# Properties

 Label 546.2.p.c.281.2 Level $546$ Weight $2$ Character 546.281 Analytic conductor $4.360$ Analytic rank $0$ Dimension $20$ CM no Inner twists $2$

# Learn more

## Newspace parameters

 Level: $$N$$ $$=$$ $$546 = 2 \cdot 3 \cdot 7 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 546.p (of order $$4$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$4.35983195036$$ Analytic rank: $$0$$ Dimension: $$20$$ Relative dimension: $$10$$ over $$\Q(i)$$ Coefficient field: $$\mathbb{Q}[x]/(x^{20} - \cdots)$$ Defining polynomial: $$x^{20} - 4 x^{19} + 8 x^{18} - 20 x^{17} + 56 x^{16} - 140 x^{15} + 288 x^{14} - 532 x^{13} + 1065 x^{12} - 2080 x^{11} + 3712 x^{10} - 6240 x^{9} + 9585 x^{8} - 14364 x^{7} + 23328 x^{6} - 34020 x^{5} + 40824 x^{4} - 43740 x^{3} + 52488 x^{2} - 78732 x + 59049$$ Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

## Embedding invariants

 Embedding label 281.2 Root $$0.831607 - 1.51935i$$ of defining polynomial Character $$\chi$$ $$=$$ 546.281 Dual form 546.2.p.c.239.2

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.707107 + 0.707107i) q^{2} +(-0.486309 - 1.66238i) q^{3} -1.00000i q^{4} +(-2.72859 + 2.72859i) q^{5} +(1.51935 + 0.831607i) q^{6} +(0.707107 - 0.707107i) q^{7} +(0.707107 + 0.707107i) q^{8} +(-2.52701 + 1.61686i) q^{9} +O(q^{10})$$ $$q+(-0.707107 + 0.707107i) q^{2} +(-0.486309 - 1.66238i) q^{3} -1.00000i q^{4} +(-2.72859 + 2.72859i) q^{5} +(1.51935 + 0.831607i) q^{6} +(0.707107 - 0.707107i) q^{7} +(0.707107 + 0.707107i) q^{8} +(-2.52701 + 1.61686i) q^{9} -3.85881i q^{10} +(0.0114588 + 0.0114588i) q^{11} +(-1.66238 + 0.486309i) q^{12} +(1.73087 - 3.16292i) q^{13} +1.00000i q^{14} +(5.86288 + 3.20901i) q^{15} -1.00000 q^{16} +5.61037 q^{17} +(0.643571 - 2.93016i) q^{18} +(-0.157765 - 0.157765i) q^{19} +(2.72859 + 2.72859i) q^{20} +(-1.51935 - 0.831607i) q^{21} -0.0162051 q^{22} -2.57099 q^{23} +(0.831607 - 1.51935i) q^{24} -9.89038i q^{25} +(1.01261 + 3.46044i) q^{26} +(3.91674 + 3.41455i) q^{27} +(-0.707107 - 0.707107i) q^{28} -7.70551i q^{29} +(-6.41480 + 1.87657i) q^{30} +(6.66648 + 6.66648i) q^{31} +(0.707107 - 0.707107i) q^{32} +(0.0134763 - 0.0246213i) q^{33} +(-3.96713 + 3.96713i) q^{34} +3.85881i q^{35} +(1.61686 + 2.52701i) q^{36} +(7.86287 - 7.86287i) q^{37} +0.223113 q^{38} +(-6.09972 - 1.33921i) q^{39} -3.85881 q^{40} +(5.18774 - 5.18774i) q^{41} +(1.66238 - 0.486309i) q^{42} -5.09898i q^{43} +(0.0114588 - 0.0114588i) q^{44} +(2.48342 - 11.3069i) q^{45} +(1.81796 - 1.81796i) q^{46} +(-3.31273 - 3.31273i) q^{47} +(0.486309 + 1.66238i) q^{48} -1.00000i q^{49} +(6.99356 + 6.99356i) q^{50} +(-2.72837 - 9.32656i) q^{51} +(-3.16292 - 1.73087i) q^{52} -2.49125i q^{53} +(-5.18400 + 0.355103i) q^{54} -0.0625325 q^{55} +1.00000 q^{56} +(-0.185543 + 0.338988i) q^{57} +(5.44862 + 5.44862i) q^{58} +(2.10029 + 2.10029i) q^{59} +(3.20901 - 5.86288i) q^{60} +1.82875 q^{61} -9.42782 q^{62} +(-0.643571 + 2.93016i) q^{63} +1.00000i q^{64} +(3.90748 + 13.3531i) q^{65} +(0.00788071 + 0.0269391i) q^{66} +(8.61829 + 8.61829i) q^{67} -5.61037i q^{68} +(1.25029 + 4.27396i) q^{69} +(-2.72859 - 2.72859i) q^{70} +(-2.76005 + 2.76005i) q^{71} +(-2.93016 - 0.643571i) q^{72} +(-9.83977 + 9.83977i) q^{73} +11.1198i q^{74} +(-16.4416 + 4.80978i) q^{75} +(-0.157765 + 0.157765i) q^{76} +0.0162051 q^{77} +(5.26011 - 3.36619i) q^{78} -5.90280 q^{79} +(2.72859 - 2.72859i) q^{80} +(3.77153 - 8.17163i) q^{81} +7.33658i q^{82} +(11.9527 - 11.9527i) q^{83} +(-0.831607 + 1.51935i) q^{84} +(-15.3084 + 15.3084i) q^{85} +(3.60552 + 3.60552i) q^{86} +(-12.8095 + 3.74726i) q^{87} +0.0162051i q^{88} +(5.15703 + 5.15703i) q^{89} +(6.23915 + 9.75123i) q^{90} +(-1.01261 - 3.46044i) q^{91} +2.57099i q^{92} +(7.84024 - 14.3242i) q^{93} +4.68491 q^{94} +0.860951 q^{95} +(-1.51935 - 0.831607i) q^{96} +(5.94479 + 5.94479i) q^{97} +(0.707107 + 0.707107i) q^{98} +(-0.0474836 - 0.0104292i) q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$20q - 4q^{5} - 4q^{6} - 8q^{9} + O(q^{10})$$ $$20q - 4q^{5} - 4q^{6} - 8q^{9} - 16q^{11} - 8q^{12} + 4q^{13} - 4q^{15} - 20q^{16} + 12q^{17} - 8q^{18} + 12q^{19} + 4q^{20} + 4q^{21} - 12q^{22} - 4q^{23} + 4q^{24} + 24q^{27} + 12q^{30} - 8q^{31} - 48q^{33} - 4q^{34} + 32q^{37} - 4q^{38} - 16q^{39} - 4q^{40} + 8q^{41} + 8q^{42} - 16q^{44} + 16q^{45} - 8q^{46} + 32q^{50} - 8q^{51} - 8q^{52} + 28q^{54} + 28q^{55} + 20q^{56} + 36q^{57} - 4q^{58} + 20q^{59} - 4q^{60} - 4q^{61} + 48q^{62} + 8q^{63} + 52q^{65} - 36q^{67} + 68q^{69} - 4q^{70} - 28q^{71} - 16q^{72} - 24q^{73} - 76q^{75} + 12q^{76} + 12q^{77} + 40q^{78} - 64q^{79} + 4q^{80} + 32q^{81} - 24q^{83} - 4q^{84} + 24q^{85} + 4q^{86} + 4q^{87} - 4q^{89} - 8q^{90} - 32q^{93} - 40q^{94} - 76q^{95} + 4q^{96} + 32q^{97} - 4q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/546\mathbb{Z}\right)^\times$$.

