# Properties

 Label 546.2.p.c.281.7 Level $546$ Weight $2$ Character 546.281 Analytic conductor $4.360$ Analytic rank $0$ Dimension $20$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$546 = 2 \cdot 3 \cdot 7 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 546.p (of order $$4$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$4.35983195036$$ Analytic rank: $$0$$ Dimension: $$20$$ Relative dimension: $$10$$ over $$\Q(i)$$ Coefficient field: $$\mathbb{Q}[x]/(x^{20} - \cdots)$$ Defining polynomial: $$x^{20} - 4 x^{19} + 8 x^{18} - 20 x^{17} + 56 x^{16} - 140 x^{15} + 288 x^{14} - 532 x^{13} + 1065 x^{12} - 2080 x^{11} + 3712 x^{10} - 6240 x^{9} + 9585 x^{8} - 14364 x^{7} + 23328 x^{6} - 34020 x^{5} + 40824 x^{4} - 43740 x^{3} + 52488 x^{2} - 78732 x + 59049$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

## Embedding invariants

 Embedding label 281.7 Root $$1.72893 - 0.103975i$$ of defining polynomial Character $$\chi$$ $$=$$ 546.281 Dual form 546.2.p.c.239.7

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(0.707107 - 0.707107i) q^{2} +(-1.14901 + 1.29606i) q^{3} -1.00000i q^{4} +(0.237140 - 0.237140i) q^{5} +(0.103975 + 1.72893i) q^{6} +(-0.707107 + 0.707107i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(-0.359531 - 2.97838i) q^{9} +O(q^{10})$$ $$q+(0.707107 - 0.707107i) q^{2} +(-1.14901 + 1.29606i) q^{3} -1.00000i q^{4} +(0.237140 - 0.237140i) q^{5} +(0.103975 + 1.72893i) q^{6} +(-0.707107 + 0.707107i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(-0.359531 - 2.97838i) q^{9} -0.335367i q^{10} +(2.55493 + 2.55493i) q^{11} +(1.29606 + 1.14901i) q^{12} +(3.37961 + 1.25628i) q^{13} +1.00000i q^{14} +(0.0348698 + 0.579825i) q^{15} -1.00000 q^{16} +5.26383 q^{17} +(-2.36026 - 1.85180i) q^{18} +(0.906991 + 0.906991i) q^{19} +(-0.237140 - 0.237140i) q^{20} +(-0.103975 - 1.72893i) q^{21} +3.61322 q^{22} -1.48838 q^{23} +(1.72893 - 0.103975i) q^{24} +4.88753i q^{25} +(3.27807 - 1.50142i) q^{26} +(4.27326 + 2.95623i) q^{27} +(0.707107 + 0.707107i) q^{28} -7.36454i q^{29} +(0.434655 + 0.385342i) q^{30} +(7.20598 + 7.20598i) q^{31} +(-0.707107 + 0.707107i) q^{32} +(-6.24699 + 0.375685i) q^{33} +(3.72209 - 3.72209i) q^{34} +0.335367i q^{35} +(-2.97838 + 0.359531i) q^{36} +(-2.83332 + 2.83332i) q^{37} +1.28268 q^{38} +(-5.51143 + 2.93668i) q^{39} -0.335367 q^{40} +(1.32329 - 1.32329i) q^{41} +(-1.29606 - 1.14901i) q^{42} +2.75805i q^{43} +(2.55493 - 2.55493i) q^{44} +(-0.791553 - 0.621034i) q^{45} +(-1.05244 + 1.05244i) q^{46} +(-2.27264 - 2.27264i) q^{47} +(1.14901 - 1.29606i) q^{48} -1.00000i q^{49} +(3.45600 + 3.45600i) q^{50} +(-6.04822 + 6.82223i) q^{51} +(1.25628 - 3.37961i) q^{52} -8.80608i q^{53} +(5.11202 - 0.931280i) q^{54} +1.21175 q^{55} +1.00000 q^{56} +(-2.21766 + 0.133367i) q^{57} +(-5.20752 - 5.20752i) q^{58} +(-0.785394 - 0.785394i) q^{59} +(0.579825 - 0.0348698i) q^{60} +8.74912 q^{61} +10.1908 q^{62} +(2.36026 + 1.85180i) q^{63} +1.00000i q^{64} +(1.09936 - 0.503526i) q^{65} +(-4.15164 + 4.68294i) q^{66} +(-9.68048 - 9.68048i) q^{67} -5.26383i q^{68} +(1.71017 - 1.92903i) q^{69} +(0.237140 + 0.237140i) q^{70} +(4.94294 - 4.94294i) q^{71} +(-1.85180 + 2.36026i) q^{72} +(-4.00560 + 4.00560i) q^{73} +4.00692i q^{74} +(-6.33452 - 5.61584i) q^{75} +(0.906991 - 0.906991i) q^{76} -3.61322 q^{77} +(-1.82063 + 5.97372i) q^{78} -8.50862 q^{79} +(-0.237140 + 0.237140i) q^{80} +(-8.74148 + 2.14164i) q^{81} -1.87142i q^{82} +(-3.05668 + 3.05668i) q^{83} +(-1.72893 + 0.103975i) q^{84} +(1.24827 - 1.24827i) q^{85} +(1.95023 + 1.95023i) q^{86} +(9.54487 + 8.46196i) q^{87} -3.61322i q^{88} +(1.62293 + 1.62293i) q^{89} +(-0.998850 + 0.120575i) q^{90} +(-3.27807 + 1.50142i) q^{91} +1.48838i q^{92} +(-17.6191 + 1.05959i) q^{93} -3.21400 q^{94} +0.430168 q^{95} +(-0.103975 - 1.72893i) q^{96} +(-4.86305 - 4.86305i) q^{97} +(-0.707107 - 0.707107i) q^{98} +(6.69097 - 8.52813i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$20q - 4q^{5} - 4q^{6} - 8q^{9} + O(q^{10})$$ $$20q - 4q^{5} - 4q^{6} - 8q^{9} - 16q^{11} - 8q^{12} + 4q^{13} - 4q^{15} - 20q^{16} + 12q^{17} - 8q^{18} + 12q^{19} + 4q^{20} + 4q^{21} - 12q^{22} - 4q^{23} + 4q^{24} + 24q^{27} + 12q^{30} - 8q^{31} - 48q^{33} - 4q^{34} + 32q^{37} - 4q^{38} - 16q^{39} - 4q^{40} + 8q^{41} + 8q^{42} - 16q^{44} + 16q^{45} - 8q^{46} + 32q^{50} - 8q^{51} - 8q^{52} + 28q^{54} + 28q^{55} + 20q^{56} + 36q^{57} - 4q^{58} + 20q^{59} - 4q^{60} - 4q^{61} + 48q^{62} + 8q^{63} + 52q^{65} - 36q^{67} + 68q^{69} - 4q^{70} - 28q^{71} - 16q^{72} - 24q^{73} - 76q^{75} + 12q^{76} + 12q^{77} + 40q^{78} - 64q^{79} + 4q^{80} + 32q^{81} - 24q^{83} - 4q^{84} + 24q^{85} + 4q^{86} + 4q^{87} - 4q^{89} - 8q^{90} - 32q^{93} - 40q^{94} - 76q^{95} + 4q^{96} + 32q^{97} - 4q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/546\mathbb{Z}\right)^\times$$.

