$$ 9.00000 + 15.5885i 0.700649 + 1.21356i
$$166$$ −12.0000 6.92820i −0.931381 0.537733i
$$167$$ 15.0000 + 8.66025i 1.16073 + 0.670151i 0.951480 0.307711i $$-0.0995628\pi$$
0.209255 + 0.977861i $$0.432896\pi$$
$$168$$ 3.00000 3.46410i 0.231455 0.267261i
$$169$$ 11.5000 6.06218i 0.884615 0.466321i
$$170$$ 10.3923i 0.797053i
$$171$$ −10.5000 + 18.1865i −0.802955 + 1.39076i
$$172$$ 4.00000 6.92820i 0.304997 0.528271i
$$173$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$174$$ 3.00000 0.227429
$$175$$ −3.50000 + 18.1865i −0.264575 + 1.37477i
$$176$$ −1.50000 2.59808i −0.113067 0.195837i
$$177$$ 18.0000 1.35296
$$178$$ 7.50000 4.33013i 0.562149 0.324557i
$$179$$ −21.0000 12.1244i −1.56961 0.906217i −0.996213 0.0869415i $$-0.972291\pi$$
−0.573400 0.819275i $$-0.694376\pi$$
$$180$$ 9.00000 + 5.19615i 0.670820 + 0.387298i
$$181$$ 1.73205i 0.128742i 0.997926 + 0.0643712i $$0.0205042\pi$$
−0.997926 + 0.0643712i $$0.979496\pi$$
$$182$$ 8.50000 + 4.33013i 0.630062 + 0.320970i
$$183$$ 9.00000 0.665299
$$184$$ −6.00000 3.46410i −0.442326 0.255377i
$$185$$ 12.0000 20.7846i 0.882258 1.52811i
$$186$$ −6.00000 + 3.46410i −0.439941 + 0.254000i
$$187$$ −9.00000 −0.658145
$$188$$ −7.50000 + 4.33013i −0.546994 + 0.315807i
$$189$$ −13.5000 2.59808i −0.981981 0.188982i
$$190$$ 24.2487i 1.75919i
$$191$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$192$$ −1.50000 0.866025i −0.108253 0.0625000i
$$193$$ −10.5000 6.06218i −0.755807 0.436365i 0.0719816 0.997406i $$-0.477068\pi$$
−0.827788 + 0.561041i $$0.810401\pi$$
$$194$$ −2.00000 −0.143592
$$195$$ −6.00000 + 20.7846i −0.429669 + 1.48842i
$$196$$ 1.00000 + 6.92820i 0.0714286 + 0.494872i
$$197$$ 13.5000 23.3827i 0.961835 1.66595i 0.243947 0.969788i $$-0.421558\pi$$
0.717888 0.696159i $$-0.245109\pi$$
$$198$$ −4.50000 + 7.79423i −0.319801 + 0.553912i
$$199$$ 9.00000 5.19615i 0.637993 0.368345i −0.145848 0.989307i $$-0.546591\pi$$
0.783841 + 0.620962i $$0.213258\pi$$
$$200$$ 7.00000 0.494975
$$201$$ 0 0
$$202$$ 0 0
$$203$$ −3.00000 + 3.46410i −0.210559 + 0.243132i
$$204$$ −4.50000 + 2.59808i −0.315063 + 0.181902i
$$205$$ −9.00000 + 15.5885i −0.628587 + 1.08875i
$$206$$ −3.00000 1.73205i −0.209020 0.120678i
$$207$$ 20.7846i 1.44463i
$$208$$ 1.00000 3.46410i 0.0693375 0.240192i
$$209$$ −21.0000 −1.45260
$$210$$ −15.0000 + 5.19615i −1.03510 + 0.358569i
$$211$$ 11.0000 19.0526i 0.757271 1.31163i −0.186966 0.982366i $$-0.559865\pi$$
0.944237 0.329266i $$-0.106801\pi$$
$$212$$ 7.50000 4.33013i 0.515102 0.297394i
$$213$$ 10.3923i 0.712069i
$$214$$ −4.50000 + 2.59808i −0.307614 + 0.177601i
$$215$$ −24.0000 + 13.8564i −1.63679 + 0.944999i
$$216$$ 5.19615i 0.353553i
$$217$$ 2.00000 10.3923i 0.135769 0.705476i
$$218$$ 3.00000 + 1.73205i 0.203186 + 0.117309i
$$219$$ −6.00000 3.46410i −0.405442 0.234082i
$$220$$ 10.3923i 0.700649i
$$221$$ −7.50000 7.79423i −0.504505 0.524297i
$$222$$ 12.0000 0.805387
$$223$$ 8.00000 13.8564i 0.535720 0.927894i −0.463409 0.886145i $$-0.653374\pi$$
0.999128 0.0417488i $$-0.0132929\pi$$
$$224$$ 2.50000 0.866025i 0.167038 0.0578638i
$$225$$ −10.5000 18.1865i −0.700000 1.21244i
$$226$$ 13.8564i 0.921714i
$$227$$ −9.00000 + 5.19615i −0.597351 + 0.344881i −0.767999 0.640451i $$-0.778747\pi$$
0.170648 + 0.985332i $$0.445414\pi$$
$$228$$ −10.5000 + 6.06218i −0.695379 + 0.401478i
$$229$$ 13.0000 0.859064 0.429532 0.903052i $$-0.358679\pi$$
0.429532 + 0.903052i $$0.358679\pi$$
$$230$$ 12.0000 + 20.7846i 0.791257 + 1.37050i
$$231$$ −4.50000 12.9904i −0.296078 0.854704i
$$232$$ 1.50000 + 0.866025i 0.0984798 + 0.0568574i
$$233$$ 6.92820i 0.453882i 0.973909 + 0.226941i $$0.0728724\pi$$
−0.973909 + 0.226941i $$0.927128\pi$$
$$234$$ −10.5000 + 2.59808i −0.686406 + 0.169842i
$$235$$ 30.0000 1.95698
$$236$$ 9.00000 + 5.19615i 0.585850 + 0.338241i
$$237$$ 16.5000 + 9.52628i 1.07179 + 0.618798i
$$238$$ 1.50000 7.79423i 0.0972306 0.505225i
$$239$$ 12.0000 0.776215 0.388108 0.921614i $$-0.373129\pi$$
0.388108 + 0.921614i $$0.373129\pi$$
$$240$$ 3.00000 + 5.19615i 0.193649 + 0.335410i