 $$n$$ $$157$$ $$365$$ $$379$$ $$\chi(n)$$ $$1$$ $$-1$$ $$e\left(\frac{1}{4}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.707107 + 0.707107i −0.500000 + 0.500000i
$$3$$ −0.486309 1.66238i −0.280771 0.959775i
$$4$$ 1.00000i 0.500000i
$$5$$ −2.72859 + 2.72859i −1.22026 + 1.22026i −0.252723 + 0.967539i $$0.581326\pi$$
−0.967539 + 0.252723i $$0.918674\pi$$
$$6$$ 1.51935 + 0.831607i 0.620273 + 0.339502i
$$7$$ 0.707107 0.707107i 0.267261 0.267261i
$$8$$ 0.707107 + 0.707107i 0.250000 + 0.250000i
$$9$$ −2.52701 + 1.61686i −0.842336 + 0.538953i
$$10$$ 3.85881i 1.22026i
$$11$$ 0.0114588 + 0.0114588i 0.00345495 + 0.00345495i 0.708832 0.705377i $$-0.249222\pi$$
−0.705377 + 0.708832i $$0.749222\pi$$
$$12$$ −1.66238 + 0.486309i −0.479887 + 0.140385i
$$13$$ 1.73087 3.16292i 0.480058 0.877237i
$$14$$ 1.00000i 0.267261i
$$15$$ 5.86288 + 3.20901i 1.51379 + 0.828563i
$$16$$ −1.00000 −0.250000
$$17$$ 5.61037 1.36071 0.680357 0.732881i $$-0.261825\pi$$
0.680357 + 0.732881i $$0.261825\pi$$
$$18$$ 0.643571 2.93016i 0.151691 0.690644i
$$19$$ −0.157765 0.157765i −0.0361938 0.0361938i 0.688778 0.724972i $$-0.258147\pi$$
−0.724972 + 0.688778i $$0.758147\pi$$
$$20$$ 2.72859 + 2.72859i 0.610131 + 0.610131i
$$21$$ −1.51935 0.831607i −0.331550 0.181472i
$$22$$ −0.0162051 −0.00345495
$$23$$ −2.57099 −0.536088 −0.268044 0.963407i $$-0.586377\pi$$
−0.268044 + 0.963407i $$0.586377\pi$$
$$24$$ 0.831607 1.51935i 0.169751 0.310136i
$$25$$ 9.89038i 1.97808i
$$26$$ 1.01261 + 3.46044i 0.198590 + 0.678647i
$$27$$ 3.91674 + 3.41455i 0.753777 + 0.657130i
$$28$$ −0.707107 0.707107i −0.133631 0.133631i
$$29$$ 7.70551i 1.43088i −0.698675 0.715439i $$-0.746227\pi$$
0.698675 0.715439i $$-0.253773\pi$$
$$30$$ −6.41480 + 1.87657i −1.17118 + 0.342614i
$$31$$ 6.66648 + 6.66648i 1.19733 + 1.19733i 0.974962 + 0.222373i $$0.0713802\pi$$
0.222373 + 0.974962i $$0.428620\pi$$
$$32$$ 0.707107 0.707107i 0.125000 0.125000i
$$33$$ 0.0134763 0.0246213i 0.00234592 0.00428602i
$$34$$ −3.96713 + 3.96713i −0.680357 + 0.680357i
$$35$$ 3.85881i 0.652257i
$$36$$ 1.61686 + 2.52701i 0.269477 + 0.421168i
$$37$$ 7.86287 7.86287i 1.29265 1.29265i 0.359503 0.933144i $$-0.382946\pi$$
0.933144 0.359503i $$-0.117054\pi$$
$$38$$ 0.223113 0.0361938
$$39$$ −6.09972 1.33921i −0.976736 0.214445i
$$40$$ −3.85881 −0.610131
$$41$$ 5.18774 5.18774i 0.810189 0.810189i −0.174473 0.984662i $$-0.555822\pi$$
0.984662 + 0.174473i $$0.0558221\pi$$
$$42$$ 1.66238 0.486309i 0.256511 0.0750391i
$$43$$ 5.09898i 0.777587i −0.921325 0.388793i $$-0.872892\pi$$
0.921325 0.388793i $$-0.127108\pi$$
$$44$$ 0.0114588 0.0114588i 0.00172747 0.00172747i
$$45$$ 2.48342 11.3069i 0.370206 1.68553i
$$46$$ 1.81796 1.81796i 0.268044 0.268044i
$$47$$ −3.31273 3.31273i −0.483211 0.483211i 0.422944 0.906156i $$-0.360997\pi$$
−0.906156 + 0.422944i $$0.860997\pi$$
$$48$$ 0.486309 + 1.66238i 0.0701927 + 0.239944i
$$49$$ 1.00000i 0.142857i
$$50$$ 6.99356 + 6.99356i 0.989038 + 0.989038i
$$51$$ −2.72837 9.32656i −0.382049 1.30598i
$$52$$ −3.16292 1.73087i −0.438618 0.240029i
$$53$$ 2.49125i 0.342200i −0.985254 0.171100i $$-0.945268\pi$$
0.985254 0.171100i $$-0.0547321\pi$$
$$54$$ −5.18400 + 0.355103i −0.705454 + 0.0483234i
$$55$$ −0.0625325 −0.00843188
$$56$$ 1.00000 0.133631
$$57$$ −0.185543 + 0.338988i −0.0245757 + 0.0449000i
$$58$$ 5.44862 + 5.44862i 0.715439 + 0.715439i
$$59$$ 2.10029 + 2.10029i 0.273435 + 0.273435i 0.830481 0.557047i $$-0.188066\pi$$
−0.557047 + 0.830481i $$0.688066\pi$$
$$60$$ 3.20901 5.86288i 0.414281 0.756895i
$$61$$ 1.82875 0.234148 0.117074 0.993123i $$-0.462649\pi$$
0.117074 + 0.993123i $$0.462649\pi$$
$$62$$ −9.42782 −1.19733
$$63$$ −0.643571 + 2.93016i −0.0810823 + 0.369165i
$$64$$ 1.00000i 0.125000i
$$65$$ 3.90748 + 13.3531i 0.484663 + 1.65625i
$$66$$ 0.00788071 + 0.0269391i 0.000970048 + 0.00331597i
$$67$$ 8.61829 + 8.61829i 1.05289 + 1.05289i 0.998521 + 0.0543710i $$0.0173154\pi$$
0.0543710 + 0.998521i $$0.482685\pi$$
$$68$$ 5.61037i 0.680357i
$$69$$ 1.25029 + 4.27396i 0.150518 + 0.514524i
$$70$$ −2.72859 2.72859i −0.326129 0.326129i
$$71$$ −2.76005 + 2.76005i −0.327557 + 0.327557i −0.851657 0.524100i $$-0.824402\pi$$
0.524100 + 0.851657i $$0.324402\pi$$
$$72$$ −2.93016 0.643571i −0.345322 0.0758456i
$$73$$ −9.83977 + 9.83977i −1.15166 + 1.15166i −0.165438 + 0.986220i $$0.552904\pi$$
−0.986220 + 0.165438i $$0.947096\pi$$
$$74$$ 11.1198i 1.29265i
$$75$$ −16.4416 + 4.80978i −1.89851 + 0.555386i
$$76$$ −0.157765 + 0.157765i −0.0180969 + 0.0180969i
$$77$$ 0.0162051 0.00184675
$$78$$ 5.26011 3.36619i 0.595590 0.381146i
$$79$$ −5.90280 −0.664117 −0.332058 0.943259i $$-0.607743\pi$$
−0.332058 + 0.943259i $$0.607743\pi$$
$$80$$ 2.72859 2.72859i 0.305065 0.305065i
$$81$$ 3.77153 8.17163i 0.419059 0.907959i
$$82$$ 7.33658i 0.810189i
$$83$$ 11.9527 11.9527i 1.31197 1.31197i 0.392017 0.919958i $$-0.371778\pi$$
0.919958 0.392017i $$-0.128222\pi$$
$$84$$ −0.831607 + 1.51935i −0.0907358 + 0.165775i
$$85$$ −15.3084 + 15.3084i −1.66043 + 1.66043i
$$86$$ 3.60552 + 3.60552i 0.388793 + 0.388793i
$$87$$ −12.8095 + 3.74726i −1.37332 + 0.401749i
$$88$$ 0.0162051i 0.00172747i
$$89$$ 5.15703 + 5.15703i 0.546645 + 0.546645i 0.925469 0.378824i $$-0.123671\pi$$
−0.378824 + 0.925469i $$0.623671\pi$$
$$90$$ 6.23915 + 9.75123i 0.657664 + 1.02787i
$$91$$ −1.01261 3.46044i −0.106151 0.362752i
$$92$$ 2.57099i 0.268044i
$$93$$ 7.84024 14.3242i 0.812995 1.48535i
$$94$$ 4.68491 0.483211
$$95$$ 0.860951 0.0883318
$$96$$ −1.51935 0.831607i −0.155068 0.0848755i
$$97$$ 5.94479 + 5.94479i 0.603602 + 0.603602i 0.941266 0.337665i $$-0.109637\pi$$
−0.337665 + 0.941266i $$0.609637\pi$$
$$98$$ 0.707107 + 0.707107i 0.0714286 + 0.0714286i
$$99$$ −0.0474836 0.0104292i −0.00477228 0.00104817i
$$100$$ −9.89038 −0.989038
$$101$$ −4.06932 −0.404913 −0.202456 0.979291i $$-0.564892\pi$$
−0.202456 + 0.979291i $$0.564892\pi$$
$$102$$ 8.52412 + 4.66562i 0.844014 + 0.461965i
$$103$$ 17.5417i 1.72843i 0.503118 + 0.864217i $$0.332186\pi$$
−0.503118 + 0.864217i $$0.667814\pi$$
$$104$$ 3.46044 1.01261i 0.339324 0.0992948i