 $$n$$ $$157$$ $$365$$ $$379$$ $$\chi(n)$$ $$1$$ $$-1$$ $$e\left(\frac{1}{4}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 0.707107 0.707107i 0.500000 0.500000i
$$3$$ −1.14901 + 1.29606i −0.663384 + 0.748279i
$$4$$ 1.00000i 0.500000i
$$5$$ 0.237140 0.237140i 0.106052 0.106052i −0.652090 0.758142i $$-0.726107\pi$$
0.758142 + 0.652090i $$0.226107\pi$$
$$6$$ 0.103975 + 1.72893i 0.0424477 + 0.705832i
$$7$$ −0.707107 + 0.707107i −0.267261 + 0.267261i
$$8$$ −0.707107 0.707107i −0.250000 0.250000i
$$9$$ −0.359531 2.97838i −0.119844 0.992793i
$$10$$ 0.335367i 0.106052i
$$11$$ 2.55493 + 2.55493i 0.770341 + 0.770341i 0.978166 0.207825i $$-0.0666386\pi$$
−0.207825 + 0.978166i $$0.566639\pi$$
$$12$$ 1.29606 + 1.14901i 0.374140 + 0.331692i
$$13$$ 3.37961 + 1.25628i 0.937335 + 0.348430i
$$14$$ 1.00000i 0.267261i
$$15$$ 0.0348698 + 0.579825i 0.00900335 + 0.149710i
$$16$$ −1.00000 −0.250000
$$17$$ 5.26383 1.27667 0.638334 0.769760i $$-0.279624\pi$$
0.638334 + 0.769760i $$0.279624\pi$$
$$18$$ −2.36026 1.85180i −0.556318 0.436475i
$$19$$ 0.906991 + 0.906991i 0.208078 + 0.208078i 0.803450 0.595372i $$-0.202995\pi$$
−0.595372 + 0.803450i $$0.702995\pi$$
$$20$$ −0.237140 0.237140i −0.0530262 0.0530262i
$$21$$ −0.103975 1.72893i −0.0226892 0.377283i
$$22$$ 3.61322 0.770341
$$23$$ −1.48838 −0.310349 −0.155175 0.987887i $$-0.549594\pi$$
−0.155175 + 0.987887i $$0.549594\pi$$
$$24$$ 1.72893 0.103975i 0.352916 0.0212238i
$$25$$ 4.88753i 0.977506i
$$26$$ 3.27807 1.50142i 0.642882 0.294452i
$$27$$ 4.27326 + 2.95623i 0.822389 + 0.568926i
$$28$$ 0.707107 + 0.707107i 0.133631 + 0.133631i
$$29$$ 7.36454i 1.36756i −0.729688 0.683780i $$-0.760335\pi$$
0.729688 0.683780i $$-0.239665\pi$$
$$30$$ 0.434655 + 0.385342i 0.0793568 + 0.0703534i
$$31$$ 7.20598 + 7.20598i 1.29423 + 1.29423i 0.932143 + 0.362089i $$0.117936\pi$$
0.362089 + 0.932143i $$0.382064\pi$$
$$32$$ −0.707107 + 0.707107i −0.125000 + 0.125000i
$$33$$ −6.24699 + 0.375685i −1.08746 + 0.0653983i
$$34$$ 3.72209 3.72209i 0.638334 0.638334i
$$35$$ 0.335367i 0.0566874i
$$36$$ −2.97838 + 0.359531i −0.496396 + 0.0599218i
$$37$$ −2.83332 + 2.83332i −0.465795 + 0.465795i −0.900549 0.434754i $$-0.856835\pi$$
0.434754 + 0.900549i $$0.356835\pi$$
$$38$$ 1.28268 0.208078
$$39$$ −5.51143 + 2.93668i −0.882536 + 0.470245i
$$40$$ −0.335367 −0.0530262
$$41$$ 1.32329 1.32329i 0.206664 0.206664i −0.596184 0.802848i $$-0.703317\pi$$
0.802848 + 0.596184i $$0.203317\pi$$
$$42$$ −1.29606 1.14901i −0.199986 0.177297i
$$43$$ 2.75805i 0.420598i 0.977637 + 0.210299i $$0.0674437\pi$$
−0.977637 + 0.210299i $$0.932556\pi$$
$$44$$ 2.55493 2.55493i 0.385170 0.385170i
$$45$$ −0.791553 0.621034i −0.117998 0.0925783i
$$46$$ −1.05244 + 1.05244i −0.155175 + 0.155175i
$$47$$ −2.27264 2.27264i −0.331499 0.331499i 0.521657 0.853156i $$-0.325314\pi$$
−0.853156 + 0.521657i $$0.825314\pi$$
$$48$$ 1.14901 1.29606i 0.165846 0.187070i
$$49$$ 1.00000i 0.142857i
$$50$$ 3.45600 + 3.45600i 0.488753 + 0.488753i
$$51$$ −6.04822 + 6.82223i −0.846920 + 0.955304i
$$52$$ 1.25628 3.37961i 0.174215 0.468667i
$$53$$ 8.80608i 1.20961i −0.796374 0.604804i $$-0.793251\pi$$
0.796374 0.604804i $$-0.206749\pi$$
$$54$$ 5.11202 0.931280i 0.695657 0.126731i
$$55$$ 1.21175 0.163393
$$56$$ 1.00000 0.133631
$$57$$ −2.21766 + 0.133367i −0.293736 + 0.0176648i
$$58$$ −5.20752 5.20752i −0.683780 0.683780i
$$59$$ −0.785394 0.785394i −0.102250 0.102250i 0.654131 0.756381i $$-0.273034\pi$$
−0.756381 + 0.654131i $$0.773034\pi$$
$$60$$ 0.579825 0.0348698i 0.0748551 0.00450167i
$$61$$ 8.74912 1.12021 0.560105 0.828422i $$-0.310761\pi$$
0.560105 + 0.828422i $$0.310761\pi$$
$$62$$ 10.1908 1.29423
$$63$$ 2.36026 + 1.85180i 0.297365 + 0.233305i
$$64$$ 1.00000i 0.125000i
$$65$$ 1.09936 0.503526i 0.136358 0.0624547i
$$66$$ −4.15164 + 4.68294i −0.511032 + 0.576430i
$$67$$ −9.68048 9.68048i −1.18266 1.18266i −0.979053 0.203606i $$-0.934734\pi$$
−0.203606 0.979053i $$-0.565266\pi$$
$$68$$ 5.26383i 0.638334i
$$69$$ 1.71017 1.92903i 0.205881 0.232228i
$$70$$ 0.237140 + 0.237140i 0.0283437 + 0.0283437i
$$71$$ 4.94294 4.94294i 0.586619 0.586619i −0.350095 0.936714i $$-0.613851\pi$$
0.936714 + 0.350095i $$0.113851\pi$$
$$72$$ −1.85180 + 2.36026i −0.218237 + 0.278159i
$$73$$ −4.00560 + 4.00560i −0.468821 + 0.468821i −0.901532 0.432712i $$-0.857557\pi$$
0.432712 + 0.901532i $$0.357557\pi$$
$$74$$ 4.00692i 0.465795i
$$75$$ −6.33452 5.61584i −0.731447 0.648462i
$$76$$ 0.906991 0.906991i 0.104039 0.104039i
$$77$$ −3.61322 −0.411764
$$78$$ −1.82063 + 5.97372i −0.206145 + 0.676390i
$$79$$ −8.50862 −0.957294 −0.478647 0.878007i $$-0.658873\pi$$
−0.478647 + 0.878007i $$0.658873\pi$$
$$80$$ −0.237140 + 0.237140i −0.0265131 + 0.0265131i
$$81$$ −8.74148 + 2.14164i −0.971275 + 0.237960i
$$82$$ 1.87142i 0.206664i
$$83$$ −3.05668 + 3.05668i −0.335515 + 0.335515i −0.854676 0.519162i $$-0.826244\pi$$
0.519162 + 0.854676i $$0.326244\pi$$
$$84$$ −1.72893 + 0.103975i −0.188641 + 0.0113446i
$$85$$ 1.24827 1.24827i 0.135394 0.135394i
$$86$$ 1.95023 + 1.95023i 0.210299 + 0.210299i
$$87$$ 9.54487 + 8.46196i 1.02332 + 0.907218i
$$88$$ 3.61322i 0.385170i
$$89$$ 1.62293 + 1.62293i 0.172030 + 0.172030i 0.787871 0.615840i $$-0.211183\pi$$
−0.615840 + 0.787871i $$0.711183\pi$$
$$90$$ −0.998850 + 0.120575i −0.105288 + 0.0127097i
$$91$$ −3.27807 + 1.50142i −0.343635 + 0.157391i
$$92$$ 1.48838i 0.155175i
$$93$$ −17.6191 + 1.05959i −1.82702 + 0.109874i
$$94$$ −3.21400 −0.331499
$$95$$ 0.430168 0.0441343
$$96$$ −0.103975 1.72893i −0.0106119 0.176458i
$$97$$ −4.86305 4.86305i −0.493768 0.493768i 0.415723 0.909491i $$-0.363529\pi$$
−0.909491 + 0.415723i $$0.863529\pi$$
$$98$$ −0.707107 0.707107i −0.0714286 0.0714286i
$$99$$ 6.69097 8.52813i 0.672468 0.857109i
$$100$$ 4.88753 0.488753
$$101$$ −18.5302 −1.84382 −0.921911 0.387402i $$-0.873373\pi$$
−0.921911 + 0.387402i $$0.873373\pi$$
$$102$$ 0.547308 + 9.10078i 0.0541915 + 0.901112i
$$103$$ 5.76073i 0.567622i 0.958880 + 0.283811i $$0.0915988\pi$$
−0.958880 + 0.283811i $$0.908401\pi$$
$$104$$ −1.50142 3.27807i −0.147226 0.321441i