$$241$$ −5.00000 8.66025i −0.322078 0.557856i 0.658838 0.752285i $$-0.271048\pi$$
−0.980917 + 0.194429i $$0.937715\pi$$
$$242$$ 2.00000 0.128565
$$243$$ 13.5000 7.79423i 0.866025 0.500000i
$$244$$ 4.50000 + 2.59808i 0.288083 + 0.166325i
$$245$$ 9.00000 22.5167i 0.574989 1.43854i
$$246$$ −9.00000 −0.573819
$$247$$ −17.5000 18.1865i −1.11350 1.15718i
$$248$$ −4.00000 −0.254000
$$249$$ −12.0000 + 20.7846i −0.760469 + 1.31717i
$$250$$ −6.00000 3.46410i −0.379473 0.219089i
$$251$$ 15.0000 + 25.9808i 0.946792 + 1.63989i 0.752124 + 0.659022i $$0.229030\pi$$
0.194668 + 0.980869i $$0.437637\pi$$
$$252$$ −6.00000 5.19615i −0.377964 0.327327i
$$253$$ −18.0000 + 10.3923i −1.13165 + 0.653359i
$$254$$ −4.00000 6.92820i −0.250982 0.434714i
$$255$$ 18.0000 1.12720
$$256$$ −0.500000 0.866025i −0.0312500 0.0541266i
$$257$$ −13.5000 + 23.3827i −0.842107 + 1.45857i 0.0460033 + 0.998941i $$0.485352\pi$$
−0.888110 + 0.459631i $$0.847982\pi$$
$$258$$ −12.0000 6.92820i −0.747087 0.431331i
$$259$$ −12.0000 + 13.8564i −0.745644 + 0.860995i
$$260$$ −9.00000 + 8.66025i −0.558156 + 0.537086i
$$261$$ 5.19615i 0.321634i
$$262$$ −3.00000 + 5.19615i −0.185341 + 0.321019i
$$263$$ 21.0000 + 12.1244i 1.29492 + 0.747620i 0.979521 0.201341i $$-0.0645299\pi$$
0.315394 + 0.948961i $$0.397863\pi$$
$$264$$ −4.50000 + 2.59808i −0.276956 + 0.159901i
$$265$$ −30.0000 −1.84289
$$266$$ 3.50000 18.1865i 0.214599 1.11509i
$$267$$ −7.50000 12.9904i −0.458993 0.794998i
$$268$$ 0 0
$$269$$ 12.0000 + 20.7846i 0.731653 + 1.26726i 0.956176 + 0.292791i $$0.0945841\pi$$
−0.224523 + 0.974469i $$0.572083\pi$$
$$270$$ 9.00000 15.5885i 0.547723 0.948683i
$$271$$ −4.00000 + 6.92820i −0.242983 + 0.420858i −0.961563 0.274586i $$-0.911459\pi$$
0.718580 + 0.695444i $$0.244792\pi$$
$$272$$ −3.00000 −0.181902
$$273$$ 7.50000 14.7224i 0.453921 0.891042i
$$274$$ 12.0000 0.724947
$$275$$ 10.5000 18.1865i 0.633174 1.09669i
$$276$$ −6.00000 + 10.3923i −0.361158 + 0.625543i
$$277$$ 8.00000 + 13.8564i 0.480673 + 0.832551i 0.999754 0.0221745i $$-0.00705893\pi$$
−0.519081 + 0.854725i $$0.673726\pi$$
$$278$$ 5.19615i 0.311645i
$$279$$ 6.00000 + 10.3923i 0.359211 + 0.622171i
$$280$$ −9.00000 1.73205i −0.537853 0.103510i
$$281$$ 12.0000 0.715860 0.357930 0.933748i $$-0.383483\pi$$
0.357930 + 0.933748i $$0.383483\pi$$
$$282$$ 7.50000 + 12.9904i 0.446619 + 0.773566i
$$283$$ −3.00000 1.73205i −0.178331 0.102960i 0.408177 0.912903i $$-0.366165\pi$$
−0.586509 + 0.809943i $$0.699498\pi$$
$$284$$ 3.00000 5.19615i 0.178017 0.308335i
$$285$$ 42.0000 2.48787
$$286$$ −7.50000 7.79423i −0.443484 0.460882i
$$287$$ 9.00000 10.3923i 0.531253 0.613438i
$$288$$ −1.50000 + 2.59808i −0.0883883 + 0.153093i
$$289$$ 4.00000 6.92820i 0.235294 0.407541i
$$290$$ −3.00000 5.19615i −0.176166 0.305129i
$$291$$ 3.46410i 0.203069i
$$292$$ −2.00000 3.46410i −0.117041 0.202721i
$$293$$ 6.00000 3.46410i 0.350524 0.202375i −0.314392 0.949293i $$-0.601801\pi$$
0.664916 + 0.746918i $$0.268467\pi$$
$$294$$ 12.0000 1.73205i 0.699854 0.101015i
$$295$$ −18.0000 31.1769i −1.04800 1.81519i
$$296$$ 6.00000 + 3.46410i 0.348743 + 0.201347i
$$297$$ 13.5000 + 7.79423i 0.783349 + 0.452267i
$$298$$ −6.00000 −0.347571
$$299$$ −24.0000 6.92820i −1.38796 0.400668i
$$300$$ 12.1244i 0.700000i
$$301$$ 20.0000 6.92820i 1.15278 0.399335i
$$302$$ −7.50000 4.33013i −0.431577 0.249171i
$$303$$ 0 0
$$304$$ −7.00000 −0.401478
$$305$$ −9.00000 15.5885i −0.515339 0.892592i
$$306$$ 4.50000 + 7.79423i 0.257248 + 0.445566i
$$307$$ 7.00000 0.399511 0.199756 0.979846i $$-0.435985\pi$$
0.199756 + 0.979846i $$0.435985\pi$$
$$308$$ 1.50000 7.79423i 0.0854704 0.444117i
$$309$$ −3.00000 + 5.19615i −0.170664 + 0.295599i
$$310$$ 12.0000 + 6.92820i 0.681554 + 0.393496i
$$311$$ 3.00000 0.170114 0.0850572 0.996376i $$-0.472893\pi$$
0.0850572 + 0.996376i $$0.472893\pi$$
$$312$$ −6.00000 1.73205i −0.339683 0.0980581i
$$313$$ 20.7846i 1.17482i 0.809291 + 0.587408i $$0.199852\pi$$
−0.809291 + 0.587408i $$0.800148\pi$$
$$314$$ −12.0000 6.92820i −0.677199 0.390981i