$$105$$ 6.41480 1.87657i 0.626020 0.183135i
$$106$$ 1.76158 + 1.76158i 0.171100 + 0.171100i
$$107$$ 0.228357i 0.0220761i 0.999939 + 0.0110381i $$0.00351360\pi$$
−0.999939 + 0.0110381i $$0.996486\pi$$
$$108$$ 3.41455 3.91674i 0.328565 0.376889i
$$109$$ −8.58774 8.58774i −0.822556 0.822556i 0.163918 0.986474i $$-0.447587\pi$$
−0.986474 + 0.163918i $$0.947587\pi$$
$$110$$ 0.0442171 0.0442171i 0.00421594 0.00421594i
$$111$$ −16.8948 9.24728i −1.60359 0.877713i
$$112$$ −0.707107 + 0.707107i −0.0668153 + 0.0668153i
$$113$$ 2.22102i 0.208936i −0.994528 0.104468i $$-0.966686\pi$$
0.994528 0.104468i $$-0.0333140\pi$$
$$114$$ −0.108502 0.370899i −0.0101622 0.0347379i
$$115$$ 7.01517 7.01517i 0.654168 0.654168i
$$116$$ −7.70551 −0.715439
$$117$$ 0.740077 + 10.7913i 0.0684202 + 0.997657i
$$118$$ −2.97026 −0.273435
$$119$$ 3.96713 3.96713i 0.363666 0.363666i
$$120$$ 1.87657 + 6.41480i 0.171307 + 0.585588i
$$121$$ 10.9997i 0.999976i
$$122$$ −1.29312 + 1.29312i −0.117074 + 0.117074i
$$123$$ −11.1468 6.10115i −1.00508 0.550122i
$$124$$ 6.66648 6.66648i 0.598667 0.598667i
$$125$$ 13.3438 + 13.3438i 1.19351 + 1.19351i
$$126$$ −1.61686 2.52701i −0.144041 0.225124i
$$127$$ 4.31508i 0.382901i 0.981502 + 0.191451i $$0.0613192\pi$$
−0.981502 + 0.191451i $$0.938681\pi$$
$$128$$ −0.707107 0.707107i −0.0625000 0.0625000i
$$129$$ −8.47643 + 2.47968i −0.746308 + 0.218324i
$$130$$ −12.2051 6.67910i −1.07046 0.585796i
$$131$$ 0.111141i 0.00971047i 0.999988 + 0.00485524i $$0.00154548\pi$$
−0.999988 + 0.00485524i $$0.998455\pi$$
$$132$$ −0.0246213 0.0134763i −0.00214301 0.00117296i
$$133$$ −0.223113 −0.0193464
$$134$$ −12.1881 −1.05289
$$135$$ −20.0041 + 1.37027i −1.72168 + 0.117934i
$$136$$ 3.96713 + 3.96713i 0.340178 + 0.340178i
$$137$$ 1.03778 + 1.03778i 0.0886637 + 0.0886637i 0.750048 0.661384i $$-0.230031\pi$$
−0.661384 + 0.750048i $$0.730031\pi$$
$$138$$ −3.90624 2.13805i −0.332521 0.182003i
$$139$$ −13.8241 −1.17254 −0.586271 0.810115i $$-0.699405\pi$$
−0.586271 + 0.810115i $$0.699405\pi$$
$$140$$ 3.85881 0.326129
$$141$$ −3.89600 + 7.11802i −0.328102 + 0.599446i
$$142$$ 3.90330i 0.327557i
$$143$$ 0.0560768 0.0164095i 0.00468938 0.00137223i
$$144$$ 2.52701 1.61686i 0.210584 0.134738i
$$145$$ 21.0252 + 21.0252i 1.74605 + 1.74605i
$$146$$ 13.9155i 1.15166i
$$147$$ −1.66238 + 0.486309i −0.137111 + 0.0401101i
$$148$$ −7.86287 7.86287i −0.646324 0.646324i
$$149$$ 9.29931 9.29931i 0.761829 0.761829i −0.214823 0.976653i $$-0.568918\pi$$
0.976653 + 0.214823i $$0.0689176\pi$$
$$150$$ 8.22491 15.0270i 0.671561 1.22695i
$$151$$ 0.393892 0.393892i 0.0320545 0.0320545i −0.690898 0.722952i $$-0.742785\pi$$
0.722952 + 0.690898i $$0.242785\pi$$
$$152$$ 0.223113i 0.0180969i
$$153$$ −14.1774 + 9.07118i −1.14618 + 0.733361i
$$154$$ −0.0114588 + 0.0114588i −0.000923373 + 0.000923373i
$$155$$ −36.3801 −2.92212
$$156$$ −1.33921 + 6.09972i −0.107222 + 0.488368i
$$157$$ 10.2524 0.818233 0.409117 0.912482i $$-0.365837\pi$$
0.409117 + 0.912482i $$0.365837\pi$$
$$158$$ 4.17391 4.17391i 0.332058 0.332058i
$$159$$ −4.14140 + 1.21152i −0.328435 + 0.0960797i
$$160$$ 3.85881i 0.305065i
$$161$$ −1.81796 + 1.81796i −0.143276 + 0.143276i
$$162$$ 3.11134 + 8.44509i 0.244450 + 0.663509i
$$163$$ 3.68210 3.68210i 0.288404 0.288404i −0.548045 0.836449i $$-0.684628\pi$$
0.836449 + 0.548045i $$0.184628\pi$$
$$164$$ −5.18774 5.18774i −0.405095 0.405095i
$$165$$ 0.0304101 + 0.103953i 0.00236742 + 0.00809270i
$$166$$ 16.9036i 1.31197i
$$167$$ 0.964267 + 0.964267i 0.0746173 + 0.0746173i 0.743430 0.668813i $$-0.233197\pi$$
−0.668813 + 0.743430i $$0.733197\pi$$
$$168$$ −0.486309 1.66238i −0.0375196 0.128255i
$$169$$ −7.00816 10.9492i −0.539089 0.842249i
$$170$$ 21.6493i 1.66043i
$$171$$ 0.653757 + 0.143589i 0.0499941 + 0.0109806i
$$172$$ −5.09898 −0.388793
$$173$$ −11.1981 −0.851378 −0.425689 0.904870i $$-0.639968\pi$$
−0.425689 + 0.904870i $$0.639968\pi$$
$$174$$ 6.40796 11.7074i 0.485786 0.887535i
$$175$$ −6.99356 6.99356i −0.528663 0.528663i
$$176$$ −0.0114588 0.0114588i −0.000863737 0.000863737i
$$177$$ 2.47009 4.51287i 0.185663 0.339208i
$$178$$ −7.29315 −0.546645
$$179$$ −4.63389 −0.346354 −0.173177 0.984891i $$-0.555403\pi$$
−0.173177 + 0.984891i $$0.555403\pi$$
$$180$$ −11.3069 2.48342i −0.842767 0.185103i
$$181$$ 15.3210i 1.13880i −0.822060 0.569401i $$-0.807175\pi$$
0.822060 0.569401i $$-0.192825\pi$$
$$182$$ 3.16292 + 1.73087i 0.234451 + 0.128301i
$$183$$ −0.889340 3.04008i −0.0657419 0.224729i
$$184$$ −1.81796 1.81796i −0.134022 0.134022i
$$185$$ 42.9090i 3.15473i
$$186$$ 4.58483 + 15.6726i 0.336176 + 1.14917i
$$187$$ 0.0642879 + 0.0642879i 0.00470119 + 0.00470119i
$$188$$ −3.31273 + 3.31273i −0.241606 + 0.241606i
$$189$$ 5.18400 0.355103i 0.377081 0.0258299i
$$190$$ −0.608785 + 0.608785i −0.0441659 + 0.0441659i
$$191$$ 12.6760i 0.917203i −0.888642 0.458601i $$-0.848351\pi$$
0.888642 0.458601i $$-0.151649\pi$$
$$192$$ 1.66238 0.486309i 0.119972 0.0350963i
$$193$$ 5.53338 5.53338i 0.398301 0.398301i −0.479332 0.877634i $$-0.659121\pi$$
0.877634 + 0.479332i $$0.159121\pi$$
$$194$$ −8.40720 −0.603602
$$195$$ 20.2978 12.9895i 1.45355 0.930195i
$$196$$ −1.00000 −0.0714286
$$197$$ −17.4414 + 17.4414i −1.24265 + 1.24265i −0.283747 + 0.958899i $$0.591578\pi$$
−0.958899 + 0.283747i $$0.908422\pi$$
$$198$$ 0.0409505 0.0262014i 0.00291022 0.00186206i
$$199$$ 16.2501i 1.15194i −0.817471 0.575970i $$-0.804624\pi$$
0.817471 0.575970i $$-0.195376\pi$$
$$200$$ 6.99356 6.99356i 0.494519 0.494519i
$$201$$ 10.1357 18.5180i 0.714918 1.30616i
$$202$$ 2.87744 2.87744i 0.202456 0.202456i
$$203$$ −5.44862 5.44862i −0.382418 0.382418i
$$204$$ −9.32656 + 2.72837i −0.652990 + 0.191024i
$$205$$ 28.3104i 1.97729i
$$206$$ −12.4039 12.4039i −0.864217 0.864217i
$$207$$ 6.49690 4.15693i 0.451566 0.288926i
$$208$$ −1.73087 + 3.16292i −0.120014 + 0.219309i
$$209$$ 0.00361558i 0.000250095i
$$210$$ −3.20901 + 5.86288i −0.221443 + 0.404577i
$$211$$ 12.6989 0.874230 0.437115 0.899406i $$-0.356000\pi$$
0.437115 + 0.899406i $$0.356000\pi$$
$$212$$ −2.49125 −0.171100
$$213$$ 5.93048 + 3.24601i 0.406350 + 0.222413i