$$105$$ −0.434655 0.385342i −0.0424180 0.0376055i
$$106$$ −6.22684 6.22684i −0.604804 0.604804i
$$107$$ 18.3125i 1.77034i 0.465270 + 0.885169i $$0.345957\pi$$
−0.465270 + 0.885169i $$0.654043\pi$$
$$108$$ 2.95623 4.27326i 0.284463 0.411194i
$$109$$ −6.72226 6.72226i −0.643876 0.643876i 0.307630 0.951506i $$-0.400464\pi$$
−0.951506 + 0.307630i $$0.900464\pi$$
$$110$$ 0.856839 0.856839i 0.0816964 0.0816964i
$$111$$ −0.416620 6.92768i −0.0395439 0.657546i
$$112$$ 0.707107 0.707107i 0.0668153 0.0668153i
$$113$$ 15.8812i 1.49398i −0.664835 0.746990i $$-0.731498\pi$$
0.664835 0.746990i $$-0.268502\pi$$
$$114$$ −1.47382 + 1.66243i −0.138036 + 0.155700i
$$115$$ −0.352955 + 0.352955i −0.0329132 + 0.0329132i
$$116$$ −7.36454 −0.683780
$$117$$ 2.52661 10.5174i 0.233585 0.972336i
$$118$$ −1.11071 −0.102250
$$119$$ −3.72209 + 3.72209i −0.341204 + 0.341204i
$$120$$ 0.385342 0.434655i 0.0351767 0.0396784i
$$121$$ 2.05534i 0.186849i
$$122$$ 6.18656 6.18656i 0.560105 0.560105i
$$123$$ 0.194581 + 3.23555i 0.0175448 + 0.291739i
$$124$$ 7.20598 7.20598i 0.647116 0.647116i
$$125$$ 2.34473 + 2.34473i 0.209719 + 0.209719i
$$126$$ 2.97838 0.359531i 0.265335 0.0320295i
$$127$$ 8.38087i 0.743682i 0.928297 + 0.371841i $$0.121273\pi$$
−0.928297 + 0.371841i $$0.878727\pi$$
$$128$$ 0.707107 + 0.707107i 0.0625000 + 0.0625000i
$$129$$ −3.57459 3.16903i −0.314725 0.279018i
$$130$$ 0.421316 1.13341i 0.0369518 0.0994066i
$$131$$ 14.5927i 1.27497i −0.770464 0.637484i $$-0.779975\pi$$
0.770464 0.637484i $$-0.220025\pi$$
$$132$$ 0.375685 + 6.24699i 0.0326992 + 0.543731i
$$133$$ −1.28268 −0.111222
$$134$$ −13.6903 −1.18266
$$135$$ 1.71440 0.312321i 0.147552 0.0268803i
$$136$$ −3.72209 3.72209i −0.319167 0.319167i
$$137$$ 11.5852 + 11.5852i 0.989790 + 0.989790i 0.999948 0.0101587i $$-0.00323368\pi$$
−0.0101587 + 0.999948i $$0.503234\pi$$
$$138$$ −0.154755 2.57330i −0.0131736 0.219054i
$$139$$ 11.9801 1.01614 0.508070 0.861316i $$-0.330359\pi$$
0.508070 + 0.861316i $$0.330359\pi$$
$$140$$ 0.335367 0.0283437
$$141$$ 5.55677 0.334176i 0.467965 0.0281427i
$$142$$ 6.99038i 0.586619i
$$143$$ 5.42495 + 11.8444i 0.453657 + 0.990477i
$$144$$ 0.359531 + 2.97838i 0.0299609 + 0.248198i
$$145$$ −1.74643 1.74643i −0.145033 0.145033i
$$146$$ 5.66478i 0.468821i
$$147$$ 1.29606 + 1.14901i 0.106897 + 0.0947691i
$$148$$ 2.83332 + 2.83332i 0.232898 + 0.232898i
$$149$$ 2.17899 2.17899i 0.178510 0.178510i −0.612196 0.790706i $$-0.709714\pi$$
0.790706 + 0.612196i $$0.209714\pi$$
$$150$$ −8.45018 + 0.508181i −0.689954 + 0.0414928i
$$151$$ 9.34711 9.34711i 0.760657 0.760657i −0.215784 0.976441i $$-0.569231\pi$$
0.976441 + 0.215784i $$0.0692307\pi$$
$$152$$ 1.28268i 0.104039i
$$153$$ −1.89251 15.6777i −0.153000 1.26747i
$$154$$ −2.55493 + 2.55493i −0.205882 + 0.205882i
$$155$$ 3.41766 0.274513
$$156$$ 2.93668 + 5.51143i 0.235123 + 0.441268i
$$157$$ −17.6346 −1.40740 −0.703698 0.710499i $$-0.748469\pi$$
−0.703698 + 0.710499i $$0.748469\pi$$
$$158$$ −6.01650 + 6.01650i −0.478647 + 0.478647i
$$159$$ 11.4132 + 10.1183i 0.905125 + 0.802435i
$$160$$ 0.335367i 0.0265131i
$$161$$ 1.05244 1.05244i 0.0829443 0.0829443i
$$162$$ −4.66679 + 7.69552i −0.366658 + 0.604617i
$$163$$ −2.26457 + 2.26457i −0.177375 + 0.177375i −0.790210 0.612836i $$-0.790029\pi$$
0.612836 + 0.790210i $$0.290029\pi$$
$$164$$ −1.32329 1.32329i −0.103332 0.103332i
$$165$$ −1.39232 + 1.57050i −0.108392 + 0.122263i
$$166$$ 4.32280i 0.335515i
$$167$$ 12.4482 + 12.4482i 0.963272 + 0.963272i 0.999349 0.0360774i $$-0.0114863\pi$$
−0.0360774 + 0.999349i $$0.511486\pi$$
$$168$$ −1.14901 + 1.29606i −0.0886484 + 0.0999930i
$$169$$ 9.84351 + 8.49149i 0.757193 + 0.653192i
$$170$$ 1.76532i 0.135394i
$$171$$ 2.37527 3.02745i 0.181641 0.231515i
$$172$$ 2.75805 0.210299
$$173$$ −12.8517 −0.977096 −0.488548 0.872537i $$-0.662473\pi$$
−0.488548 + 0.872537i $$0.662473\pi$$
$$174$$ 12.7328 0.765729i 0.965267 0.0580497i
$$175$$ −3.45600 3.45600i −0.261249 0.261249i
$$176$$ −2.55493 2.55493i −0.192585 0.192585i
$$177$$ 1.92034 0.115487i 0.144342 0.00868051i
$$178$$ 2.29517 0.172030
$$179$$ −13.7258 −1.02592 −0.512959 0.858413i $$-0.671451\pi$$
−0.512959 + 0.858413i $$0.671451\pi$$
$$180$$ −0.621034 + 0.791553i −0.0462892 + 0.0589989i
$$181$$ 17.7979i 1.32291i 0.749986 + 0.661454i $$0.230060\pi$$
−0.749986 + 0.661454i $$0.769940\pi$$
$$182$$ −1.25628 + 3.37961i −0.0931219 + 0.250513i
$$183$$ −10.0529 + 11.3394i −0.743129 + 0.838230i
$$184$$ 1.05244 + 1.05244i 0.0775873 + 0.0775873i
$$185$$ 1.34379i 0.0987974i
$$186$$ −11.7094 + 13.2079i −0.858573 + 0.968447i
$$187$$ 13.4487 + 13.4487i 0.983469 + 0.983469i
$$188$$ −2.27264 + 2.27264i −0.165749 + 0.165749i
$$189$$ −5.11202 + 0.931280i −0.371845 + 0.0677406i
$$190$$ 0.304175 0.304175i 0.0220672 0.0220672i
$$191$$ 0.449102i 0.0324959i 0.999868 + 0.0162479i $$0.00517211\pi$$
−0.999868 + 0.0162479i $$0.994828\pi$$
$$192$$ −1.29606 1.14901i −0.0935349 0.0829230i
$$193$$ −5.53933 + 5.53933i −0.398730 + 0.398730i −0.877785 0.479055i $$-0.840979\pi$$
0.479055 + 0.877785i $$0.340979\pi$$
$$194$$ −6.87739 −0.493768
$$195$$ −0.610578 + 2.00339i −0.0437244 + 0.143466i
$$196$$ −1.00000 −0.0714286
$$197$$ 15.8126 15.8126i 1.12660 1.12660i 0.135878 0.990726i $$-0.456614\pi$$
0.990726 0.135878i $$-0.0433855\pi$$
$$198$$ −1.29906 10.7615i −0.0923204 0.764789i
$$199$$ 26.3160i 1.86549i −0.360531 0.932747i $$-0.617405\pi$$
0.360531 0.932747i $$-0.382595\pi$$
$$200$$ 3.45600 3.45600i 0.244376 0.244376i
$$201$$ 23.6695 1.42345i 1.66952 0.100402i
$$202$$ −13.1028 + 13.1028i −0.921911 + 0.921911i
$$203$$ 5.20752 + 5.20752i 0.365496 + 0.365496i
$$204$$ 6.82223 + 6.04822i 0.477652 + 0.423460i
$$205$$ 0.627612i 0.0438343i
$$206$$ 4.07345 + 4.07345i 0.283811 + 0.283811i
$$207$$ 0.535119 + 4.43296i 0.0371933 + 0.308112i
$$208$$ −3.37961 1.25628i −0.234334 0.0871076i
$$209$$ 4.63460i 0.320582i
$$210$$ −0.579825 + 0.0348698i −0.0400117 + 0.00240625i
$$211$$ −11.4416 −0.787669 −0.393835 0.919181i $$-0.628852\pi$$
−0.393835 + 0.919181i $$0.628852\pi$$
$$212$$ −8.80608 −0.604804