$$315$$ 9.00000 + 25.9808i 0.507093 + 1.46385i
$$316$$ 5.50000 + 9.52628i 0.309399 + 0.535895i
$$317$$ 18.0000 1.01098 0.505490 0.862832i $$-0.331312\pi$$
0.505490 + 0.862832i $$0.331312\pi$$
$$318$$ −7.50000 12.9904i −0.420579 0.728464i
$$319$$ 4.50000 2.59808i 0.251952 0.145464i
$$320$$ 3.46410i 0.193649i
$$321$$ 4.50000 + 7.79423i 0.251166 + 0.435031i
$$322$$ −6.00000 17.3205i −0.334367 0.965234i
$$323$$ −10.5000 + 18.1865i −0.584236 + 1.01193i
$$324$$ 9.00000 0.500000
$$325$$ 24.5000 6.06218i 1.35902 0.336269i
$$326$$ 24.2487i 1.34301i
$$327$$ 3.00000 5.19615i 0.165900 0.287348i
$$328$$ −4.50000 2.59808i −0.248471 0.143455i
$$329$$ −22.5000 4.33013i −1.24047 0.238728i
$$330$$ 18.0000 0.990867
$$331$$ 0 0 −0.500000 0.866025i $$-0.666667\pi$$
0.500000 + 0.866025i $$0.333333\pi$$
$$332$$ −12.0000 + 6.92820i −0.658586 + 0.380235i
$$333$$ 20.7846i 1.13899i
$$334$$ 15.0000 8.66025i 0.820763 0.473868i
$$335$$ 0 0
$$336$$ −1.50000 4.33013i −0.0818317 0.236228i
$$337$$ −19.0000 −1.03500 −0.517498 0.855684i $$-0.673136\pi$$
−0.517498 + 0.855684i $$0.673136\pi$$
$$338$$ 0.500000 12.9904i 0.0271964 0.706584i
$$339$$ 24.0000 1.30350
$$340$$ 9.00000 + 5.19615i 0.488094 + 0.281801i
$$341$$ −6.00000 + 10.3923i −0.324918 + 0.562775i
$$342$$ 10.5000 + 18.1865i 0.567775 + 0.983415i
$$343$$ −10.0000 + 15.5885i −0.539949 + 0.841698i
$$344$$ −4.00000 6.92820i −0.215666 0.373544i
$$345$$ 36.0000 20.7846i 1.93817 1.11901i
$$346$$ 0 0
$$347$$ 13.5000 7.79423i 0.724718 0.418416i −0.0917687 0.995780i $$-0.529252\pi$$
0.816487 + 0.577364i $$0.195919\pi$$
$$348$$ 1.50000 2.59808i 0.0804084 0.139272i
$$349$$ 1.00000 1.73205i 0.0535288 0.0927146i −0.838019 0.545640i $$-0.816286\pi$$
0.891548 + 0.452926i $$0.149620\pi$$
$$350$$ 14.0000 + 12.1244i 0.748331 + 0.648074i
$$351$$ 4.50000 + 18.1865i 0.240192 + 0.970725i
$$352$$ −3.00000 −0.159901
$$353$$ −18.0000 10.3923i −0.958043 0.553127i −0.0624731 0.998047i $$-0.519899\pi$$
−0.895570 + 0.444920i $$0.853232\pi$$
$$354$$ 9.00000 15.5885i 0.478345 0.828517i
$$355$$ −18.0000 + 10.3923i −0.955341 + 0.551566i
$$356$$ 8.66025i 0.458993i
$$357$$ −13.5000 2.59808i −0.714496 0.137505i
$$358$$ −21.0000 + 12.1244i −1.10988 + 0.640792i
$$359$$ −24.0000 −1.26667 −0.633336 0.773877i $$-0.718315\pi$$
−0.633336 + 0.773877i $$0.718315\pi$$
$$360$$ 9.00000 5.19615i 0.474342 0.273861i
$$361$$ −15.0000 + 25.9808i −0.789474 + 1.36741i
$$362$$ 1.50000 + 0.866025i 0.0788382 + 0.0455173i
$$363$$ 3.46410i 0.181818i
$$364$$ 8.00000 5.19615i 0.419314 0.272352i
$$365$$ 13.8564i 0.725277i
$$366$$ 4.50000 7.79423i 0.235219 0.407411i
$$367$$ 18.0000 + 10.3923i 0.939592 + 0.542474i 0.889833 0.456287i $$-0.150821\pi$$
0.0497598 + 0.998761i $$0.484154\pi$$
$$368$$ −6.00000 + 3.46410i −0.312772 + 0.180579i
$$369$$ 15.5885i 0.811503i
$$370$$ −12.0000 20.7846i −0.623850 1.08054i
$$371$$ 22.5000 + 4.33013i 1.16814 + 0.224809i
$$372$$ 6.92820i 0.359211i
$$373$$ 10.0000 + 17.3205i 0.517780 + 0.896822i 0.999787 + 0.0206542i $$0.00657489\pi$$
−0.482006 + 0.876168i $$0.660092\pi$$
$$374$$ −4.50000 + 7.79423i −0.232689 + 0.403030i
$$375$$ −6.00000 + 10.3923i −0.309839 + 0.536656i
$$376$$ 8.66025i 0.446619i
$$377$$ 6.00000 + 1.73205i 0.309016 + 0.0892052i
$$378$$ −9.00000 + 10.3923i −0.462910 + 0.534522i
$$379$$ −9.00000 5.19615i −0.462299 0.266908i 0.250711 0.968062i $$-0.419335\pi$$
−0.713010 + 0.701153i $$0.752669\pi$$
$$380$$ 21.0000 + 12.1244i 1.07728 + 0.621966i
$$381$$ −12.0000 + 6.92820i −0.614779 + 0.354943i
$$382$$ 0 0
$$383$$ 4.50000 2.59808i 0.229939 0.132755i −0.380605 0.924738i $$-0.624284\pi$$
0.610544 + 0.791982i $$0.290951\pi$$
$$384$$ −1.50000 + 0.866025i −0.0765466 + 0.0441942i
$$385$$ −18.0000 + 20.7846i −0.917365 + 1.05928i
$$386$$ −10.5000 + 6.06218i −0.534436 + 0.308557i
$$387$$ −12.0000 + 20.7846i −0.609994 + 1.05654i
$$388$$ −1.00000 + 1.73205i −0.0507673 + 0.0879316i
$$389$$ 20.7846i 1.05382i 0.849921 + 0.526911i $$0.176650\pi$$
−0.849921 + 0.526911i $$0.823350\pi$$
$$390$$ 15.0000 + 15.5885i 0.759555 + 0.789352i