$$214$$ −0.161473 0.161473i −0.0110381 0.0110381i
$$215$$ 13.9130 + 13.9130i 0.948859 + 0.948859i
$$216$$ 0.355103 + 5.18400i 0.0241617 + 0.352727i
$$217$$ 9.42782 0.640002
$$218$$ 12.1449 0.822556
$$219$$ 21.1426 + 11.5723i 1.42868 + 0.781981i
$$220$$ 0.0625325i 0.00421594i
$$221$$ 9.71083 17.7452i 0.653221 1.19367i
$$222$$ 18.4853 5.40765i 1.24065 0.362937i
$$223$$ 0.153697 + 0.153697i 0.0102923 + 0.0102923i 0.712234 0.701942i $$-0.247683\pi$$
−0.701942 + 0.712234i $$0.747683\pi$$
$$224$$ 1.00000i 0.0668153i
$$225$$ 15.9914 + 24.9931i 1.06609 + 1.66620i
$$226$$ 1.57050 + 1.57050i 0.104468 + 0.104468i
$$227$$ 8.19047 8.19047i 0.543620 0.543620i −0.380968 0.924588i $$-0.624409\pi$$
0.924588 + 0.380968i $$0.124409\pi$$
$$228$$ 0.338988 + 0.185543i 0.0224500 + 0.0122879i
$$229$$ −5.81934 + 5.81934i −0.384553 + 0.384553i −0.872739 0.488186i $$-0.837659\pi$$
0.488186 + 0.872739i $$0.337659\pi$$
$$230$$ 9.92094i 0.654168i
$$231$$ −0.00788071 0.0269391i −0.000518512 0.00177246i
$$232$$ 5.44862 5.44862i 0.357720 0.357720i
$$233$$ 9.95377 0.652093 0.326047 0.945354i $$-0.394283\pi$$
0.326047 + 0.945354i $$0.394283\pi$$
$$234$$ −8.15392 7.10729i −0.533038 0.464618i
$$235$$ 18.0781 1.17929
$$236$$ 2.10029 2.10029i 0.136717 0.136717i
$$237$$ 2.87059 + 9.81269i 0.186465 + 0.637403i
$$238$$ 5.61037i 0.363666i
$$239$$ −12.3472 + 12.3472i −0.798673 + 0.798673i −0.982886 0.184213i $$-0.941026\pi$$
0.184213 + 0.982886i $$0.441026\pi$$
$$240$$ −5.86288 3.20901i −0.378447 0.207141i
$$241$$ 7.54377 7.54377i 0.485937 0.485937i −0.421084 0.907022i $$-0.638350\pi$$
0.907022 + 0.421084i $$0.138350\pi$$
$$242$$ 7.77799 + 7.77799i 0.499988 + 0.499988i
$$243$$ −15.4185 2.29577i −0.989096 0.147274i
$$244$$ 1.82875i 0.117074i
$$245$$ 2.72859 + 2.72859i 0.174323 + 0.174323i
$$246$$ 12.1962 3.56784i 0.777599 0.227477i
$$247$$ −0.772070 + 0.225928i −0.0491256 + 0.0143754i
$$248$$ 9.42782i 0.598667i
$$249$$ −25.6825 14.0572i −1.62756 0.890836i
$$250$$ −18.8710 −1.19351
$$251$$ 26.2173 1.65482 0.827410 0.561599i $$-0.189814\pi$$
0.827410 + 0.561599i $$0.189814\pi$$
$$252$$ 2.93016 + 0.643571i 0.184583 + 0.0405412i
$$253$$ −0.0294603 0.0294603i −0.00185216 0.00185216i
$$254$$ −3.05122 3.05122i −0.191451 0.191451i
$$255$$ 32.8929 + 18.0037i 2.05984 + 1.12744i
$$256$$ 1.00000 0.0625000
$$257$$ 30.7002 1.91503 0.957513 0.288390i $$-0.0931201\pi$$
0.957513 + 0.288390i $$0.0931201\pi$$
$$258$$ 4.24035 7.74714i 0.263992 0.482316i
$$259$$ 11.1198i 0.690949i
$$260$$ 13.3531 3.90748i 0.828127 0.242331i
$$261$$ 12.4587 + 19.4719i 0.771176 + 1.20528i
$$262$$ −0.0785889 0.0785889i −0.00485524 0.00485524i
$$263$$ 14.7267i 0.908089i 0.890979 + 0.454045i $$0.150019\pi$$
−0.890979 + 0.454045i $$0.849981\pi$$
$$264$$ 0.0269391 0.00788071i 0.00165799 0.000485024i
$$265$$ 6.79760 + 6.79760i 0.417573 + 0.417573i
$$266$$ 0.157765 0.157765i 0.00967319 0.00967319i
$$267$$ 6.06503 11.0809i 0.371174 0.678138i
$$268$$ 8.61829 8.61829i 0.526446 0.526446i
$$269$$ 18.3642i 1.11969i −0.828598 0.559843i $$-0.810861\pi$$
0.828598 0.559843i $$-0.189139\pi$$
$$270$$ 13.1761 15.1139i 0.801871 0.919805i
$$271$$ −8.96232 + 8.96232i −0.544422 + 0.544422i −0.924822 0.380400i $$-0.875786\pi$$
0.380400 + 0.924822i $$0.375786\pi$$
$$272$$ −5.61037 −0.340178
$$273$$ −5.26011 + 3.36619i −0.318356 + 0.203731i
$$274$$ −1.46765 −0.0886637
$$275$$ 0.113332 0.113332i 0.00683415 0.00683415i
$$276$$ 4.27396 1.25029i 0.257262 0.0752589i
$$277$$ 13.4939i 0.810772i 0.914146 + 0.405386i $$0.132863\pi$$
−0.914146 + 0.405386i $$0.867137\pi$$
$$278$$ 9.77510 9.77510i 0.586271 0.586271i
$$279$$ −27.6250 6.06747i −1.65386 0.363250i
$$280$$ −2.72859 + 2.72859i −0.163064 + 0.163064i
$$281$$ −18.7437 18.7437i −1.11815 1.11815i −0.992012 0.126142i $$-0.959740\pi$$
−0.126142 0.992012i $$-0.540260\pi$$
$$282$$ −2.27831 7.78809i −0.135672 0.463774i
$$283$$ 0.555789i 0.0330382i −0.999864 0.0165191i $$-0.994742\pi$$
0.999864 0.0165191i $$-0.00525844\pi$$
$$284$$ 2.76005 + 2.76005i 0.163779 + 0.163779i
$$285$$ −0.418689 1.43123i −0.0248010 0.0847786i
$$286$$ −0.0280490 + 0.0512556i −0.00165857 + 0.00303081i
$$287$$ 7.33658i 0.433064i
$$288$$ −0.643571 + 2.93016i −0.0379228 + 0.172661i
$$289$$ 14.4762 0.851542
$$290$$ −29.7341 −1.74605
$$291$$ 6.99148 12.7735i 0.409848 0.748795i
$$292$$ 9.83977 + 9.83977i 0.575829 + 0.575829i
$$293$$ −6.73256 6.73256i −0.393321 0.393321i 0.482549 0.875869i $$-0.339711\pi$$
−0.875869 + 0.482549i $$0.839711\pi$$
$$294$$ 0.831607 1.51935i 0.0485003 0.0886104i
$$295$$ −11.4617 −0.667323
$$296$$ 11.1198 0.646324
$$297$$ 0.00575449 + 0.0840075i 0.000333909 + 0.00487461i
$$298$$ 13.1512i 0.761829i
$$299$$ −4.45005 + 8.13184i −0.257353 + 0.470276i
$$300$$ 4.80978 + 16.4416i 0.277693 + 0.949254i
$$301$$ −3.60552 3.60552i −0.207819 0.207819i
$$302$$ 0.557047i 0.0320545i
$$303$$ 1.97895 + 6.76475i 0.113688 + 0.388625i
$$304$$ 0.157765 + 0.157765i 0.00904845 + 0.00904845i
$$305$$ −4.98992 + 4.98992i −0.285722 + 0.285722i
$$306$$ 3.61067 16.4393i 0.206408 0.939770i
$$307$$ −13.6798 + 13.6798i −0.780748 + 0.780748i −0.979957 0.199209i $$-0.936163\pi$$
0.199209 + 0.979957i $$0.436163\pi$$
$$308$$ 0.0162051i 0.000923373i
$$309$$ 29.1609 8.53069i 1.65891 0.485294i
$$310$$ 25.7246 25.7246i 1.46106 1.46106i
$$311$$ −3.04815 −0.172845 −0.0864225 0.996259i $$-0.527543\pi$$
−0.0864225 + 0.996259i $$0.527543\pi$$
$$312$$ −3.36619 5.26011i −0.190573 0.297795i
$$313$$ 19.2531 1.08825 0.544124 0.839005i $$-0.316862\pi$$
0.544124 + 0.839005i $$0.316862\pi$$
$$314$$ −7.24957 + 7.24957i −0.409117 + 0.409117i
$$315$$ −6.23915 9.75123i −0.351536 0.549419i
$$316$$ 5.90280i 0.332058i
$$317$$ −12.2211 + 12.2211i −0.686403 + 0.686403i −0.961435 0.275032i $$-0.911312\pi$$
0.275032 + 0.961435i $$0.411312\pi$$
$$318$$ 2.07174 3.78509i 0.116178 0.212257i
$$319$$ 0.0882957 0.0882957i 0.00494361 0.00494361i
$$320$$ −2.72859 2.72859i −0.152533 0.152533i
$$321$$ 0.379616 0.111052i 0.0211881 0.00619833i
$$322$$ 2.57099i 0.143276i
$$323$$ −0.885120 0.885120i −0.0492494 0.0492494i