$$213$$ 0.726825 + 12.0859i 0.0498012 + 0.828109i
$$214$$ 12.9489 + 12.9489i 0.885169 + 0.885169i
$$215$$ 0.654044 + 0.654044i 0.0446054 + 0.0446054i
$$216$$ −0.931280 5.11202i −0.0633656 0.347829i
$$217$$ −10.1908 −0.691796
$$218$$ −9.50671 −0.643876
$$219$$ −0.588996 9.79399i −0.0398007 0.661817i
$$220$$ 1.21175i 0.0816964i
$$221$$ 17.7897 + 6.61287i 1.19666 + 0.444829i
$$222$$ −5.19320 4.60401i −0.348545 0.309001i
$$223$$ −9.06520 9.06520i −0.607051 0.607051i 0.335124 0.942174i $$-0.391222\pi$$
−0.942174 + 0.335124i $$0.891222\pi$$
$$224$$ 1.00000i 0.0668153i
$$225$$ 14.5569 1.75722i 0.970461 0.117148i
$$226$$ −11.2297 11.2297i −0.746990 0.746990i
$$227$$ 1.95892 1.95892i 0.130018 0.130018i −0.639103 0.769121i $$-0.720694\pi$$
0.769121 + 0.639103i $$0.220694\pi$$
$$228$$ 0.133367 + 2.21766i 0.00883242 + 0.146868i
$$229$$ 19.6908 19.6908i 1.30120 1.30120i 0.373622 0.927581i $$-0.378116\pi$$
0.927581 0.373622i $$-0.121884\pi$$
$$230$$ 0.499154i 0.0329132i
$$231$$ 4.15164 4.68294i 0.273158 0.308115i
$$232$$ −5.20752 + 5.20752i −0.341890 + 0.341890i
$$233$$ 8.08237 0.529494 0.264747 0.964318i $$-0.414712\pi$$
0.264747 + 0.964318i $$0.414712\pi$$
$$234$$ −5.65036 9.22353i −0.369375 0.602961i
$$235$$ −1.07787 −0.0703125
$$236$$ −0.785394 + 0.785394i −0.0511248 + 0.0511248i
$$237$$ 9.77652 11.0277i 0.635053 0.716323i
$$238$$ 5.26383i 0.341204i
$$239$$ 17.1098 17.1098i 1.10674 1.10674i 0.113167 0.993576i $$-0.463901\pi$$
0.993576 0.113167i $$-0.0360994\pi$$
$$240$$ −0.0348698 0.579825i −0.00225084 0.0374275i
$$241$$ −1.64646 + 1.64646i −0.106058 + 0.106058i −0.758144 0.652087i $$-0.773894\pi$$
0.652087 + 0.758144i $$0.273894\pi$$
$$242$$ 1.45335 + 1.45335i 0.0934247 + 0.0934247i
$$243$$ 7.26840 13.7902i 0.466268 0.884644i
$$244$$ 8.74912i 0.560105i
$$245$$ −0.237140 0.237140i −0.0151503 0.0151503i
$$246$$ 2.42547 + 2.15029i 0.154642 + 0.137097i
$$247$$ 1.92584 + 4.20471i 0.122538 + 0.267539i
$$248$$ 10.1908i 0.647116i
$$249$$ −0.449464 7.47381i −0.0284836 0.473633i
$$250$$ 3.31595 0.209719
$$251$$ −5.59492 −0.353148 −0.176574 0.984287i $$-0.556501\pi$$
−0.176574 + 0.984287i $$0.556501\pi$$
$$252$$ 1.85180 2.36026i 0.116653 0.148682i
$$253$$ −3.80271 3.80271i −0.239074 0.239074i
$$254$$ 5.92617 + 5.92617i 0.371841 + 0.371841i
$$255$$ 0.183549 + 3.05210i 0.0114943 + 0.191130i
$$256$$ 1.00000 0.0625000
$$257$$ 9.37697 0.584920 0.292460 0.956278i $$-0.405526\pi$$
0.292460 + 0.956278i $$0.405526\pi$$
$$258$$ −4.76846 + 0.286768i −0.296871 + 0.0178534i
$$259$$ 4.00692i 0.248978i
$$260$$ −0.503526 1.09936i −0.0312274 0.0681792i
$$261$$ −21.9344 + 2.64778i −1.35770 + 0.163893i
$$262$$ −10.3186 10.3186i −0.637484 0.637484i
$$263$$ 7.28774i 0.449382i 0.974430 + 0.224691i $$0.0721372\pi$$
−0.974430 + 0.224691i $$0.927863\pi$$
$$264$$ 4.68294 + 4.15164i 0.288215 + 0.255516i
$$265$$ −2.08828 2.08828i −0.128282 0.128282i
$$266$$ −0.906991 + 0.906991i −0.0556112 + 0.0556112i
$$267$$ −3.96818 + 0.238641i −0.242849 + 0.0146046i
$$268$$ −9.68048 + 9.68048i −0.591330 + 0.591330i
$$269$$ 16.4964i 1.00580i −0.864344 0.502901i $$-0.832266\pi$$
0.864344 0.502901i $$-0.167734\pi$$
$$270$$ 0.991421 1.43311i 0.0603360 0.0872162i
$$271$$ −2.57036 + 2.57036i −0.156138 + 0.156138i −0.780853 0.624715i $$-0.785215\pi$$
0.624715 + 0.780853i $$0.285215\pi$$
$$272$$ −5.26383 −0.319167
$$273$$ 1.82063 5.97372i 0.110189 0.361546i
$$274$$ 16.3839 0.989790
$$275$$ −12.4873 + 12.4873i −0.753012 + 0.753012i
$$276$$ −1.92903 1.71017i −0.116114 0.102940i
$$277$$ 7.42795i 0.446302i 0.974784 + 0.223151i $$0.0716344\pi$$
−0.974784 + 0.223151i $$0.928366\pi$$
$$278$$ 8.47121 8.47121i 0.508070 0.508070i
$$279$$ 18.8714 24.0529i 1.12980 1.44001i
$$280$$ 0.237140 0.237140i 0.0141718 0.0141718i
$$281$$ −9.42247 9.42247i −0.562097 0.562097i 0.367805 0.929903i $$-0.380109\pi$$
−0.929903 + 0.367805i $$0.880109\pi$$
$$282$$ 3.69293 4.16553i 0.219911 0.248054i
$$283$$ 21.5878i 1.28326i 0.767014 + 0.641631i $$0.221742\pi$$
−0.767014 + 0.641631i $$0.778258\pi$$
$$284$$ −4.94294 4.94294i −0.293310 0.293310i
$$285$$ −0.494269 + 0.557523i −0.0292780 + 0.0330248i
$$286$$ 12.2113 + 4.53922i 0.722067 + 0.268410i
$$287$$ 1.87142i 0.110466i
$$288$$ 2.36026 + 1.85180i 0.139080 + 0.109119i
$$289$$ 10.7079 0.629879
$$290$$ −2.46982 −0.145033
$$291$$ 11.8905 0.715078i 0.697034 0.0419186i
$$292$$ 4.00560 + 4.00560i 0.234410 + 0.234410i
$$293$$ −3.94771 3.94771i −0.230628 0.230628i 0.582327 0.812955i $$-0.302142\pi$$
−0.812955 + 0.582327i $$0.802142\pi$$
$$294$$ 1.72893 0.103975i 0.100833 0.00606395i
$$295$$ −0.372497 −0.0216876
$$296$$ 4.00692 0.232898
$$297$$ 3.36492 + 18.4708i 0.195252 + 1.07179i
$$298$$ 3.08156i 0.178510i
$$299$$ −5.03015 1.86983i −0.290901 0.108135i
$$300$$ −5.61584 + 6.33452i −0.324231 + 0.365724i
$$301$$ −1.95023 1.95023i −0.112410 0.112410i
$$302$$ 13.2188i 0.760657i
$$303$$ 21.2915 24.0162i 1.22316 1.37969i
$$304$$ −0.906991 0.906991i −0.0520195 0.0520195i
$$305$$ 2.07477 2.07477i 0.118801 0.118801i
$$306$$ −12.4240 9.74759i −0.710233 0.557233i
$$307$$ −11.8118 + 11.8118i −0.674136 + 0.674136i −0.958667 0.284531i $$-0.908162\pi$$
0.284531 + 0.958667i $$0.408162\pi$$
$$308$$ 3.61322i 0.205882i
$$309$$ −7.46624 6.61917i −0.424740 0.376551i
$$310$$ 2.41665 2.41665i 0.137256 0.137256i
$$311$$ −20.8401 −1.18174 −0.590868 0.806769i $$-0.701214\pi$$
−0.590868 + 0.806769i $$0.701214\pi$$
$$312$$ 5.97372 + 1.82063i 0.338195 + 0.103073i
$$313$$ 9.67697 0.546975 0.273487 0.961876i $$-0.411823\pi$$
0.273487 + 0.961876i $$0.411823\pi$$
$$314$$ −12.4696 + 12.4696i −0.703698 + 0.703698i
$$315$$ 0.998850 0.120575i 0.0562788 0.00679362i
$$316$$ 8.50862i 0.478647i
$$317$$ −14.4793 + 14.4793i −0.813239 + 0.813239i −0.985118 0.171879i $$-0.945016\pi$$
0.171879 + 0.985118i $$0.445016\pi$$
$$318$$ 15.2251 0.915613i 0.853780 0.0513450i
$$319$$ 18.8159 18.8159i 1.05349 1.05349i
$$320$$ 0.237140 + 0.237140i 0.0132565 + 0.0132565i
$$321$$ −23.7341 21.0414i −1.32471 1.17441i
$$322$$ 1.48838i 0.0829443i
$$323$$ 4.77425 + 4.77425i 0.265646 + 0.265646i
$$324$$ 2.14164 + 8.74148i 0.118980 + 0.485638i