$$391$$ 20.7846i 1.05112i
$$392$$ 6.50000 + 2.59808i 0.328300 + 0.131223i
$$393$$ 9.00000 + 5.19615i 0.453990 + 0.262111i
$$394$$ −13.5000 23.3827i −0.680120 1.17800i
$$395$$ 38.1051i 1.91728i
$$396$$ 4.50000 + 7.79423i 0.226134 + 0.391675i
$$397$$ 3.50000 + 6.06218i 0.175660 + 0.304252i 0.940389 0.340099i $$-0.110461\pi$$
−0.764730 + 0.644351i $$0.777127\pi$$
$$398$$ 10.3923i 0.520919i
$$399$$ −31.5000 6.06218i −1.57697 0.303488i
$$400$$ 3.50000 6.06218i 0.175000 0.303109i
$$401$$ −9.00000 + 15.5885i −0.449439 + 0.778450i −0.998350 0.0574304i $$-0.981709\pi$$
0.548911 + 0.835881i $$0.315043\pi$$
$$402$$ 0 0
$$403$$ −14.0000 + 3.46410i −0.697390 + 0.172559i
$$404$$ 0 0
$$405$$ −27.0000 15.5885i −1.34164 0.774597i
$$406$$ 1.50000 + 4.33013i 0.0744438 + 0.214901i
$$407$$ 18.0000 10.3923i 0.892227 0.515127i
$$408$$ 5.19615i 0.257248i
$$409$$ 2.00000 + 3.46410i 0.0988936 + 0.171289i 0.911227 0.411905i $$-0.135136\pi$$
−0.812333 + 0.583193i $$0.801803\pi$$
$$410$$ 9.00000 + 15.5885i 0.444478 + 0.769859i
$$411$$ 20.7846i 1.02523i
$$412$$ −3.00000 + 1.73205i −0.147799 + 0.0853320i
$$413$$ 9.00000 + 25.9808i 0.442861 + 1.27843i
$$414$$ 18.0000 + 10.3923i 0.884652 + 0.510754i
$$415$$ 48.0000 2.35623
$$416$$ −2.50000 2.59808i −0.122573 0.127381i
$$417$$ −9.00000 −0.440732
$$418$$ −10.5000 + 18.1865i −0.513572 + 0.889532i
$$419$$ 6.00000 10.3923i 0.293119 0.507697i −0.681426 0.731887i $$-0.738640\pi$$
0.974546 + 0.224189i $$0.0719734\pi$$
$$420$$ −3.00000 + 15.5885i −0.146385 + 0.760639i
$$421$$ 24.2487i 1.18181i −0.806741 0.590905i $$-0.798771\pi$$
0.806741 0.590905i $$-0.201229\pi$$
$$422$$ −11.0000 19.0526i −0.535472 0.927464i
$$423$$ 22.5000 12.9904i 1.09399 0.631614i
$$424$$ 8.66025i 0.420579i
$$425$$ −10.5000 18.1865i −0.509325 0.882176i
$$426$$ −9.00000 5.19615i −0.436051 0.251754i
$$427$$ 4.50000 + 12.9904i 0.217770 + 0.628649i
$$428$$ 5.19615i 0.251166i
$$429$$ −13.5000 + 12.9904i −0.651786 + 0.627182i
$$430$$ 27.7128i 1.33643i
$$431$$ 9.00000 15.5885i 0.433515 0.750870i −0.563658 0.826008i $$-0.690607\pi$$
0.997173 + 0.0751385i $$0.0239399\pi$$
$$432$$ 4.50000 + 2.59808i 0.216506 + 0.125000i
$$433$$ 15.0000 8.66025i 0.720854 0.416185i −0.0942129 0.995552i $$-0.530033\pi$$
0.815067 + 0.579367i $$0.196700\pi$$
$$434$$ −8.00000 6.92820i −0.384012 0.332564i
$$435$$ −9.00000 + 5.19615i −0.431517 + 0.249136i
$$436$$ 3.00000 1.73205i 0.143674 0.0829502i
$$437$$ 48.4974i 2.31995i
$$438$$ −6.00000 + 3.46410i −0.286691 + 0.165521i
$$439$$ 3.00000 + 1.73205i 0.143182 + 0.0826663i 0.569880 0.821728i $$-0.306990\pi$$
−0.426698 + 0.904394i $$0.640323\pi$$
$$440$$ 9.00000 + 5.19615i 0.429058 + 0.247717i
$$441$$ −3.00000 20.7846i −0.142857 0.989743i
$$442$$ −10.5000 + 2.59808i −0.499434 + 0.123578i
$$443$$ 29.4449i 1.39897i −0.714648 0.699484i $$-0.753413\pi$$
0.714648 0.699484i $$-0.246587\pi$$
$$444$$ 6.00000 10.3923i 0.284747 0.493197i
$$445$$ −15.0000 + 25.9808i −0.711068 + 1.23161i
$$446$$ −8.00000 13.8564i −0.378811 0.656120i
$$447$$ 10.3923i 0.491539i
$$448$$ 0.500000 2.59808i 0.0236228 0.122748i
$$449$$ −18.0000 31.1769i −0.849473 1.47133i −0.881680 0.471848i $$-0.843587\pi$$
0.0322072 0.999481i $$-0.489746\pi$$
$$450$$ −21.0000 −0.989949
$$451$$ −13.5000 + 7.79423i −0.635690 + 0.367016i
$$452$$ 12.0000 + 6.92820i 0.564433 + 0.325875i
$$453$$ −7.50000 + 12.9904i −0.352381 + 0.610341i
$$454$$ 10.3923i 0.487735i
$$455$$ −33.0000 + 1.73205i −1.54706 + 0.0811998i
$$456$$ 12.1244i 0.567775i
$$457$$ −6.00000 3.46410i −0.280668 0.162044i 0.353058 0.935602i $$-0.385142\pi$$
−0.633726 + 0.773558i $$0.718475\pi$$
$$458$$ 6.50000 11.2583i 0.303725 0.526067i
$$459$$ 13.5000 7.79423i 0.630126 0.363803i
$$460$$ 24.0000 1.11901
$$461$$ 27.0000 15.5885i 1.25752 0.726027i 0.284925 0.958550i $$-0.408031\pi$$
0.972591 + 0.232523i $$0.0746981\pi$$
$$462$$ −13.5000 2.59808i −0.628077 0.120873i
$$463$$ 36.3731i 1.69040i −0.534450 0.845200i $$-0.679481\pi$$
0.534450 0.845200i $$-0.320519\pi$$
$$464$$ 1.50000 0.866025i 0.0696358 0.0402042i