$$324$$ −8.17163 3.77153i −0.453980 0.209529i
$$325$$ −31.2825 17.1190i −1.73524 0.949590i
$$326$$ 5.20727i 0.288404i
$$327$$ −10.0998 + 18.4524i −0.558519 + 1.02042i
$$328$$ 7.33658 0.405095
$$329$$ −4.68491 −0.258287
$$330$$ −0.0950088 0.0520024i −0.00523006 0.00286264i
$$331$$ −9.25094 9.25094i −0.508478 0.508478i 0.405581 0.914059i $$-0.367069\pi$$
−0.914059 + 0.405581i $$0.867069\pi$$
$$332$$ −11.9527 11.9527i −0.655987 0.655987i
$$333$$ −7.15636 + 32.5827i −0.392166 + 1.78552i
$$334$$ −1.36368 −0.0746173
$$335$$ −47.0315 −2.56961
$$336$$ 1.51935 + 0.831607i 0.0828874 + 0.0453679i
$$337$$ 3.92073i 0.213576i 0.994282 + 0.106788i $$0.0340566\pi$$
−0.994282 + 0.106788i $$0.965943\pi$$
$$338$$ 12.6978 + 2.78676i 0.690669 + 0.151580i
$$339$$ −3.69218 + 1.08010i −0.200532 + 0.0586631i
$$340$$ 15.3084 + 15.3084i 0.830213 + 0.830213i
$$341$$ 0.152779i 0.00827345i
$$342$$ −0.563809 + 0.360743i −0.0304873 + 0.0195068i
$$343$$ −0.707107 0.707107i −0.0381802 0.0381802i
$$344$$ 3.60552 3.60552i 0.194397 0.194397i
$$345$$ −15.0734 8.25032i −0.811525 0.444183i
$$346$$ 7.91827 7.91827i 0.425689 0.425689i
$$347$$ 11.8159i 0.634311i −0.948374 0.317156i $$-0.897272\pi$$
0.948374 0.317156i $$-0.102728\pi$$
$$348$$ 3.74726 + 12.8095i 0.200874 + 0.686660i
$$349$$ 8.77505 8.77505i 0.469717 0.469717i −0.432106 0.901823i $$-0.642229\pi$$
0.901823 + 0.432106i $$0.142229\pi$$
$$350$$ 9.89038 0.528663
$$351$$ 17.5793 6.47820i 0.938315 0.345781i
$$352$$ 0.0162051 0.000863737
$$353$$ 0.431441 0.431441i 0.0229633 0.0229633i −0.695532 0.718495i $$-0.744831\pi$$
0.718495 + 0.695532i $$0.244831\pi$$
$$354$$ 1.44446 + 4.93770i 0.0767724 + 0.262436i
$$355$$ 15.0621i 0.799411i
$$356$$ 5.15703 5.15703i 0.273322 0.273322i
$$357$$ −8.52412 4.66562i −0.451144 0.246931i
$$358$$ 3.27666 3.27666i 0.173177 0.173177i
$$359$$ 1.98976 + 1.98976i 0.105015 + 0.105015i 0.757662 0.652647i $$-0.226341\pi$$
−0.652647 + 0.757662i $$0.726341\pi$$
$$360$$ 9.75123 6.23915i 0.513935 0.328832i
$$361$$ 18.9502i 0.997380i
$$362$$ 10.8336 + 10.8336i 0.569401 + 0.569401i
$$363$$ −18.2857 + 5.34927i −0.959752 + 0.280764i
$$364$$ −3.46044 + 1.01261i −0.181376 + 0.0530753i
$$365$$ 53.6974i 2.81065i
$$366$$ 2.77852 + 1.52080i 0.145236 + 0.0794937i
$$367$$ −6.88839 −0.359571 −0.179785 0.983706i $$-0.557540\pi$$
−0.179785 + 0.983706i $$0.557540\pi$$
$$368$$ 2.57099 0.134022
$$369$$ −4.72161 + 21.4973i −0.245797 + 1.11911i
$$370$$ −30.3413 30.3413i −1.57737 1.57737i
$$371$$ −1.76158 1.76158i −0.0914567 0.0914567i
$$372$$ −14.3242 7.84024i −0.742674 0.406498i
$$373$$ −7.13093 −0.369225 −0.184613 0.982811i $$-0.559103\pi$$
−0.184613 + 0.982811i $$0.559103\pi$$
$$374$$ −0.0909168 −0.00470119
$$375$$ 15.6933 28.6717i 0.810397 1.48060i
$$376$$ 4.68491i 0.241606i
$$377$$ −24.3719 13.3373i −1.25522 0.686904i
$$378$$ −3.41455 + 3.91674i −0.175625 + 0.201455i
$$379$$ 26.5110 + 26.5110i 1.36178 + 1.36178i 0.871649 + 0.490131i $$0.163051\pi$$
0.490131 + 0.871649i $$0.336949\pi$$
$$380$$ 0.860951i 0.0441659i
$$381$$ 7.17330 2.09846i 0.367499 0.107507i
$$382$$ 8.96328 + 8.96328i 0.458601 + 0.458601i
$$383$$ −20.2050 + 20.2050i −1.03243 + 1.03243i −0.0329712 + 0.999456i $$0.510497\pi$$
−0.999456 + 0.0329712i $$0.989503\pi$$
$$384$$ −0.831607 + 1.51935i −0.0424378 + 0.0775341i
$$385$$ −0.0442171 + 0.0442171i −0.00225351 + 0.00225351i
$$386$$ 7.82538i 0.398301i
$$387$$ 8.24433 + 12.8852i 0.419083 + 0.654989i
$$388$$ 5.94479 5.94479i 0.301801 0.301801i
$$389$$ 3.37710 0.171226 0.0856128 0.996328i $$-0.472715\pi$$
0.0856128 + 0.996328i $$0.472715\pi$$
$$390$$ −5.16774 + 23.5376i −0.261679 + 1.19187i
$$391$$ −14.4242 −0.729462
$$392$$ 0.707107 0.707107i 0.0357143 0.0357143i
$$393$$ 0.184759 0.0540491i 0.00931987 0.00272642i
$$394$$ 24.6658i 1.24265i
$$395$$ 16.1063 16.1063i 0.810396 0.810396i
$$396$$ −0.0104292 + 0.0474836i −0.000524085 + 0.00238614i
$$397$$ −2.62666 + 2.62666i −0.131828 + 0.131828i −0.769942 0.638114i $$-0.779715\pi$$
0.638114 + 0.769942i $$0.279715\pi$$
$$398$$ 11.4906 + 11.4906i 0.575970 + 0.575970i
$$399$$ 0.108502 + 0.370899i 0.00543190 + 0.0185682i
$$400$$ 9.89038i 0.494519i
$$401$$ 17.3405 + 17.3405i 0.865943 + 0.865943i 0.992020 0.126078i $$-0.0402388\pi$$
−0.126078 + 0.992020i $$0.540239\pi$$
$$402$$ 5.92719 + 20.2612i 0.295621 + 1.01054i
$$403$$ 32.6244 9.54673i 1.62514 0.475557i
$$404$$ 4.06932i 0.202456i
$$405$$ 12.0061 + 32.5880i 0.596586 + 1.61931i
$$406$$ 7.70551 0.382418
$$407$$ 0.180197 0.00893205
$$408$$ 4.66562 8.52412i 0.230983 0.422007i
$$409$$ −12.2005 12.2005i −0.603276 0.603276i 0.337905 0.941180i $$-0.390282\pi$$
−0.941180 + 0.337905i $$0.890282\pi$$
$$410$$ −20.0185 20.0185i −0.988643 0.988643i
$$411$$ 1.22050 2.22987i 0.0602030 0.109991i
$$412$$ 17.5417 0.864217
$$413$$ 2.97026 0.146157
$$414$$ −1.65461 + 7.53340i −0.0813198 + 0.370246i
$$415$$ 65.2278i 3.20190i
$$416$$ −1.01261 3.46044i −0.0496474 0.169662i
$$417$$ 6.72277 + 22.9808i 0.329216 + 1.12538i
$$418$$ 0.00255660 + 0.00255660i 0.000125048 + 0.000125048i
$$419$$ 15.1275i 0.739027i 0.929225 + 0.369514i $$0.120476\pi$$
−0.929225 + 0.369514i $$0.879524\pi$$
$$420$$ −1.87657 6.41480i −0.0915674 0.313010i
$$421$$ −3.41592 3.41592i −0.166482 0.166482i 0.618949 0.785431i $$-0.287559\pi$$
−0.785431 + 0.618949i $$0.787559\pi$$
$$422$$ −8.97949 + 8.97949i −0.437115 + 0.437115i
$$423$$ 13.7275 + 3.01507i 0.667454 + 0.146598i
$$424$$ 1.76158 1.76158i 0.0855499 0.0855499i
$$425$$ 55.4887i 2.69160i
$$426$$ −6.48876 + 1.89821i −0.314381 + 0.0919685i
$$427$$ 1.29312 1.29312i 0.0625787 0.0625787i
$$428$$ 0.228357 0.0110381
$$429$$ −0.0545495 0.0852408i −0.00263368 0.00411547i
$$430$$ −19.6760 −0.948859
$$431$$ −3.91881 + 3.91881i −0.188762 + 0.188762i −0.795161 0.606399i $$-0.792614\pi$$
0.606399 + 0.795161i $$0.292614\pi$$
$$432$$ −3.91674 3.41455i −0.188444 0.164283i
$$433$$ 15.2572i 0.733212i 0.930376 + 0.366606i $$0.119480\pi$$
−0.930376 + 0.366606i $$0.880520\pi$$
$$434$$ −6.66648 + 6.66648i −0.320001 + 0.320001i
$$435$$ 24.7271 45.1765i 1.18557 2.16605i
$$436$$ −8.58774 + 8.58774i −0.411278 + 0.411278i