$$325$$ −6.14012 + 16.5179i −0.340593 + 0.916250i
$$326$$ 3.20259i 0.177375i
$$327$$ 16.4364 0.988462i 0.908936 0.0546620i
$$328$$ −1.87142 −0.103332
$$329$$ 3.21400 0.177194
$$330$$ 0.125992 + 2.09503i 0.00693565 + 0.115328i
$$331$$ 23.9019 + 23.9019i 1.31377 + 1.31377i 0.918617 + 0.395149i $$0.129307\pi$$
0.395149 + 0.918617i $$0.370693\pi$$
$$332$$ 3.05668 + 3.05668i 0.167757 + 0.167757i
$$333$$ 9.45737 + 7.42004i 0.518261 + 0.406616i
$$334$$ 17.6044 0.963272
$$335$$ −4.59126 −0.250848
$$336$$ 0.103975 + 1.72893i 0.00567231 + 0.0943207i
$$337$$ 19.1386i 1.04254i −0.853390 0.521272i $$-0.825458\pi$$
0.853390 0.521272i $$-0.174542\pi$$
$$338$$ 12.9648 0.956020i 0.705192 0.0520006i
$$339$$ 20.5830 + 18.2478i 1.11791 + 0.991083i
$$340$$ −1.24827 1.24827i −0.0676968 0.0676968i
$$341$$ 36.8216i 1.99400i
$$342$$ −0.461162 3.82030i −0.0249368 0.206578i
$$343$$ 0.707107 + 0.707107i 0.0381802 + 0.0381802i
$$344$$ 1.95023 1.95023i 0.105149 0.105149i
$$345$$ −0.0518996 0.863001i −0.00279418 0.0464624i
$$346$$ −9.08752 + 9.08752i −0.488548 + 0.488548i
$$347$$ 22.2918i 1.19669i −0.801240 0.598343i $$-0.795826\pi$$
0.801240 0.598343i $$-0.204174\pi$$
$$348$$ 8.46196 9.54487i 0.453609 0.511659i
$$349$$ −11.5388 + 11.5388i −0.617658 + 0.617658i −0.944930 0.327272i $$-0.893871\pi$$
0.327272 + 0.944930i $$0.393871\pi$$
$$350$$ −4.88753 −0.261249
$$351$$ 10.7281 + 15.3593i 0.572622 + 0.819819i
$$352$$ −3.61322 −0.192585
$$353$$ −10.9867 + 10.9867i −0.584765 + 0.584765i −0.936209 0.351444i $$-0.885691\pi$$
0.351444 + 0.936209i $$0.385691\pi$$
$$354$$ 1.27623 1.43955i 0.0678307 0.0765112i
$$355$$ 2.34434i 0.124425i
$$356$$ 1.62293 1.62293i 0.0860152 0.0860152i
$$357$$ −0.547308 9.10078i −0.0289666 0.481665i
$$358$$ −9.70564 + 9.70564i −0.512959 + 0.512959i
$$359$$ −12.3937 12.3937i −0.654116 0.654116i 0.299865 0.953982i $$-0.403058\pi$$
−0.953982 + 0.299865i $$0.903058\pi$$
$$360$$ 0.120575 + 0.998850i 0.00635485 + 0.0526440i
$$361$$ 17.3547i 0.913407i
$$362$$ 12.5850 + 12.5850i 0.661454 + 0.661454i
$$363$$ −2.66384 2.36162i −0.139816 0.123953i
$$364$$ 1.50142 + 3.27807i 0.0786957 + 0.171818i
$$365$$ 1.89978i 0.0994390i
$$366$$ 0.909691 + 15.1266i 0.0475503 + 0.790679i
$$367$$ −19.3712 −1.01117 −0.505583 0.862778i $$-0.668723\pi$$
−0.505583 + 0.862778i $$0.668723\pi$$
$$368$$ 1.48838 0.0775873
$$369$$ −4.41703 3.46550i −0.229941 0.180407i
$$370$$ 0.950203 + 0.950203i 0.0493987 + 0.0493987i
$$371$$ 6.22684 + 6.22684i 0.323281 + 0.323281i
$$372$$ 1.05959 + 17.6191i 0.0549372 + 0.913510i
$$373$$ 26.6583 1.38031 0.690157 0.723659i $$-0.257541\pi$$
0.690157 + 0.723659i $$0.257541\pi$$
$$374$$ 19.0194 0.983469
$$375$$ −5.73304 + 0.344776i −0.296053 + 0.0178042i
$$376$$ 3.21400i 0.165749i
$$377$$ 9.25195 24.8893i 0.476499 1.28186i
$$378$$ −2.95623 + 4.27326i −0.152052 + 0.219793i
$$379$$ −7.17262 7.17262i −0.368433 0.368433i 0.498473 0.866905i $$-0.333894\pi$$
−0.866905 + 0.498473i $$0.833894\pi$$
$$380$$ 0.430168i 0.0220672i
$$381$$ −10.8621 9.62974i −0.556482 0.493346i
$$382$$ 0.317563 + 0.317563i 0.0162479 + 0.0162479i
$$383$$ 1.75953 1.75953i 0.0899076 0.0899076i −0.660723 0.750630i $$-0.729750\pi$$
0.750630 + 0.660723i $$0.229750\pi$$
$$384$$ −1.72893 + 0.103975i −0.0882289 + 0.00530596i
$$385$$ −0.856839 + 0.856839i −0.0436686 + 0.0436686i
$$386$$ 7.83380i 0.398730i
$$387$$ 8.21450 0.991602i 0.417567 0.0504060i
$$388$$ −4.86305 + 4.86305i −0.246884 + 0.246884i
$$389$$ −23.3995 −1.18640 −0.593200 0.805055i $$-0.702136\pi$$
−0.593200 + 0.805055i $$0.702136\pi$$
$$390$$ 0.984865 + 1.84835i 0.0498706 + 0.0935950i
$$391$$ −7.83459 −0.396212
$$392$$ −0.707107 + 0.707107i −0.0357143 + 0.0357143i
$$393$$ 18.9130 + 16.7672i 0.954032 + 0.845793i
$$394$$ 22.3624i 1.12660i
$$395$$ −2.01774 + 2.01774i −0.101523 + 0.101523i
$$396$$ −8.52813 6.69097i −0.428555 0.336234i
$$397$$ 12.7022 12.7022i 0.637506 0.637506i −0.312434 0.949940i $$-0.601144\pi$$
0.949940 + 0.312434i $$0.101144\pi$$
$$398$$ −18.6082 18.6082i −0.932747 0.932747i
$$399$$ 1.47382 1.66243i 0.0737831 0.0832254i
$$400$$ 4.88753i 0.244376i
$$401$$ −4.63460 4.63460i −0.231441 0.231441i 0.581853 0.813294i $$-0.302328\pi$$
−0.813294 + 0.581853i $$0.802328\pi$$
$$402$$ 15.7303 17.7434i 0.784557 0.884959i
$$403$$ 15.3006 + 33.4062i 0.762179 + 1.66408i
$$404$$ 18.5302i 0.921911i
$$405$$ −1.56509 + 2.58082i −0.0777698 + 0.128242i
$$406$$ 7.36454 0.365496
$$407$$ −14.4779 −0.717642
$$408$$ 9.10078 0.547308i 0.450556 0.0270958i
$$409$$ 20.9632 + 20.9632i 1.03656 + 1.03656i 0.999306 + 0.0372568i $$0.0118619\pi$$
0.0372568 + 0.999306i $$0.488138\pi$$
$$410$$ −0.443789 0.443789i −0.0219172 0.0219172i
$$411$$ −28.3266 + 1.70352i −1.39725 + 0.0840285i
$$412$$ 5.76073 0.283811
$$413$$ 1.11071 0.0546547
$$414$$ 3.51297 + 2.75619i 0.172653 + 0.135459i
$$415$$ 1.44973i 0.0711642i
$$416$$ −3.27807 + 1.50142i −0.160721 + 0.0736131i
$$417$$ −13.7653 + 15.5269i −0.674091 + 0.760356i
$$418$$ 3.27716 + 3.27716i 0.160291 + 0.160291i
$$419$$ 2.30031i 0.112377i 0.998420 + 0.0561886i $$0.0178948\pi$$
−0.998420 + 0.0561886i $$0.982105\pi$$
$$420$$ −0.385342 + 0.434655i −0.0188027 + 0.0212090i
$$421$$ −5.27352 5.27352i −0.257016 0.257016i 0.566823 0.823839i $$-0.308172\pi$$
−0.823839 + 0.566823i $$0.808172\pi$$
$$422$$ −8.09040 + 8.09040i −0.393835 + 0.393835i
$$423$$ −5.95170 + 7.58587i −0.289382 + 0.368838i
$$424$$ −6.22684 + 6.22684i −0.302402 + 0.302402i
$$425$$ 25.7271i 1.24795i
$$426$$ 9.05993 + 8.03204i 0.438955 + 0.389154i
$$427$$ −6.18656 + 6.18656i −0.299389 + 0.299389i
$$428$$ 18.3125 0.885169
$$429$$ −21.5843 6.57832i −1.04210 0.317604i
$$430$$ 0.924957 0.0446054
$$431$$ 4.81808 4.81808i 0.232079 0.232079i −0.581481 0.813560i $$-0.697527\pi$$
0.813560 + 0.581481i $$0.197527\pi$$
$$432$$ −4.27326 2.95623i −0.205597 0.142232i
$$433$$ 4.81966i 0.231618i −0.993272 0.115809i $$-0.963054\pi$$
0.993272 0.115809i $$-0.0369460\pi$$
$$434$$ −7.20598 + 7.20598i −0.345898 + 0.345898i
$$435$$ 4.27014 0.256800i 0.204738 0.0123126i
$$436$$ −6.72226 + 6.72226i −0.321938 + 0.321938i