$$465$$ 12.0000 20.7846i 0.556487 0.963863i
$$466$$ 6.00000 + 3.46410i 0.277945 + 0.160471i
$$467$$ −6.00000 −0.277647 −0.138823 0.990317i $$-0.544332\pi$$
−0.138823 + 0.990317i $$0.544332\pi$$
$$468$$ −3.00000 + 10.3923i −0.138675 + 0.480384i
$$469$$ 0 0
$$470$$ 15.0000 25.9808i 0.691898 1.19840i
$$471$$ −12.0000 + 20.7846i −0.552931 + 0.957704i
$$472$$ 9.00000 5.19615i 0.414259 0.239172i
$$473$$ −24.0000 −1.10352
$$474$$ 16.5000 9.52628i 0.757870 0.437557i
$$475$$ −24.5000 42.4352i −1.12414 1.94706i
$$476$$ −6.00000 5.19615i −0.275010 0.238165i
$$477$$ −22.5000 + 12.9904i −1.03020 + 0.594789i
$$478$$ 6.00000 10.3923i 0.274434 0.475333i
$$479$$ −28.5000 16.4545i −1.30220 0.751825i −0.321417 0.946938i $$-0.604159\pi$$
−0.980781 + 0.195113i $$0.937493\pi$$
$$480$$ 6.00000 0.273861
$$481$$ 24.0000 + 6.92820i 1.09431 + 0.315899i
$$482$$ −10.0000 −0.455488
$$483$$ −30.0000 + 10.3923i −1.36505 + 0.472866i
$$484$$ 1.00000 1.73205i 0.0454545 0.0787296i
$$485$$ 6.00000 3.46410i 0.272446 0.157297i
$$486$$ 15.5885i 0.707107i
$$487$$ 7.50000 4.33013i 0.339857 0.196217i −0.320352 0.947299i $$-0.603801\pi$$
0.660209 + 0.751082i $$0.270468\pi$$
$$488$$ 4.50000 2.59808i 0.203705 0.117609i
$$489$$ −42.0000 −1.89931
$$490$$ −15.0000 19.0526i −0.677631 0.860707i
$$491$$ 9.00000 + 5.19615i 0.406164 + 0.234499i 0.689140 0.724628i $$-0.257988\pi$$
−0.282976 + 0.959127i $$0.591322\pi$$
$$492$$ −4.50000 + 7.79423i −0.202876 + 0.351391i
$$493$$ 5.19615i 0.234023i
$$494$$ −24.5000 + 6.06218i −1.10231 + 0.272750i
$$495$$ 31.1769i 1.40130i
$$496$$ −2.00000 + 3.46410i −0.0898027 + 0.155543i
$$497$$ 15.0000 5.19615i 0.672842 0.233079i
$$498$$ 12.0000 + 20.7846i 0.537733 + 0.931381i
$$499$$ 41.5692i 1.86089i 0.366427 + 0.930447i $$0.380581\pi$$
−0.366427 + 0.930447i $$0.619419\pi$$
$$500$$ −6.00000 + 3.46410i −0.268328 + 0.154919i
$$501$$ −15.0000 25.9808i −0.670151 1.16073i
$$502$$ 30.0000 1.33897
$$503$$ −6.00000 10.3923i −0.267527 0.463370i 0.700696 0.713460i $$-0.252873\pi$$
−0.968223 + 0.250090i $$0.919540\pi$$
$$504$$ −7.50000 + 2.59808i −0.334077 + 0.115728i
$$505$$ 0 0
$$506$$ 20.7846i 0.923989i
$$507$$ −22.5000 0.866025i −0.999260 0.0384615i
$$508$$ −8.00000 −0.354943
$$509$$ −24.0000 13.8564i −1.06378 0.614174i −0.137305 0.990529i $$-0.543844\pi$$
−0.926476 + 0.376354i $$0.877178\pi$$
$$510$$ 9.00000 15.5885i 0.398527 0.690268i
$$511$$ 2.00000 10.3923i 0.0884748 0.459728i
$$512$$ −1.00000 −0.0441942
$$513$$ 31.5000 18.1865i 1.39076 0.802955i
$$514$$ 13.5000 + 23.3827i 0.595459 + 1.03137i
$$515$$ 12.0000 0.528783
$$516$$ −12.0000 + 6.92820i −0.528271 + 0.304997i
$$517$$ 22.5000 + 12.9904i 0.989549 + 0.571316i
$$518$$ 6.00000 + 17.3205i 0.263625 + 0.761019i
$$519$$ 0 0
$$520$$ 3.00000 + 12.1244i 0.131559 + 0.531688i
$$521$$ 3.00000 0.131432 0.0657162 0.997838i $$-0.479067\pi$$
0.0657162 + 0.997838i $$0.479067\pi$$
$$522$$ −4.50000 2.59808i −0.196960 0.113715i
$$523$$ −28.5000 16.4545i −1.24622 0.719504i −0.275865 0.961196i $$-0.588964\pi$$
−0.970353 + 0.241692i $$0.922298\pi$$
$$524$$ 3.00000 + 5.19615i 0.131056 + 0.226995i
$$525$$ 21.0000 24.2487i 0.916515 1.05830i
$$526$$ 21.0000 12.1244i 0.915644 0.528647i
$$527$$ 6.00000 + 10.3923i 0.261364 + 0.452696i
$$528$$ 5.19615i 0.226134i
$$529$$ 12.5000 + 21.6506i 0.543478 + 0.941332i
$$530$$ −15.0000 + 25.9808i −0.651558 + 1.12853i
$$531$$ −27.0000 15.5885i −1.17170 0.676481i
$$532$$ −14.0000 12.1244i −0.606977 0.525657i
$$533$$ −18.0000 5.19615i −0.779667 0.225070i
$$534$$ −15.0000 −0.649113
$$535$$ 9.00000 15.5885i 0.389104 0.673948i
$$536$$ 0 0
$$537$$ 21.0000 + 36.3731i 0.906217 + 1.56961i
$$538$$ 24.0000 1.03471
$$539$$ 16.5000 12.9904i 0.710705 0.559535i
$$540$$ −9.00000 15.5885i −0.387298 0.670820i
$$541$$ 31.1769i 1.34040i −0.742180 0.670200i $$-0.766208\pi$$
0.742180 0.670200i $$-0.233792\pi$$
$$542$$ 4.00000 + 6.92820i 0.171815 + 0.297592i
$$543$$ 1.50000 2.59808i 0.0643712 0.111494i
$$544$$ −1.50000 + 2.59808i −0.0643120 + 0.111392i
$$545$$ −12.0000 −0.514024