$$437$$ 0.405612 + 0.405612i 0.0194031 + 0.0194031i
$$438$$ −23.1329 + 6.76725i −1.10533 + 0.323352i
$$439$$ 13.4437i 0.641632i −0.947141 0.320816i $$-0.896043\pi$$
0.947141 0.320816i $$-0.103957\pi$$
$$440$$ −0.0442171 0.0442171i −0.00210797 0.00210797i
$$441$$ 1.61686 + 2.52701i 0.0769933 + 0.120334i
$$442$$ 5.68113 + 19.4143i 0.270224 + 0.923445i
$$443$$ 38.0441i 1.80753i −0.428032 0.903764i $$-0.640793\pi$$
0.428032 0.903764i $$-0.359207\pi$$
$$444$$ −9.24728 + 16.8948i −0.438856 + 0.801794i
$$445$$ −28.1428 −1.33410
$$446$$ −0.217361 −0.0102923
$$447$$ −19.9813 10.9366i −0.945084 0.517285i
$$448$$ 0.707107 + 0.707107i 0.0334077 + 0.0334077i
$$449$$ 5.40078 + 5.40078i 0.254879 + 0.254879i 0.822967 0.568089i $$-0.192317\pi$$
−0.568089 + 0.822967i $$0.692317\pi$$
$$450$$ −28.9804 6.36516i −1.36615 0.300057i
$$451$$ 0.118890 0.00559832
$$452$$ −2.22102 −0.104468
$$453$$ −0.846351 0.463244i −0.0397650 0.0217651i
$$454$$ 11.5831i 0.543620i
$$455$$ 12.2051 + 6.67910i 0.572184 + 0.313121i
$$456$$ −0.370899 + 0.108502i −0.0173689 + 0.00508108i
$$457$$ −23.4514 23.4514i −1.09701 1.09701i −0.994759 0.102249i $$-0.967396\pi$$
−0.102249 0.994759i $$-0.532604\pi$$
$$458$$ 8.22979i 0.384553i
$$459$$ 21.9744 + 19.1569i 1.02567 + 0.894166i
$$460$$ −7.01517 7.01517i −0.327084 0.327084i
$$461$$ −21.2145 + 21.2145i −0.988057 + 0.988057i −0.999930 0.0118730i $$-0.996221\pi$$
0.0118730 + 0.999930i $$0.496221\pi$$
$$462$$ 0.0246213 + 0.0134763i 0.00114549 + 0.000626974i
$$463$$ 23.6011 23.6011i 1.09684 1.09684i 0.102059 0.994778i $$-0.467457\pi$$
0.994778 0.102059i $$-0.0325429\pi$$
$$464$$ 7.70551i 0.357720i
$$465$$ 17.6920 + 60.4776i 0.820446 + 2.80458i
$$466$$ −7.03838 + 7.03838i −0.326047 + 0.326047i
$$467$$ 1.29336 0.0598496 0.0299248 0.999552i $$-0.490473\pi$$
0.0299248 + 0.999552i $$0.490473\pi$$
$$468$$ 10.7913 0.740077i 0.498828 0.0342101i
$$469$$ 12.1881 0.562794
$$470$$ −12.7832 + 12.7832i −0.589644 + 0.589644i
$$471$$ −4.98585 17.0434i −0.229736 0.785320i
$$472$$ 2.97026i 0.136717i
$$473$$ 0.0584280 0.0584280i 0.00268652 0.00268652i
$$474$$ −8.96843 4.90881i −0.411934 0.225469i
$$475$$ −1.56036 + 1.56036i −0.0715941 + 0.0715941i
$$476$$ −3.96713 3.96713i −0.181833 0.181833i
$$477$$ 4.02800 + 6.29541i 0.184430 + 0.288247i
$$478$$ 17.4616i 0.798673i
$$479$$ −14.5097 14.5097i −0.662966 0.662966i 0.293112 0.956078i $$-0.405309\pi$$
−0.956078 + 0.293112i $$0.905309\pi$$
$$480$$ 6.41480 1.87657i 0.292794 0.0856534i
$$481$$ −11.2600 38.4793i −0.513413 1.75450i
$$482$$ 10.6685i 0.485937i
$$483$$ 3.90624 + 2.13805i 0.177740 + 0.0972847i
$$484$$ −10.9997 −0.499988
$$485$$ −32.4417 −1.47310
$$486$$ 12.5259 9.27916i 0.568185 0.420911i
$$487$$ 16.4423 + 16.4423i 0.745074 + 0.745074i 0.973550 0.228476i $$-0.0733742\pi$$
−0.228476 + 0.973550i $$0.573374\pi$$
$$488$$ 1.29312 + 1.29312i 0.0585370 + 0.0585370i
$$489$$ −7.91168 4.33040i −0.357778 0.195828i
$$490$$ −3.85881 −0.174323
$$491$$ 5.23186 0.236111 0.118055 0.993007i $$-0.462334\pi$$
0.118055 + 0.993007i $$0.462334\pi$$
$$492$$ −6.10115 + 11.1468i −0.275061 + 0.502538i
$$493$$ 43.2308i 1.94702i
$$494$$ 0.386181 0.705691i 0.0173751 0.0317505i
$$495$$ 0.158020 0.101106i 0.00710247 0.00454439i
$$496$$ −6.66648 6.66648i −0.299334 0.299334i
$$497$$ 3.90330i 0.175087i
$$498$$ 28.1002 8.22038i 1.25920 0.368364i
$$499$$ −21.9429 21.9429i −0.982297 0.982297i 0.0175490 0.999846i $$-0.494414\pi$$
−0.999846 + 0.0175490i $$0.994414\pi$$
$$500$$ 13.3438 13.3438i 0.596754 0.596754i
$$501$$ 1.13405 2.07191i 0.0506654 0.0925661i
$$502$$ −18.5384 + 18.5384i −0.827410 + 0.827410i
$$503$$ 14.1370i 0.630336i 0.949036 + 0.315168i $$0.102061\pi$$
−0.949036 + 0.315168i $$0.897939\pi$$
$$504$$ −2.52701 + 1.61686i −0.112562 + 0.0720207i
$$505$$ 11.1035 11.1035i 0.494099 0.494099i
$$506$$ 0.0416632 0.00185216
$$507$$ −14.7936 + 16.9749i −0.657008 + 0.753883i
$$508$$ 4.31508 0.191451
$$509$$ 24.6460 24.6460i 1.09241 1.09241i 0.0971423 0.995271i $$-0.469030\pi$$
0.995271 0.0971423i $$-0.0309702\pi$$
$$510$$ −35.9894 + 10.5283i −1.59364 + 0.466199i
$$511$$ 13.9155i 0.615587i
$$512$$ −0.707107 + 0.707107i −0.0312500 + 0.0312500i
$$513$$ −0.0792282 1.15662i −0.00349801 0.0510661i
$$514$$ −21.7083 + 21.7083i −0.957513 + 0.957513i
$$515$$ −47.8641 47.8641i −2.10914 2.10914i
$$516$$ 2.47968 + 8.47643i 0.109162 + 0.373154i
$$517$$ 0.0759196i 0.00333894i
$$518$$ 7.86287 + 7.86287i 0.345474 + 0.345474i
$$519$$ 5.44575 + 18.6155i 0.239042 + 0.817131i
$$520$$ −6.67910 + 12.2051i −0.292898 + 0.535229i
$$521$$ 42.9249i 1.88057i 0.340383 + 0.940287i $$0.389443\pi$$
−0.340383 + 0.940287i $$0.610557\pi$$
$$522$$ −22.5784 4.95905i −0.988228 0.217052i
$$523$$ −9.09629 −0.397753 −0.198877 0.980025i $$-0.563729\pi$$
−0.198877 + 0.980025i $$0.563729\pi$$
$$524$$ 0.111141 0.00485524
$$525$$ −8.22491 + 15.0270i −0.358964 + 0.655831i
$$526$$ −10.4134 10.4134i −0.454045 0.454045i
$$527$$ 37.4014 + 37.4014i 1.62923 + 1.62923i
$$528$$ −0.0134763 + 0.0246213i −0.000586481 + 0.00107150i
$$529$$ −16.3900 −0.712610
$$530$$ −9.61326 −0.417573
$$531$$ −8.70332 1.91157i −0.377692 0.0829552i
$$532$$ 0.223113i 0.00967319i
$$533$$ −7.42911 25.3877i −0.321790 1.09967i
$$534$$ 3.54672 + 12.1240i 0.153482 + 0.524656i
$$535$$ −0.623093 0.623093i −0.0269386 0.0269386i
$$536$$ 12.1881i 0.526446i
$$537$$ 2.25350 + 7.70329i 0.0972459 + 0.332421i
$$538$$ 12.9855 + 12.9855i 0.559843 + 0.559843i
$$539$$ 0.0114588 0.0114588i 0.000493564 0.000493564i
$$540$$ 1.37027 + 20.0041i 0.0589671 + 0.860838i
$$541$$ −25.9593 + 25.9593i −1.11608 + 1.11608i −0.123765 + 0.992312i $$0.539497\pi$$
−0.992312 + 0.123765i $$0.960503\pi$$
$$542$$ 12.6746i 0.544422i
$$543$$ −25.4693 + 7.45074i −1.09299 + 0.319742i
$$544$$ 3.96713 3.96713i 0.170089 0.170089i
$$545$$ 46.8648 2.00747
$$546$$ 1.33921 6.09972i 0.0573128 0.261044i
$$547$$ 5.50448 0.235355 0.117677 0.993052i $$-0.462455\pi$$
0.117677 + 0.993052i $$0.462455\pi$$
$$548$$ 1.03778 1.03778i 0.0443319 0.0443319i
$$549$$ −4.62127 + 2.95684i −0.197231 + 0.126195i
$$550$$ 0.160275i 0.00683415i