$$437$$ −1.34995 1.34995i −0.0645768 0.0645768i
$$438$$ −7.34188 6.50891i −0.350809 0.311008i
$$439$$ 13.0143i 0.621137i −0.950551 0.310569i $$-0.899481\pi$$
0.950551 0.310569i $$-0.100519\pi$$
$$440$$ −0.856839 0.856839i −0.0408482 0.0408482i
$$441$$ −2.97838 + 0.359531i −0.141828 + 0.0171205i
$$442$$ 17.2552 7.90321i 0.820747 0.375918i
$$443$$ 23.1864i 1.10162i 0.834631 + 0.550810i $$0.185681\pi$$
−0.834631 + 0.550810i $$0.814319\pi$$
$$444$$ −6.92768 + 0.416620i −0.328773 + 0.0197719i
$$445$$ 0.769725 0.0364884
$$446$$ −12.8201 −0.607051
$$447$$ 0.320406 + 5.32779i 0.0151547 + 0.251996i
$$448$$ −0.707107 0.707107i −0.0334077 0.0334077i
$$449$$ 7.31378 + 7.31378i 0.345159 + 0.345159i 0.858303 0.513144i $$-0.171519\pi$$
−0.513144 + 0.858303i $$0.671519\pi$$
$$450$$ 9.05075 11.5358i 0.426656 0.543804i
$$451$$ 6.76184 0.318403
$$452$$ −15.8812 −0.746990
$$453$$ 1.37443 + 22.8544i 0.0645762 + 1.07379i
$$454$$ 2.77033i 0.130018i
$$455$$ −0.421316 + 1.13341i −0.0197516 + 0.0531350i
$$456$$ 1.66243 + 1.47382i 0.0778502 + 0.0690178i
$$457$$ 7.58631 + 7.58631i 0.354873 + 0.354873i 0.861919 0.507046i $$-0.169263\pi$$
−0.507046 + 0.861919i $$0.669263\pi$$
$$458$$ 27.8470i 1.30120i
$$459$$ 22.4937 + 15.5611i 1.04992 + 0.726329i
$$460$$ 0.352955 + 0.352955i 0.0164566 + 0.0164566i
$$461$$ −9.45526 + 9.45526i −0.440375 + 0.440375i −0.892138 0.451763i $$-0.850795\pi$$
0.451763 + 0.892138i $$0.350795\pi$$
$$462$$ −0.375685 6.24699i −0.0174784 0.290636i
$$463$$ 24.1674 24.1674i 1.12315 1.12315i 0.131890 0.991264i $$-0.457895\pi$$
0.991264 0.131890i $$-0.0421046\pi$$
$$464$$ 7.36454i 0.341890i
$$465$$ −3.92694 + 4.42948i −0.182107 + 0.205412i
$$466$$ 5.71510 5.71510i 0.264747 0.264747i
$$467$$ −23.9765 −1.10950 −0.554750 0.832017i $$-0.687186\pi$$
−0.554750 + 0.832017i $$0.687186\pi$$
$$468$$ −10.5174 2.52661i −0.486168 0.116793i
$$469$$ 13.6903 0.632158
$$470$$ −0.762169 + 0.762169i −0.0351562 + 0.0351562i
$$471$$ 20.2624 22.8555i 0.933644 1.05313i
$$472$$ 1.11071i 0.0511248i
$$473$$ −7.04661 + 7.04661i −0.324004 + 0.324004i
$$474$$ −0.884684 14.7108i −0.0406349 0.675688i
$$475$$ −4.43294 + 4.43294i −0.203397 + 0.203397i
$$476$$ 3.72209 + 3.72209i 0.170602 + 0.170602i
$$477$$ −26.2278 + 3.16606i −1.20089 + 0.144964i
$$478$$ 24.1969i 1.10674i
$$479$$ 13.3006 + 13.3006i 0.607720 + 0.607720i 0.942350 0.334630i $$-0.108611\pi$$
−0.334630 + 0.942350i $$0.608611\pi$$
$$480$$ −0.434655 0.385342i −0.0198392 0.0175884i
$$481$$ −13.1350 + 6.01607i −0.598903 + 0.274309i
$$482$$ 2.32844i 0.106058i
$$483$$ 0.154755 + 2.57330i 0.00704158 + 0.117089i
$$484$$ 2.05534 0.0934247
$$485$$ −2.30645 −0.104731
$$486$$ −4.61163 14.8907i −0.209188 0.675456i
$$487$$ −12.0715 12.0715i −0.547013 0.547013i 0.378563 0.925576i $$-0.376418\pi$$
−0.925576 + 0.378563i $$0.876418\pi$$
$$488$$ −6.18656 6.18656i −0.280052 0.280052i
$$489$$ −0.332989 5.53704i −0.0150583 0.250393i
$$490$$ −0.335367 −0.0151503
$$491$$ −28.9991 −1.30871 −0.654356 0.756187i $$-0.727060\pi$$
−0.654356 + 0.756187i $$0.727060\pi$$
$$492$$ 3.23555 0.194581i 0.145870 0.00877239i
$$493$$ 38.7657i 1.74592i
$$494$$ 4.33495 + 1.61141i 0.195039 + 0.0725007i
$$495$$ −0.435663 3.60906i −0.0195816 0.162215i
$$496$$ −7.20598 7.20598i −0.323558 0.323558i
$$497$$ 6.99038i 0.313561i
$$498$$ −5.60260 4.96696i −0.251059 0.222575i
$$499$$ −16.4961 16.4961i −0.738468 0.738468i 0.233814 0.972281i $$-0.424879\pi$$
−0.972281 + 0.233814i $$0.924879\pi$$
$$500$$ 2.34473 2.34473i 0.104860 0.104860i
$$501$$ −30.4368 + 1.83042i −1.35982 + 0.0817773i
$$502$$ −3.95620 + 3.95620i −0.176574 + 0.176574i
$$503$$ 3.30047i 0.147161i −0.997289 0.0735804i $$-0.976557\pi$$
0.997289 0.0735804i $$-0.0234425\pi$$
$$504$$ −0.359531 2.97838i −0.0160148 0.132668i
$$505$$ −4.39425 + 4.39425i −0.195542 + 0.195542i
$$506$$ −5.37785 −0.239074
$$507$$ −22.3158 + 3.00090i −0.991079 + 0.133275i
$$508$$ 8.38087 0.371841
$$509$$ 4.74000 4.74000i 0.210097 0.210097i −0.594212 0.804309i $$-0.702536\pi$$
0.804309 + 0.594212i $$0.202536\pi$$
$$510$$ 2.28795 + 2.02837i 0.101312 + 0.0898179i
$$511$$ 5.66478i 0.250595i
$$512$$ 0.707107 0.707107i 0.0312500 0.0312500i
$$513$$ 1.19453 + 6.55708i 0.0527399 + 0.289502i
$$514$$ 6.63052 6.63052i 0.292460 0.292460i
$$515$$ 1.36610 + 1.36610i 0.0601976 + 0.0601976i
$$516$$ −3.16903 + 3.57459i −0.139509 + 0.157362i
$$517$$ 11.6129i 0.510734i
$$518$$ −2.83332 2.83332i −0.124489 0.124489i
$$519$$ 14.7668 16.6565i 0.648190 0.731140i
$$520$$ −1.13341 0.421316i −0.0497033 0.0184759i
$$521$$ 23.6757i 1.03725i −0.855001 0.518627i $$-0.826443\pi$$
0.855001 0.518627i $$-0.173557\pi$$
$$522$$ −13.6377 + 17.3822i −0.596905 + 0.760799i
$$523$$ −39.0606 −1.70800 −0.854000 0.520272i $$-0.825830\pi$$
−0.854000 + 0.520272i $$0.825830\pi$$
$$524$$ −14.5927 −0.637484
$$525$$ 8.45018 0.508181i 0.368796 0.0221789i
$$526$$ 5.15321 + 5.15321i 0.224691 + 0.224691i
$$527$$ 37.9311 + 37.9311i 1.65230 + 1.65230i
$$528$$ 6.24699 0.375685i 0.271865 0.0163496i
$$529$$ −20.7847 −0.903683
$$530$$ −2.95327 −0.128282
$$531$$ −2.05683 + 2.62157i −0.0892586 + 0.113767i
$$532$$ 1.28268i 0.0556112i
$$533$$ 6.13464 2.80978i 0.265721 0.121705i
$$534$$ −2.63719 + 2.97467i −0.114122 + 0.128727i
$$535$$ 4.34264 + 4.34264i 0.187749 + 0.187749i
$$536$$ 13.6903i 0.591330i
$$537$$ 15.7712 17.7895i 0.680577 0.767673i
$$538$$ −11.6647 11.6647i −0.502901 0.502901i
$$539$$ 2.55493 2.55493i 0.110049 0.110049i
$$540$$ −0.312321 1.71440i −0.0134401 0.0737761i
$$541$$ −19.3541 + 19.3541i −0.832100 + 0.832100i −0.987804 0.155704i $$-0.950235\pi$$
0.155704 + 0.987804i $$0.450235\pi$$
$$542$$ 3.63504i 0.156138i
$$543$$ −23.0671 20.4500i −0.989904 0.877595i
$$544$$ −3.72209 + 3.72209i −0.159583 + 0.159583i
$$545$$ −3.18824 −0.136569
$$546$$ −2.93668 5.51143i −0.125678 0.235868i
$$547$$ −17.0333 −0.728292 −0.364146 0.931342i $$-0.618639\pi$$
−0.364146 + 0.931342i $$0.618639\pi$$
$$548$$ 11.5852 11.5852i 0.494895 0.494895i
$$549$$ −3.14558 26.0582i −0.134250 1.11214i
$$550$$ 17.6597i 0.753012i
$$551$$ 6.67957 6.67957i 0.284559 0.284559i