$$546$$ −9.00000 13.8564i −0.385164 0.592999i
$$547$$ 2.00000 0.0855138 0.0427569 0.999086i $$-0.486386\pi$$
0.0427569 + 0.999086i $$0.486386\pi$$
$$548$$ 6.00000 10.3923i 0.256307 0.443937i
$$549$$ −13.5000 7.79423i −0.576166 0.332650i
$$550$$ −10.5000 18.1865i −0.447722 0.775476i
$$551$$ 12.1244i 0.516515i
$$552$$ 6.00000 + 10.3923i 0.255377 + 0.442326i
$$553$$ −5.50000 + 28.5788i −0.233884 + 1.21530i
$$554$$ 16.0000 0.679775
$$555$$ −36.0000 + 20.7846i −1.52811 + 0.882258i
$$556$$ −4.50000 2.59808i −0.190843 0.110183i
$$557$$ −1.50000 + 2.59808i −0.0635570 + 0.110084i −0.896053 0.443947i $$-0.853578\pi$$
0.832496 + 0.554031i $$0.186911\pi$$
$$558$$ 12.0000 0.508001
$$559$$ −20.0000 20.7846i −0.845910 0.879095i
$$560$$ −6.00000 + 6.92820i −0.253546 + 0.292770i
$$561$$ 13.5000 + 7.79423i 0.569970 + 0.329073i
$$562$$ 6.00000 10.3923i 0.253095 0.438373i
$$563$$ 12.0000 + 20.7846i 0.505740 + 0.875967i 0.999978 + 0.00664037i $$0.00211371\pi$$
−0.494238 + 0.869326i $$0.664553\pi$$
$$564$$ 15.0000 0.631614
$$565$$ −24.0000 41.5692i −1.00969 1.74883i
$$566$$ −3.00000 + 1.73205i −0.126099 + 0.0728035i
$$567$$ 18.0000 + 15.5885i 0.755929 + 0.654654i
$$568$$ −3.00000 5.19615i −0.125877 0.218026i
$$569$$ −15.0000 8.66025i −0.628833 0.363057i 0.151467 0.988462i $$-0.451600\pi$$
−0.780300 + 0.625406i $$0.784934\pi$$
$$570$$ 21.0000 36.3731i 0.879593 1.52350i
$$571$$ 40.0000 1.67395 0.836974 0.547243i $$-0.184323\pi$$
0.836974 + 0.547243i $$0.184323\pi$$
$$572$$ −10.5000 + 2.59808i −0.439027 + 0.108631i
$$573$$ 0 0
$$574$$ −4.50000 12.9904i −0.187826 0.542208i
$$575$$ −42.0000 24.2487i −1.75152 1.01124i
$$576$$ 1.50000 + 2.59808i 0.0625000 + 0.108253i
$$577$$ −10.0000 −0.416305 −0.208153 0.978096i $$-0.566745\pi$$
−0.208153 + 0.978096i $$0.566745\pi$$
$$578$$ −4.00000 6.92820i −0.166378 0.288175i
$$579$$ 10.5000 + 18.1865i 0.436365 + 0.755807i
$$580$$ −6.00000 −0.249136
$$581$$ −36.0000 6.92820i −1.49353 0.287430i
$$582$$ 3.00000 + 1.73205i 0.124354 + 0.0717958i
$$583$$ −22.5000 12.9904i −0.931855 0.538007i
$$584$$ −4.00000 −0.165521
$$585$$ 27.0000 25.9808i 1.11631 1.07417i
$$586$$ 6.92820i 0.286201i
$$587$$ 15.0000 + 8.66025i 0.619116 + 0.357447i 0.776525 0.630087i $$-0.216981\pi$$
−0.157409 + 0.987534i $$0.550314\pi$$
$$588$$ 4.50000 11.2583i 0.185577 0.464286i
$$589$$ 14.0000 + 24.2487i 0.576860 + 0.999151i
$$590$$ −36.0000 −1.48210
$$591$$ −40.5000 + 23.3827i −1.66595 + 0.961835i
$$592$$ 6.00000 3.46410i 0.246598 0.142374i
$$593$$ 8.66025i 0.355634i −0.984064 0.177817i $$-0.943096\pi$$
0.984064 0.177817i $$-0.0569035\pi$$
$$594$$ 13.5000 7.79423i 0.553912 0.319801i
$$595$$ 9.00000 + 25.9808i 0.368964 + 1.06511i
$$596$$ −3.00000 + 5.19615i −0.122885 + 0.212843i
$$597$$ −18.0000 −0.736691
$$598$$ −18.0000 + 17.3205i −0.736075 + 0.708288i
$$599$$ 3.46410i 0.141539i −0.997493 0.0707697i $$-0.977454\pi$$
0.997493 0.0707697i $$-0.0225455\pi$$
$$600$$ −10.5000 6.06218i −0.428661 0.247487i
$$601$$ 27.0000 + 15.5885i 1.10135 + 0.635866i 0.936576 0.350464i $$-0.113976\pi$$
0.164777 + 0.986331i $$0.447310\pi$$
$$602$$ 4.00000 20.7846i 0.163028 0.847117i
$$603$$ 0 0
$$604$$ −7.50000 + 4.33013i −0.305171 + 0.176190i
$$605$$ −6.00000 + 3.46410i −0.243935 + 0.140836i
$$606$$ 0 0
$$607$$ 6.00000 3.46410i 0.243532 0.140604i −0.373267 0.927724i $$-0.621762\pi$$
0.616799 + 0.787121i $$0.288429\pi$$
$$608$$ −3.50000 + 6.06218i −0.141944 + 0.245854i
$$609$$ 7.50000 2.59808i 0.303915 0.105279i
$$610$$ −18.0000 −0.728799
$$611$$ 7.50000 + 30.3109i 0.303418 + 1.22625i
$$612$$ 9.00000 0.363803
$$613$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$614$$ 3.50000 6.06218i 0.141249 0.244650i
$$615$$ 27.0000 15.5885i 1.08875 0.628587i
$$616$$ −6.00000 5.19615i −0.241747 0.209359i
$$617$$ 3.00000 + 5.19615i 0.120775 + 0.209189i 0.920074 0.391745i $$-0.128129\pi$$
−0.799298 + 0.600935i $$0.794795\pi$$
$$618$$ 3.00000 + 5.19615i 0.120678 + 0.209020i
$$619$$ −31.0000 −1.24600 −0.622998 0.782224i $$-0.714085\pi$$
−0.622998 + 0.782224i $$0.714085\pi$$