$$551$$ −1.21566 + 1.21566i −0.0517889 + 0.0517889i
$$552$$ −2.13805 + 3.90624i −0.0910015 + 0.166260i
$$553$$ −4.17391 + 4.17391i −0.177493 + 0.177493i
$$554$$ −9.54165 9.54165i −0.405386 0.405386i
$$555$$ 71.3311 20.8671i 3.02784 0.885757i
$$556$$ 13.8241i 0.586271i
$$557$$ −1.35829 1.35829i −0.0575525 0.0575525i 0.677745 0.735297i $$-0.262957\pi$$
−0.735297 + 0.677745i $$0.762957\pi$$
$$558$$ 23.8242 15.2435i 1.00856 0.645307i
$$559$$ −16.1277 8.82568i −0.682128 0.373287i
$$560$$ 3.85881i 0.163064i
$$561$$ 0.0756070 0.138135i 0.00319213 0.00583205i
$$562$$ 26.5076 1.11815
$$563$$ −37.6045 −1.58484 −0.792420 0.609976i $$-0.791179\pi$$
−0.792420 + 0.609976i $$0.791179\pi$$
$$564$$ 7.11802 + 3.89600i 0.299723 + 0.164051i
$$565$$ 6.06025 + 6.06025i 0.254957 + 0.254957i
$$566$$ 0.393002 + 0.393002i 0.0165191 + 0.0165191i
$$567$$ −3.11134 8.44509i −0.130664 0.354660i
$$568$$ −3.90330 −0.163779
$$569$$ 12.8584 0.539053 0.269527 0.962993i $$-0.413133\pi$$
0.269527 + 0.962993i $$0.413133\pi$$
$$570$$ 1.30809 + 0.715973i 0.0547898 + 0.0299888i
$$571$$ 30.6551i 1.28288i 0.767174 + 0.641439i $$0.221662\pi$$
−0.767174 + 0.641439i $$0.778338\pi$$
$$572$$ −0.0164095 0.0560768i −0.000686117 0.00234469i
$$573$$ −21.0723 + 6.16445i −0.880308 + 0.257524i
$$574$$ 5.18774 + 5.18774i 0.216532 + 0.216532i
$$575$$ 25.4280i 1.06042i
$$576$$ −1.61686 2.52701i −0.0673692 0.105292i
$$577$$ 21.0219 + 21.0219i 0.875155 + 0.875155i 0.993029 0.117874i $$-0.0376079\pi$$
−0.117874 + 0.993029i $$0.537608\pi$$
$$578$$ −10.2362 + 10.2362i −0.425771 + 0.425771i
$$579$$ −11.8895 6.50764i −0.494111 0.270448i
$$580$$ 21.0252 21.0252i 0.873023 0.873023i
$$581$$ 16.9036i 0.701280i
$$582$$ 4.08850 + 13.9759i 0.169474 + 0.579322i
$$583$$ 0.0285467 0.0285467i 0.00118228 0.00118228i
$$584$$ −13.9155 −0.575829
$$585$$ −31.4644 27.4257i −1.30089 1.13391i
$$586$$ 9.52128 0.393321
$$587$$ 19.4406 19.4406i 0.802398 0.802398i −0.181072 0.983470i $$-0.557957\pi$$
0.983470 + 0.181072i $$0.0579566\pi$$
$$588$$ 0.486309 + 1.66238i 0.0200550 + 0.0685553i
$$589$$ 2.10347i 0.0866721i
$$590$$ 8.10461 8.10461i 0.333662 0.333662i
$$591$$ 37.4761 + 20.5123i 1.54156 + 0.843762i
$$592$$ −7.86287 + 7.86287i −0.323162 + 0.323162i
$$593$$ 23.9101 + 23.9101i 0.981871 + 0.981871i 0.999839 0.0179672i $$-0.00571946\pi$$
−0.0179672 + 0.999839i $$0.505719\pi$$
$$594$$ −0.0634713 0.0553332i −0.00260426 0.00227035i
$$595$$ 21.6493i 0.887535i
$$596$$ −9.29931 9.29931i −0.380915 0.380915i
$$597$$ −27.0139 + 7.90258i −1.10560 + 0.323431i
$$598$$ −2.60342 8.89674i −0.106462 0.363815i
$$599$$ 30.5039i 1.24636i 0.782080 + 0.623178i $$0.214159\pi$$
−0.782080 + 0.623178i $$0.785841\pi$$
$$600$$ −15.0270 8.22491i −0.613473 0.335780i
$$601$$ 32.8095 1.33833 0.669165 0.743114i $$-0.266652\pi$$
0.669165 + 0.743114i $$0.266652\pi$$
$$602$$ 5.09898 0.207819
$$603$$ −35.7130 7.84391i −1.45435 0.319429i
$$604$$ −0.393892 0.393892i −0.0160272 0.0160272i
$$605$$ 30.0137 + 30.0137i 1.22023 + 1.22023i
$$606$$ −6.18273 3.38408i −0.251156 0.137469i
$$607$$ −23.8071 −0.966299 −0.483149 0.875538i $$-0.660507\pi$$
−0.483149 + 0.875538i $$0.660507\pi$$
$$608$$ −0.223113 −0.00904845
$$609$$ −6.40796 + 11.7074i −0.259664 + 0.474407i
$$610$$ 7.05681i 0.285722i
$$611$$ −16.2118 + 4.74400i −0.655860 + 0.191922i
$$612$$ 9.07118 + 14.1774i 0.366681 + 0.573089i
$$613$$ 2.22797 + 2.22797i 0.0899870 + 0.0899870i 0.750667 0.660680i $$-0.229732\pi$$
−0.660680 + 0.750667i $$0.729732\pi$$
$$614$$ 19.3462i 0.780748i
$$615$$ 47.0626 13.7676i 1.89775 0.555164i
$$616$$ 0.0114588 + 0.0114588i 0.000461687 + 0.000461687i
$$617$$ −9.41224 + 9.41224i −0.378922 + 0.378922i −0.870713 0.491791i $$-0.836342\pi$$
0.491791 + 0.870713i $$0.336342\pi$$
$$618$$ −14.5878 + 26.6520i −0.586807 + 1.07210i
$$619$$ −30.1524 + 30.1524i −1.21193 + 1.21193i −0.241535 + 0.970392i $$0.577651\pi$$
−0.970392 + 0.241535i $$0.922349\pi$$
$$620$$ 36.3801i 1.46106i
$$621$$ −10.0699 8.77876i −0.404091 0.352280i
$$622$$ 2.15537 2.15537i 0.0864225 0.0864225i
$$623$$ 7.29315 0.292194
$$624$$ 6.09972 + 1.33921i 0.244184 + 0.0536112i
$$625$$ −23.3677 −0.934709
$$626$$ −13.6140 + 13.6140i −0.544124 + 0.544124i
$$627$$ −0.00601047 + 0.00175829i −0.000240035 + 7.02194e-5i
$$628$$ 10.2524i 0.409117i
$$629$$ 44.1136 44.1136i 1.75892 1.75892i
$$630$$ 11.3069 + 2.48342i 0.450478 + 0.0989416i
$$631$$ −17.9690 + 17.9690i −0.715334 + 0.715334i −0.967646 0.252312i $$-0.918809\pi$$
0.252312 + 0.967646i $$0.418809\pi$$
$$632$$ −4.17391 4.17391i −0.166029 0.166029i
$$633$$ −6.17560 21.1104i −0.245458 0.839064i
$$634$$ 17.2832i 0.686403i
$$635$$ −11.7741 11.7741i −0.467240 0.467240i
$$636$$ 1.21152 + 4.14140i 0.0480398 + 0.164217i
$$637$$ −3.16292 1.73087i −0.125320 0.0685797i
$$638$$ 0.124869i 0.00494361i
$$639$$ 2.51205 11.4373i 0.0993751 0.452451i
$$640$$ 3.85881 0.152533
$$641$$ −6.22306 −0.245796 −0.122898 0.992419i $$-0.539219\pi$$
−0.122898 + 0.992419i $$0.539219\pi$$
$$642$$ −0.189903 + 0.346955i −0.00749489 + 0.0136932i
$$643$$ 2.90196 + 2.90196i 0.114442 + 0.114442i 0.762009 0.647567i $$-0.224213\pi$$
−0.647567 + 0.762009i $$0.724213\pi$$
$$644$$ 1.81796 + 1.81796i 0.0716378 + 0.0716378i
$$645$$ 16.3627 29.8947i 0.644279 1.17710i
$$646$$ 1.25175 0.0492494
$$647$$ 14.3535 0.564293 0.282147 0.959371i $$-0.408954\pi$$
0.282147 + 0.959371i $$0.408954\pi$$
$$648$$ 8.44509 3.11134i 0.331754 0.122225i
$$649$$ 0.0481335i 0.00188940i
$$650$$ 34.2250 10.0151i 1.34242 0.392826i
$$651$$ −4.58483 15.6726i −0.179694 0.614258i
$$652$$ −3.68210 3.68210i −0.144202 0.144202i
$$653$$ 4.91046i 0.192161i 0.995374 + 0.0960805i $$0.0306306\pi$$
−0.995374 + 0.0960805i $$0.969369\pi$$
$$654$$ −5.90617 20.1894i −0.230950 0.789469i
$$655$$ −0.303259 0.303259i −0.0118493 0.0118493i
$$656$$ −5.18774 + 5.18774i −0.202547 + 0.202547i
$$657$$ 8.95564 40.7747i 0.349393 1.59077i
$$658$$ 3.31273 3.31273i 0.129144 0.129144i
$$659$$ 29.9426i 1.16640i 0.812329 + 0.583199i $$0.198199\pi$$
−0.812329 + 0.583199i $$0.801801\pi$$
$$660$$ 0.103953 0.0304101i 0.00404635 0.00118371i