$$552$$ −2.57330 + 0.154755i −0.109527 + 0.00658680i
$$553$$ 6.01650 6.01650i 0.255848 0.255848i
$$554$$ 5.25236 + 5.25236i 0.223151 + 0.223151i
$$555$$ −1.74163 1.54403i −0.0739280 0.0655406i
$$556$$ 11.9801i 0.508070i
$$557$$ −17.6970 17.6970i −0.749846 0.749846i 0.224604 0.974450i $$-0.427891\pi$$
−0.974450 + 0.224604i $$0.927891\pi$$
$$558$$ −3.66391 30.3521i −0.155106 1.28490i
$$559$$ −3.46489 + 9.32111i −0.146549 + 0.394241i
$$560$$ 0.335367i 0.0141718i
$$561$$ −32.8831 + 1.97754i −1.38833 + 0.0834919i
$$562$$ −13.3254 −0.562097
$$563$$ 1.91330 0.0806362 0.0403181 0.999187i $$-0.487163\pi$$
0.0403181 + 0.999187i $$0.487163\pi$$
$$564$$ −0.334176 5.55677i −0.0140714 0.233982i
$$565$$ −3.76608 3.76608i −0.158440 0.158440i
$$566$$ 15.2649 + 15.2649i 0.641631 + 0.641631i
$$567$$ 4.66679 7.69552i 0.195987 0.323182i
$$568$$ −6.99038 −0.293310
$$569$$ −16.3399 −0.685003 −0.342501 0.939517i $$-0.611274\pi$$
−0.342501 + 0.939517i $$0.611274\pi$$
$$570$$ 0.0447268 + 0.743729i 0.00187340 + 0.0311514i
$$571$$ 42.0194i 1.75846i −0.476400 0.879229i $$-0.658059\pi$$
0.476400 0.879229i $$-0.341941\pi$$
$$572$$ 11.8444 5.42495i 0.495238 0.226829i
$$573$$ −0.582062 0.516025i −0.0243160 0.0215572i
$$574$$ 1.32329 + 1.32329i 0.0552332 + 0.0552332i
$$575$$ 7.27451i 0.303368i
$$576$$ 2.97838 0.359531i 0.124099 0.0149804i
$$577$$ 24.8112 + 24.8112i 1.03290 + 1.03290i 0.999440 + 0.0334650i $$0.0106542\pi$$
0.0334650 + 0.999440i $$0.489346\pi$$
$$578$$ 7.57166 7.57166i 0.314940 0.314940i
$$579$$ −0.814520 13.5441i −0.0338503 0.562872i
$$580$$ −1.74643 + 1.74643i −0.0725165 + 0.0725165i
$$581$$ 4.32280i 0.179340i
$$582$$ 7.90223 8.91350i 0.327558 0.369476i
$$583$$ 22.4989 22.4989i 0.931810 0.931810i
$$584$$ 5.66478 0.234410
$$585$$ −1.89494 3.09327i −0.0783463 0.127891i
$$586$$ −5.58290 −0.230628
$$587$$ −9.34332 + 9.34332i −0.385640 + 0.385640i −0.873129 0.487489i $$-0.837913\pi$$
0.487489 + 0.873129i $$0.337913\pi$$
$$588$$ 1.14901 1.29606i 0.0473846 0.0534485i
$$589$$ 13.0715i 0.538603i
$$590$$ −0.263395 + 0.263395i −0.0108438 + 0.0108438i
$$591$$ 2.32514 + 38.6630i 0.0956434 + 1.59038i
$$592$$ 2.83332 2.83332i 0.116449 0.116449i
$$593$$ 8.89198 + 8.89198i 0.365150 + 0.365150i 0.865705 0.500555i $$-0.166871\pi$$
−0.500555 + 0.865705i $$0.666871\pi$$
$$594$$ 15.4402 + 10.6815i 0.633519 + 0.438267i
$$595$$ 1.76532i 0.0723709i
$$596$$ −2.17899 2.17899i −0.0892550 0.0892550i
$$597$$ 34.1071 + 30.2375i 1.39591 + 1.23754i
$$598$$ −4.87902 + 2.23468i −0.199518 + 0.0913830i
$$599$$ 39.8265i 1.62727i −0.581379 0.813633i $$-0.697487\pi$$
0.581379 0.813633i $$-0.302513\pi$$
$$600$$ 0.508181 + 8.45018i 0.0207464 + 0.344977i
$$601$$ 40.3328 1.64521 0.822605 0.568613i $$-0.192520\pi$$
0.822605 + 0.568613i $$0.192520\pi$$
$$602$$ −2.75805 −0.112410
$$603$$ −25.3517 + 32.3126i −1.03240 + 1.31587i
$$604$$ −9.34711 9.34711i −0.380329 0.380329i
$$605$$ 0.487405 + 0.487405i 0.0198158 + 0.0198158i
$$606$$ −1.92668 32.0373i −0.0782659 1.30143i
$$607$$ −29.9002 −1.21361 −0.606805 0.794851i $$-0.707549\pi$$
−0.606805 + 0.794851i $$0.707549\pi$$
$$608$$ −1.28268 −0.0520195
$$609$$ −12.7328 + 0.765729i −0.515957 + 0.0310289i
$$610$$ 2.93417i 0.118801i
$$611$$ −4.82556 10.5357i −0.195221 0.426230i
$$612$$ −15.6777 + 1.89251i −0.633733 + 0.0765002i
$$613$$ 0.240034 + 0.240034i 0.00969490 + 0.00969490i 0.711938 0.702243i $$-0.247818\pi$$
−0.702243 + 0.711938i $$0.747818\pi$$
$$614$$ 16.7044i 0.674136i
$$615$$ 0.813421 + 0.721135i 0.0328003 + 0.0290790i
$$616$$ 2.55493 + 2.55493i 0.102941 + 0.102941i
$$617$$ −25.7734 + 25.7734i −1.03760 + 1.03760i −0.0383316 + 0.999265i $$0.512204\pi$$
−0.999265 + 0.0383316i $$0.987796\pi$$
$$618$$ −9.95989 + 0.598973i −0.400645 + 0.0240942i
$$619$$ −26.3806 + 26.3806i −1.06033 + 1.06033i −0.0622679 + 0.998059i $$0.519833\pi$$
−0.998059 + 0.0622679i $$0.980167\pi$$
$$620$$ 3.41766i 0.137256i
$$621$$ −6.36024 4.40000i −0.255227 0.176566i
$$622$$ −14.7362 + 14.7362i −0.590868 + 0.590868i
$$623$$ −2.29517 −0.0919541
$$624$$ 5.51143 2.93668i 0.220634 0.117561i
$$625$$ −23.3256 −0.933023
$$626$$ 6.84265 6.84265i 0.273487 0.273487i
$$627$$ −6.00671 5.32522i −0.239885 0.212669i
$$628$$ 17.6346i 0.703698i
$$629$$ −14.9141 + 14.9141i −0.594666 + 0.594666i
$$630$$ 0.621034 0.791553i 0.0247426 0.0315362i
$$631$$ −4.98978 + 4.98978i −0.198640 + 0.198640i −0.799417 0.600777i $$-0.794858\pi$$
0.600777 + 0.799417i $$0.294858\pi$$
$$632$$ 6.01650 + 6.01650i 0.239324 + 0.239324i
$$633$$ 13.1465 14.8289i 0.522527 0.589396i
$$634$$ 20.4768i 0.813239i
$$635$$ 1.98744 + 1.98744i 0.0788692 + 0.0788692i
$$636$$ 10.1183 11.4132i 0.401217 0.452562i
$$637$$ 1.25628 3.37961i 0.0497757 0.133905i
$$638$$ 26.6097i 1.05349i
$$639$$ −16.4991 12.9448i −0.652694 0.512089i
$$640$$ 0.335367 0.0132565
$$641$$ 6.77888 0.267750 0.133875 0.990998i $$-0.457258\pi$$
0.133875 + 0.990998i $$0.457258\pi$$
$$642$$ −31.6610 + 1.90405i −1.24956 + 0.0751467i
$$643$$ −11.9887 11.9887i −0.472790 0.472790i 0.430026 0.902816i $$-0.358504\pi$$
−0.902816 + 0.430026i $$0.858504\pi$$
$$644$$ −1.05244 1.05244i −0.0414721 0.0414721i
$$645$$ −1.59918 + 0.0961725i −0.0629678 + 0.00378679i
$$646$$ 6.75181 0.265646
$$647$$ −4.90621 −0.192883 −0.0964415 0.995339i $$-0.530746\pi$$
−0.0964415 + 0.995339i $$0.530746\pi$$
$$648$$ 7.69552 + 4.66679i 0.302309 + 0.183329i
$$649$$ 4.01325i 0.157534i
$$650$$ 7.33822 + 16.0217i 0.287829 + 0.628421i
$$651$$ 11.7094 13.2079i 0.458927 0.517657i
$$652$$ 2.26457 + 2.26457i 0.0886874 + 0.0886874i
$$653$$ 16.9184i 0.662069i −0.943619 0.331035i $$-0.892602\pi$$
0.943619 0.331035i $$-0.107398\pi$$
$$654$$ 10.9234 12.3212i 0.427137 0.481799i
$$655$$ −3.46051 3.46051i −0.135213 0.135213i
$$656$$ −1.32329 + 1.32329i −0.0516659 + 0.0516659i
$$657$$ 13.3703 + 10.4901i 0.521627 + 0.409256i
$$658$$ 2.27264 2.27264i 0.0885968 0.0885968i
$$659$$ 42.8877i 1.67067i −0.549744 0.835333i $$-0.685275\pi$$
0.549744 0.835333i $$-0.314725\pi$$
$$660$$ 1.57050 + 1.39232i 0.0611317 + 0.0541961i