$$620$$ 12.0000 6.92820i 0.481932 0.278243i
$$621$$ 18.0000 31.1769i 0.722315 1.25109i
$$622$$ 1.50000 2.59808i 0.0601445 0.104173i
$$623$$ 15.0000 17.3205i 0.600962 0.693932i
$$624$$ −4.50000 + 4.33013i −0.180144 + 0.173344i
$$625$$ −11.0000 −0.440000
$$626$$ 18.0000 + 10.3923i 0.719425 + 0.415360i
$$627$$ 31.5000 + 18.1865i 1.25799 + 0.726300i
$$628$$ −12.0000 + 6.92820i −0.478852 + 0.276465i
$$629$$ 20.7846i 0.828737i
$$630$$ 27.0000 + 5.19615i 1.07571 + 0.207020i
$$631$$ −40.5000 + 23.3827i −1.61228 + 0.930850i −0.623439 + 0.781872i $$0.714265\pi$$
−0.988841 + 0.148978i $$0.952402\pi$$
$$632$$ 11.0000 0.437557
$$633$$ −33.0000 + 19.0526i −1.31163 + 0.757271i
$$634$$ 9.00000 15.5885i 0.357436 0.619097i
$$635$$ 24.0000 + 13.8564i 0.952411 + 0.549875i
$$636$$ −15.0000 −0.594789
$$637$$ 25.0000 + 3.46410i 0.990536 + 0.137253i
$$638$$ 5.19615i 0.205718i
$$639$$ −9.00000 + 15.5885i −0.356034 + 0.616670i
$$640$$ 3.00000 + 1.73205i 0.118585 + 0.0684653i
$$641$$ 3.00000 1.73205i 0.118493 0.0684119i −0.439582 0.898202i $$-0.644873\pi$$
0.558075 + 0.829790i $$0.311540\pi$$
$$642$$ 9.00000 0.355202
$$643$$ 23.5000 + 40.7032i 0.926750 + 1.60518i 0.788723 + 0.614749i $$0.210743\pi$$
0.138027 + 0.990429i $$0.455924\pi$$
$$644$$ −18.0000 3.46410i −0.709299 0.136505i
$$645$$ 48.0000 1.89000
$$646$$ 10.5000 + 18.1865i 0.413117 + 0.715540i
$$647$$ −10.5000 + 18.1865i −0.412798 + 0.714986i −0.995194 0.0979182i $$-0.968782\pi$$
0.582397 + 0.812905i $$0.302115\pi$$
$$648$$ 4.50000 7.79423i 0.176777 0.306186i
$$649$$ 31.1769i 1.22380i
$$650$$ 7.00000 24.2487i 0.274563 0.951113i
$$651$$ −12.0000 + 13.8564i −0.470317 + 0.543075i
$$652$$ −21.0000 12.1244i −0.822423 0.474826i
$$653$$ −4.50000 2.59808i −0.176099 0.101671i 0.409360 0.912373i $$-0.365752\pi$$
−0.585458 + 0.810702i $$0.699085\pi$$
$$654$$ −3.00000 5.19615i −0.117309 0.203186i
$$655$$ 20.7846i 0.812122i
$$656$$ −4.50000 + 2.59808i −0.175695 + 0.101438i
$$657$$ 6.00000 + 10.3923i 0.234082 + 0.405442i
$$658$$ −15.0000 + 17.3205i −0.584761 + 0.675224i
$$659$$ −1.50000 + 0.866025i −0.0584317 + 0.0337356i −0.528931 0.848665i $$-0.677407\pi$$
0.470500 + 0.882400i $$0.344074\pi$$
$$660$$ 9.00000 15.5885i 0.350325 0.606780i
$$661$$ 7.00000 12.1244i 0.272268 0.471583i −0.697174 0.716902i $$-0.745559\pi$$
0.969442 + 0.245319i $$0.0788928\pi$$
$$662$$ 0 0
$$663$$ 4.50000 + 18.1865i 0.174766 + 0.706306i
$$664$$ 13.8564i 0.537733i
$$665$$ 21.0000 + 60.6218i 0.814345 + 2.35081i
$$666$$ −18.0000 10.3923i −0.697486 0.402694i
$$667$$ −6.00000 10.3923i −0.232321 0.402392i
$$668$$ 17.3205i 0.670151i
$$669$$ −24.0000 + 13.8564i −0.927894 + 0.535720i
$$670$$ 0 0
$$671$$ 15.5885i 0.601786i
$$672$$ −4.50000 0.866025i −0.173591 0.0334077i
$$673$$ 14.5000 25.1147i 0.558934 0.968102i −0.438652 0.898657i $$-0.644544\pi$$
0.997586 0.0694449i $$-0.0221228\pi$$
$$674$$ −9.50000 + 16.4545i −0.365926 + 0.633803i
$$675$$ 36.3731i 1.40000i
$$676$$ −11.0000 6.92820i −0.423077 0.266469i
$$677$$ −6.00000 −0.230599 −0.115299 0.993331i $$-0.536783\pi$$
−0.115299 + 0.993331i $$0.536783\pi$$
$$678$$ 12.0000 20.7846i 0.460857 0.798228i
$$679$$ −5.00000 + 1.73205i −0.191882 + 0.0664700i
$$680$$ 9.00000 5.19615i 0.345134 0.199263i
$$681$$ 18.0000 0.689761
$$682$$ 6.00000 + 10.3923i 0.229752 + 0.397942i
$$683$$ 6.00000 + 10.3923i 0.229584 + 0.397650i 0.957685 0.287819i $$-0.0929302\pi$$
−0.728101 + 0.685470i $$0.759597\pi$$
$$684$$ 21.0000 0.802955
$$685$$ −36.0000 + 20.7846i −1.37549 + 0.794139i
$$686$$ 8.50000 + 16.4545i 0.324532 + 0.628235i
$$687$$ −19.5000 11.2583i −0.743971 0.429532i
$$688$$ −8.00000 −0.304997
$$689$$ −7.50000 30.3109i −0.285727 1.15475i
$$690$$ 41.5692i 1.58251i
$$691$$ −4.00000 + 6.92820i −0.152167 + 0.263561i −0.932024 0.362397i $$-0.881959\pi$$
0.779857 + 0.625958i $$0.215292\pi$$
$$692$$ 0 0
$$693$$ −4.50000 + 23.3827i −0.170941 + 0.888235i
$$694$$ 15.5885i 0.591730i
$$695$$ 9.00000 + 15.5885i 0.341389 + 0.591304i
$$696$$ −1.50000 2.59808i −0.0568574 0.0984798i