$$661$$ 5.12233 5.12233i 0.199236 0.199236i −0.600437 0.799672i $$-0.705007\pi$$
0.799672 + 0.600437i $$0.205007\pi$$
$$662$$ 13.0828 0.508478
$$663$$ −34.2216 7.51344i −1.32906 0.291798i
$$664$$ 16.9036 0.655987
$$665$$ 0.608785 0.608785i 0.0236077 0.0236077i
$$666$$ −17.9791 28.0997i −0.696676 1.08884i
$$667$$ 19.8108i 0.767077i
$$668$$ 0.964267 0.964267i 0.0373086 0.0373086i
$$669$$ 0.180759 0.330248i 0.00698854 0.0127681i
$$670$$ 33.2563 33.2563i 1.28480 1.28480i
$$671$$ 0.0209553 + 0.0209553i 0.000808969 + 0.000808969i
$$672$$ −1.66238 + 0.486309i −0.0641277 + 0.0187598i
$$673$$ 0.955996i 0.0368509i 0.999830 + 0.0184255i $$0.00586534\pi$$
−0.999830 + 0.0184255i $$0.994135\pi$$
$$674$$ −2.77238 2.77238i −0.106788 0.106788i
$$675$$ 33.7712 38.7381i 1.29985 1.49103i
$$676$$ −10.9492 + 7.00816i −0.421124 + 0.269545i
$$677$$ 22.6377i 0.870037i −0.900421 0.435019i $$-0.856742\pi$$
0.900421 0.435019i $$-0.143258\pi$$
$$678$$ 1.84702 3.37451i 0.0709342 0.129597i
$$679$$ 8.40720 0.322639
$$680$$ −21.6493 −0.830213
$$681$$ −17.5988 9.63256i −0.674386 0.369121i
$$682$$ −0.108031 0.108031i −0.00413673 0.00413673i
$$683$$ 28.9868 + 28.9868i 1.10915 + 1.10915i 0.993263 + 0.115885i $$0.0369705\pi$$
0.115885 + 0.993263i $$0.463029\pi$$
$$684$$ 0.143589 0.653757i 0.00549028 0.0249970i
$$685$$ −5.66336 −0.216386
$$686$$ 1.00000 0.0381802
$$687$$ 12.5040 + 6.84395i 0.477056 + 0.261113i
$$688$$ 5.09898i 0.194397i
$$689$$ −7.87964 4.31204i −0.300190 0.164276i
$$690$$ 16.4924 4.82464i 0.627854 0.183671i
$$691$$ 14.1906 + 14.1906i 0.539837 + 0.539837i 0.923481 0.383644i $$-0.125331\pi$$
−0.383644 + 0.923481i $$0.625331\pi$$
$$692$$ 11.1981i 0.425689i
$$693$$ −0.0409505 + 0.0262014i −0.00155558 + 0.000995310i
$$694$$ 8.35511 + 8.35511i 0.317156 + 0.317156i
$$695$$ 37.7202 37.7202i 1.43081 1.43081i
$$696$$ −11.7074 6.40796i −0.443767 0.242893i
$$697$$ 29.1051 29.1051i 1.10244 1.10244i
$$698$$ 12.4098i 0.469717i
$$699$$ −4.84061 16.5469i −0.183089 0.625863i
$$700$$ −6.99356 + 6.99356i −0.264332 + 0.264332i
$$701$$ 1.82380 0.0688840 0.0344420 0.999407i $$-0.489035\pi$$
0.0344420 + 0.999407i $$0.489035\pi$$
$$702$$ −7.84969 + 17.0112i −0.296267 + 0.642048i
$$703$$ −2.48097 −0.0935716
$$704$$ −0.0114588 + 0.0114588i −0.000431868 + 0.000431868i
$$705$$ −8.79157 30.0527i −0.331110 1.13185i
$$706$$ 0.610149i 0.0229633i
$$707$$ −2.87744 + 2.87744i −0.108217 + 0.108217i
$$708$$ −4.51287 2.47009i −0.169604 0.0928316i
$$709$$ 13.5253 13.5253i 0.507953 0.507953i −0.405945 0.913898i $$-0.633057\pi$$
0.913898 + 0.405945i $$0.133057\pi$$
$$710$$ 10.6505 + 10.6505i 0.399706 + 0.399706i
$$711$$ 14.9164 9.54400i 0.559409 0.357928i
$$712$$ 7.29315i 0.273322i
$$713$$ −17.1394 17.1394i −0.641877 0.641877i
$$714$$ 9.32656 2.72837i 0.349038 0.102107i
$$715$$ −0.108236 + 0.197785i −0.00404779 + 0.00739675i
$$716$$ 4.63389i 0.173177i
$$717$$ 26.5302 + 14.5212i 0.990790 + 0.542302i
$$718$$ −2.81394 −0.105015
$$719$$ 10.2208 0.381172 0.190586 0.981670i $$-0.438961\pi$$
0.190586 + 0.981670i $$0.438961\pi$$
$$720$$ −2.48342 + 11.3069i −0.0925514 + 0.421383i
$$721$$ 12.4039 + 12.4039i 0.461944 + 0.461944i
$$722$$ 13.3998 + 13.3998i 0.498690 + 0.498690i
$$723$$ −16.2092 8.87200i −0.602827 0.329953i
$$724$$ −15.3210 −0.569401
$$725$$ −76.2105 −2.83039
$$726$$ 9.14746 16.7125i 0.339494 0.620258i
$$727$$ 43.8339i 1.62571i 0.582466 + 0.812855i $$0.302088\pi$$
−0.582466 + 0.812855i $$0.697912\pi$$
$$728$$ 1.73087 3.16292i 0.0641504 0.117226i
$$729$$ 3.68171 + 26.7478i 0.136360 + 0.990659i
$$730$$ 37.9698 + 37.9698i 1.40532 + 1.40532i
$$731$$ 28.6071i 1.05807i
$$732$$ −3.04008 + 0.889340i −0.112365 + 0.0328709i
$$733$$ −8.47954 8.47954i −0.313199 0.313199i 0.532949 0.846148i $$-0.321084\pi$$
−0.846148 + 0.532949i $$0.821084\pi$$
$$734$$ 4.87082 4.87082i 0.179785 0.179785i
$$735$$ 3.20901 5.86288i 0.118366 0.216256i
$$736$$ −1.81796 + 1.81796i −0.0670110 + 0.0670110i
$$737$$ 0.197510i 0.00727537i
$$738$$ −11.8622 18.5396i −0.436654 0.682451i
$$739$$ −23.8959 + 23.8959i −0.879025 + 0.879025i −0.993434 0.114409i $$-0.963503\pi$$
0.114409 + 0.993434i $$0.463503\pi$$
$$740$$ 42.9090 1.57737
$$741$$ 0.751042 + 1.17360i 0.0275902 + 0.0431133i
$$742$$ 2.49125 0.0914567
$$743$$ 3.43994 3.43994i 0.126199 0.126199i −0.641186 0.767385i $$-0.721557\pi$$
0.767385 + 0.641186i $$0.221557\pi$$
$$744$$ 15.6726 4.58483i 0.574586 0.168088i
$$745$$ 50.7480i 1.85926i
$$746$$ 5.04233 5.04233i 0.184613 0.184613i
$$747$$ −10.8787 + 49.5302i −0.398030 + 1.81222i
$$748$$ 0.0642879 0.0642879i 0.00235060 0.00235060i
$$749$$ 0.161473 + 0.161473i 0.00590009 + 0.00590009i
$$750$$ 9.17715 + 31.3708i 0.335102 + 1.14550i
$$751$$ 9.39451i 0.342810i −0.985201 0.171405i $$-0.945169\pi$$
0.985201 0.171405i $$-0.0548307\pi$$
$$752$$ 3.31273 + 3.31273i 0.120803 + 0.120803i
$$753$$ −12.7497 43.5830i −0.464625 1.58825i
$$754$$ 26.6644 7.80270i 0.971062 0.284158i
$$755$$ 2.14954i 0.0782297i
$$756$$ −0.355103 5.18400i −0.0129150 0.188540i
$$757$$ 35.0626 1.27437 0.637187 0.770709i $$-0.280098\pi$$
0.637187 + 0.770709i $$0.280098\pi$$
$$758$$ −37.4923 −1.36178
$$759$$ −0.0346474 + 0.0633011i −0.00125762 + 0.00229768i
$$760$$ 0.608785 + 0.608785i 0.0220829 + 0.0220829i
$$761$$ 21.2949 + 21.2949i 0.771940 + 0.771940i 0.978445 0.206506i $$-0.0662092\pi$$
−0.206506 + 0.978445i $$0.566209\pi$$
$$762$$ −3.58845 + 6.55612i −0.129996 + 0.237503i
$$763$$ −12.1449 −0.439675
$$764$$ −12.6760 −0.458601
$$765$$ 13.9329 63.4359i 0.503744 2.29353i
$$766$$ 28.5742i 1.03243i
$$767$$ 10.2784 3.00772i 0.371131 0.108603i
$$768$$ −0.486309 1.66238i −0.0175482 0.0599859i
$$769$$ −10.2910 10.2910i −0.371104 0.371104i 0.496775 0.867879i $$-0.334517\pi$$
−0.867879 + 0.496775i $$0.834517\pi$$
$$770$$ 0.0625325i 0.00225351i
$$771$$ −14.9298 51.0354i −0.537683 1.83799i
$$772$$ −5.53338 5.53338i −0.199151 0.199151i
$$773$$ −34.9528 + 34.9528i −1.25717 + 1.25717i −0.304727 + 0.952440i $$0.598565\pi$$
−0.952440 + 0.304727i $$0.901435\pi$$
$$774$$ −14.9408 3.28156i −0.537036 0.117953i
$$775$$ 65.9340 65.9340i 2.36842 2.36842i
$$776$$ 8.40720i