$$661$$ 23.1466 23.1466i 0.900299 0.900299i −0.0951631 0.995462i $$-0.530337\pi$$
0.995462 + 0.0951631i $$0.0303373\pi$$
$$662$$ 33.8024 1.31377
$$663$$ −29.0113 + 15.4582i −1.12670 + 0.600346i
$$664$$ 4.32280 0.167757
$$665$$ −0.304175 + 0.304175i −0.0117954 + 0.0117954i
$$666$$ 11.9341 1.44061i 0.462438 0.0558226i
$$667$$ 10.9612i 0.424421i
$$668$$ 12.4482 12.4482i 0.481636 0.481636i
$$669$$ 22.1651 1.33297i 0.856951 0.0515357i
$$670$$ −3.24651 + 3.24651i −0.125424 + 0.125424i
$$671$$ 22.3534 + 22.3534i 0.862943 + 0.862943i
$$672$$ 1.29606 + 1.14901i 0.0499965 + 0.0443242i
$$673$$ 29.7951i 1.14852i 0.818674 + 0.574259i $$0.194710\pi$$
−0.818674 + 0.574259i $$0.805290\pi$$
$$674$$ −13.5330 13.5330i −0.521272 0.521272i
$$675$$ −14.4486 + 20.8857i −0.556129 + 0.803890i
$$676$$ 8.49149 9.84351i 0.326596 0.378596i
$$677$$ 21.9759i 0.844602i 0.906456 + 0.422301i $$0.138778\pi$$
−0.906456 + 0.422301i $$0.861222\pi$$
$$678$$ 27.4575 1.65125i 1.05450 0.0634160i
$$679$$ 6.87739 0.263930
$$680$$ −1.76532 −0.0676968
$$681$$ 0.288045 + 4.78970i 0.0110379 + 0.183542i
$$682$$ 26.0368 + 26.0368i 0.997000 + 0.997000i
$$683$$ −5.21995 5.21995i −0.199736 0.199736i 0.600151 0.799887i $$-0.295107\pi$$
−0.799887 + 0.600151i $$0.795107\pi$$
$$684$$ −3.02745 2.37527i −0.115758 0.0908207i
$$685$$ 5.49463 0.209939
$$686$$ 1.00000 0.0381802
$$687$$ 2.89539 + 48.1454i 0.110466 + 1.83686i
$$688$$ 2.75805i 0.105149i
$$689$$ 11.0629 29.7611i 0.421464 1.13381i
$$690$$ −0.646932 0.573535i −0.0246283 0.0218341i
$$691$$ −16.8889 16.8889i −0.642485 0.642485i 0.308681 0.951166i $$-0.400112\pi$$
−0.951166 + 0.308681i $$0.900112\pi$$
$$692$$ 12.8517i 0.488548i
$$693$$ 1.29906 + 10.7615i 0.0493473 + 0.408797i
$$694$$ −15.7627 15.7627i −0.598343 0.598343i
$$695$$ 2.84097 2.84097i 0.107764 0.107764i
$$696$$ −0.765729 12.7328i −0.0290249 0.482634i
$$697$$ 6.96559 6.96559i 0.263841 0.263841i
$$698$$ 16.3183i 0.617658i
$$699$$ −9.28676 + 10.4752i −0.351258 + 0.396209i
$$700$$ −3.45600 + 3.45600i −0.130625 + 0.130625i
$$701$$ 37.1491 1.40310 0.701550 0.712620i $$-0.252491\pi$$
0.701550 + 0.712620i $$0.252491\pi$$
$$702$$ 18.4466 + 3.27478i 0.696221 + 0.123599i
$$703$$ −5.13960 −0.193844
$$704$$ −2.55493 + 2.55493i −0.0962926 + 0.0962926i
$$705$$ 1.23849 1.39698i 0.0466442 0.0526134i
$$706$$ 15.5376i 0.584765i
$$707$$ 13.1028 13.1028i 0.492782 0.492782i
$$708$$ −0.115487 1.92034i −0.00434025 0.0721709i
$$709$$ 17.2343 17.2343i 0.647249 0.647249i −0.305078 0.952327i $$-0.598683\pi$$
0.952327 + 0.305078i $$0.0986826\pi$$
$$710$$ −1.65770 1.65770i −0.0622124 0.0622124i
$$711$$ 3.05911 + 25.3419i 0.114726 + 0.950395i
$$712$$ 2.29517i 0.0860152i
$$713$$ −10.7253 10.7253i −0.401664 0.401664i
$$714$$ −6.82223 6.04822i −0.255316 0.226349i
$$715$$ 4.09525 + 1.52231i 0.153154 + 0.0569310i
$$716$$ 13.7258i 0.512959i
$$717$$ 2.51588 + 41.8348i 0.0939573 + 1.56235i
$$718$$ −17.5274 −0.654116
$$719$$ −2.42778 −0.0905411 −0.0452705 0.998975i $$-0.514415\pi$$
−0.0452705 + 0.998975i $$0.514415\pi$$
$$720$$ 0.791553 + 0.621034i 0.0294994 + 0.0231446i
$$721$$ −4.07345 4.07345i −0.151703 0.151703i
$$722$$ −12.2717 12.2717i −0.456704 0.456704i
$$723$$ −0.242100 4.02570i −0.00900379 0.149718i
$$724$$ 17.7979 0.661454
$$725$$ 35.9944 1.33680
$$726$$ −3.55354 + 0.213705i −0.131884 + 0.00793132i
$$727$$ 2.06159i 0.0764603i −0.999269 0.0382301i $$-0.987828\pi$$
0.999269 0.0382301i $$-0.0121720\pi$$
$$728$$ 3.37961 + 1.25628i 0.125257 + 0.0465609i
$$729$$ 9.52144 + 25.2654i 0.352646 + 0.935757i
$$730$$ 1.34335 + 1.34335i 0.0497195 + 0.0497195i
$$731$$ 14.5179i 0.536964i
$$732$$ 11.3394 + 10.0529i 0.419115 + 0.371565i
$$733$$ 16.8266 + 16.8266i 0.621505 + 0.621505i 0.945916 0.324412i $$-0.105166\pi$$
−0.324412 + 0.945916i $$0.605166\pi$$
$$734$$ −13.6975 + 13.6975i −0.505583 + 0.505583i
$$735$$ 0.579825 0.0348698i 0.0213872 0.00128619i
$$736$$ 1.05244 1.05244i 0.0387936 0.0387936i
$$737$$ 49.4659i 1.82210i
$$738$$ −5.57379 + 0.672833i −0.205174 + 0.0247673i
$$739$$ −29.5329 + 29.5329i −1.08638 + 1.08638i −0.0904869 + 0.995898i $$0.528842\pi$$
−0.995898 + 0.0904869i $$0.971158\pi$$
$$740$$ 1.34379 0.0493987
$$741$$ −7.66236 2.33528i −0.281484 0.0857886i
$$742$$ 8.80608 0.323281
$$743$$ 21.2462 21.2462i 0.779446 0.779446i −0.200290 0.979737i $$-0.564189\pi$$
0.979737 + 0.200290i $$0.0641886\pi$$
$$744$$ 13.2079 + 11.7094i 0.484224 + 0.429287i
$$745$$ 1.03345i 0.0378628i
$$746$$ 18.8503 18.8503i 0.690157 0.690157i
$$747$$ 10.2029 + 8.00499i 0.373306 + 0.292887i
$$748$$ 13.4487 13.4487i 0.491734 0.491734i
$$749$$ −12.9489 12.9489i −0.473143 0.473143i
$$750$$ −3.81008 + 4.29766i −0.139124 + 0.156928i
$$751$$ 22.6437i 0.826281i 0.910667 + 0.413140i $$0.135568\pi$$
−0.910667 + 0.413140i $$0.864432\pi$$
$$752$$ 2.27264 + 2.27264i 0.0828747 + 0.0828747i
$$753$$ 6.42864 7.25133i 0.234273 0.264253i
$$754$$ −11.0572 24.1415i −0.402681 0.879181i
$$755$$ 4.43315i 0.161339i
$$756$$ 0.931280 + 5.11202i 0.0338703 + 0.185922i
$$757$$ 28.9363 1.05171 0.525853 0.850575i $$-0.323746\pi$$
0.525853 + 0.850575i $$0.323746\pi$$
$$758$$ −10.1436 −0.368433
$$759$$ 9.29791 0.559162i 0.337493 0.0202963i
$$760$$ −0.304175 0.304175i −0.0110336 0.0110336i
$$761$$ 34.0212 + 34.0212i 1.23327 + 1.23327i 0.962701 + 0.270567i $$0.0872113\pi$$
0.270567 + 0.962701i $$0.412789\pi$$
$$762$$ −14.4899 + 0.871402i −0.524914 + 0.0315675i
$$763$$ 9.50671 0.344166
$$764$$ 0.449102 0.0162479
$$765$$ −4.16660 3.26902i −0.150644 0.118192i
$$766$$ 2.48835i 0.0899076i
$$767$$ −1.66765 3.64100i −0.0602152 0.131469i
$$768$$ −1.14901 + 1.29606i −0.0414615 + 0.0467675i
$$769$$ 14.2161 + 14.2161i 0.512647 + 0.512647i 0.915337 0.402690i $$-0.131925\pi$$
−0.402690 + 0.915337i $$0.631925\pi$$
$$770$$ 1.21175i 0.0436686i
$$771$$ −10.7743 + 12.1531i −0.388026 + 0.437683i
$$772$$ 5.53933 + 5.53933i 0.199365 + 0.199365i
$$773$$ −29.6369 + 29.6369i −1.06596 + 1.06596i −0.0682992 + 0.997665i $$0.521757\pi$$
−0.997665 + 0.0682992i $$0.978243\pi$$
$$774$$ 5.10736 6.50970i 0.183580 0.233986i
$$775$$ −35.2194 + 35.2194i −1.26512 + 1.26512i
$$776$$ 6.87739i