$$697$$ 15.5885i 0.590455i
$$698$$ −1.00000 1.73205i −0.0378506 0.0655591i
$$699$$ 6.00000 10.3923i 0.226941 0.393073i
$$700$$ 17.5000 6.06218i 0.661438 0.229129i
$$701$$ 12.1244i 0.457931i 0.973435 + 0.228965i $$0.0735342\pi$$
−0.973435 + 0.228965i $$0.926466\pi$$
$$702$$ 18.0000 + 5.19615i 0.679366 + 0.196116i
$$703$$ 48.4974i 1.82911i
$$704$$ −1.50000 + 2.59808i −0.0565334 + 0.0979187i
$$705$$ −45.0000 25.9808i −1.69480 0.978492i
$$706$$ −18.0000 + 10.3923i −0.677439 + 0.391120i
$$707$$ 0 0
$$708$$ −9.00000 15.5885i −0.338241 0.585850i
$$709$$ 21.0000 12.1244i 0.788672 0.455340i −0.0508231 0.998708i $$-0.516184\pi$$
0.839495 + 0.543368i $$0.182851\pi$$
$$710$$ 20.7846i 0.780033i
$$711$$ −16.5000 28.5788i −0.618798 1.07179i
$$712$$ −7.50000 4.33013i −0.281074 0.162278i
$$713$$ 24.0000 + 13.8564i 0.898807 + 0.518927i
$$714$$ −9.00000 + 10.3923i −0.336817 + 0.388922i
$$715$$ 36.0000 + 10.3923i 1.34632 + 0.388650i
$$716$$ 24.2487i 0.906217i
$$717$$ −18.0000 10.3923i −0.672222 0.388108i
$$718$$ −12.0000 + 20.7846i −0.447836 + 0.775675i
$$719$$ −10.5000 18.1865i −0.391584 0.678243i 0.601075 0.799193i $$-0.294739\pi$$
−0.992659 + 0.120950i $$0.961406\pi$$
$$720$$ 10.3923i 0.387298i
$$721$$ −9.00000 1.73205i −0.335178 0.0645049i
$$722$$ 15.0000 + 25.9808i 0.558242 + 0.966904i
$$723$$ 17.3205i 0.644157i
$$724$$ 1.50000 0.866025i 0.0557471 0.0321856i
$$725$$ 10.5000 + 6.06218i 0.389960 + 0.225144i
$$726$$ −3.00000 1.73205i −0.111340 0.0642824i
$$727$$ 34.6410i 1.28476i −0.766385 0.642382i $$-0.777946\pi$$
0.766385 0.642382i $$-0.222054\pi$$
$$728$$ −0.500000 9.52628i −0.0185312 0.353067i
$$729$$ −27.0000 −1.00000
$$730$$ 12.0000 + 6.92820i 0.444140 + 0.256424i
$$731$$ −12.0000 + 20.7846i −0.443836 + 0.768747i
$$732$$ −4.50000 7.79423i −0.166325 0.288083i
$$733$$ 13.0000 0.480166 0.240083 0.970752i $$-0.422825\pi$$
0.240083 + 0.970752i $$0.422825\pi$$
$$734$$ 18.0000 10.3923i 0.664392 0.383587i
$$735$$ −33.0000 + 25.9808i −1.21722 + 0.958315i
$$736$$ 6.92820i 0.255377i
$$737$$ 0 0
$$738$$ 13.5000 + 7.79423i 0.496942 + 0.286910i
$$739$$ 0 0 0.500000 0.866025i $$-0.333333\pi$$
−0.500000 + 0.866025i $$0.666667\pi$$
$$740$$ −24.0000 −0.882258
$$741$$ 10.5000 + 42.4352i 0.385727 + 1.55890i
$$742$$ 15.0000 17.3205i 0.550667 0.635856i
$$743$$ 3.00000 5.19615i 0.110059 0.190628i −0.805735 0.592277i $$-0.798229\pi$$
0.915794 + 0.401648i $$0.131563\pi$$
$$744$$ 6.00000 + 3.46410i 0.219971 + 0.127000i
$$745$$ 18.0000 10.3923i 0.659469 0.380745i
$$746$$ 20.0000 0.732252
$$747$$ 36.0000 20.7846i 1.31717 0.760469i
$$748$$ 4.50000 + 7.79423i 0.164536 + 0.284985i
$$749$$ −9.00000 + 10.3923i −0.328853 + 0.379727i
$$750$$ 6.00000 + 10.3923i 0.219089 + 0.379473i
$$751$$ −15.5000 + 26.8468i −0.565603 + 0.979653i 0.431390 + 0.902165i $$0.358023\pi$$
−0.996993 + 0.0774878i $$0.975310\pi$$
$$752$$ 7.50000 + 4.33013i 0.273497 + 0.157903i
$$753$$ 51.9615i 1.89358i
$$754$$ 4.50000 4.33013i 0.163880 0.157694i
$$755$$ 30.0000 1.09181
$$756$$ 4.50000 + 12.9904i 0.163663 + 0.472456i
$$757$$ −10.0000 + 17.3205i −0.363456 + 0.629525i −0.988527 0.151043i $$-0.951737\pi$$
0.625071 + 0.780568i $$0.285070\pi$$
$$758$$ −9.00000 + 5.19615i −0.326895 + 0.188733i
$$759$$ 36.0000 1.30672
$$760$$ 21.0000 12.1244i 0.761750 0.439797i
$$761$$ −6.00000 + 3.46410i −0.217500 + 0.125574i −0.604792 0.796383i $$-0.706744\pi$$
0.387292 + 0.921957i $$0.373410\pi$$
$$762$$ 13.8564i 0.501965i
$$763$$ 9.00000 + 1.73205i 0.325822 + 0.0627044i
$$764$$ 0 0
$$765$$ −27.0000 15.5885i −0.976187 0.563602i
$$766$$ 5.19615i 0.187745i
$$767$$ 27.0000 25.9808i 0.974913 0.938111i
$$768$$ 1.73205i 0.0625000i
$$769$$ −20.0000 + 34.6410i −0.721218 + 1.24919i 0.239293 + 0.970947i $$0.423084\pi$$
−0.960512 + 0.278240i $$0.910249\pi$$
$$770$$ 9.00000 + 25.9808i 0.324337 + 0.936282i
$$771$$ 40.5000 23.3827i 1.45857 0.842107i
$$772$$ 12.1244i 0.436365i
$$773$$ −9.00000 + 5.19615i −0.323708 + 0.186893i −0.653044 0.757320i $$-0.726508\pi$$
0.329336 + 0.944213i $$0.393175\pi$$
$$774$$ 12.0000 + 20.7846i