# Properties

 Label 546.2.l.b.211.1 Level $546$ Weight $2$ Character 546.211 Analytic conductor $4.360$ Analytic rank $0$ Dimension $2$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$546 = 2 \cdot 3 \cdot 7 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 546.l (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$4.35983195036$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\zeta_{6})$$ Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 211.1 Root $$0.500000 - 0.866025i$$ of defining polynomial Character $$\chi$$ $$=$$ 546.211 Dual form 546.2.l.b.295.1

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+(-0.500000 - 0.866025i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +3.00000 q^{5} +(0.500000 - 0.866025i) q^{6} +(0.500000 - 0.866025i) q^{7} +1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})$$ $$q+(-0.500000 - 0.866025i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +3.00000 q^{5} +(0.500000 - 0.866025i) q^{6} +(0.500000 - 0.866025i) q^{7} +1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-1.50000 - 2.59808i) q^{10} +(-2.00000 - 3.46410i) q^{11} -1.00000 q^{12} +(3.50000 - 0.866025i) q^{13} -1.00000 q^{14} +(1.50000 + 2.59808i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(2.50000 - 4.33013i) q^{17} +1.00000 q^{18} +(-2.00000 + 3.46410i) q^{19} +(-1.50000 + 2.59808i) q^{20} +1.00000 q^{21} +(-2.00000 + 3.46410i) q^{22} +(2.00000 + 3.46410i) q^{23} +(0.500000 + 0.866025i) q^{24} +4.00000 q^{25} +(-2.50000 - 2.59808i) q^{26} -1.00000 q^{27} +(0.500000 + 0.866025i) q^{28} +(4.50000 + 7.79423i) q^{29} +(1.50000 - 2.59808i) q^{30} +(-0.500000 + 0.866025i) q^{32} +(2.00000 - 3.46410i) q^{33} -5.00000 q^{34} +(1.50000 - 2.59808i) q^{35} +(-0.500000 - 0.866025i) q^{36} +(-3.50000 - 6.06218i) q^{37} +4.00000 q^{38} +(2.50000 + 2.59808i) q^{39} +3.00000 q^{40} +(-3.50000 - 6.06218i) q^{41} +(-0.500000 - 0.866025i) q^{42} +(-4.00000 + 6.92820i) q^{43} +4.00000 q^{44} +(-1.50000 + 2.59808i) q^{45} +(2.00000 - 3.46410i) q^{46} +12.0000 q^{47} +(0.500000 - 0.866025i) q^{48} +(-0.500000 - 0.866025i) q^{49} +(-2.00000 - 3.46410i) q^{50} +5.00000 q^{51} +(-1.00000 + 3.46410i) q^{52} +7.00000 q^{53} +(0.500000 + 0.866025i) q^{54} +(-6.00000 - 10.3923i) q^{55} +(0.500000 - 0.866025i) q^{56} -4.00000 q^{57} +(4.50000 - 7.79423i) q^{58} +(4.00000 - 6.92820i) q^{59} -3.00000 q^{60} +(-3.50000 + 6.06218i) q^{61} +(0.500000 + 0.866025i) q^{63} +1.00000 q^{64} +(10.5000 - 2.59808i) q^{65} -4.00000 q^{66} +(-6.00000 - 10.3923i) q^{67} +(2.50000 + 4.33013i) q^{68} +(-2.00000 + 3.46410i) q^{69} -3.00000 q^{70} +(-6.00000 + 10.3923i) q^{71} +(-0.500000 + 0.866025i) q^{72} -1.00000 q^{73} +(-3.50000 + 6.06218i) q^{74} +(2.00000 + 3.46410i) q^{75} +(-2.00000 - 3.46410i) q^{76} -4.00000 q^{77} +(1.00000 - 3.46410i) q^{78} -16.0000 q^{79} +(-1.50000 - 2.59808i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-3.50000 + 6.06218i) q^{82} -8.00000 q^{83} +(-0.500000 + 0.866025i) q^{84} +(7.50000 - 12.9904i) q^{85} +8.00000 q^{86} +(-4.50000 + 7.79423i) q^{87} +(-2.00000 - 3.46410i) q^{88} +(3.00000 + 5.19615i) q^{89} +3.00000 q^{90} +(1.00000 - 3.46410i) q^{91} -4.00000 q^{92} +(-6.00000 - 10.3923i) q^{94} +(-6.00000 + 10.3923i) q^{95} -1.00000 q^{96} +(-9.00000 + 15.5885i) q^{97} +(-0.500000 + 0.866025i) q^{98} +4.00000 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - q^{2} + q^{3} - q^{4} + 6 q^{5} + q^{6} + q^{7} + 2 q^{8} - q^{9}+O(q^{10})$$ 2 * q - q^2 + q^3 - q^4 + 6 * q^5 + q^6 + q^7 + 2 * q^8 - q^9 $$2 q - q^{2} + q^{3} - q^{4} + 6 q^{5} + q^{6} + q^{7} + 2 q^{8} - q^{9} - 3 q^{10} - 4 q^{11} - 2 q^{12} + 7 q^{13} - 2 q^{14} + 3 q^{15} - q^{16} + 5 q^{17} + 2 q^{18} - 4 q^{19} - 3 q^{20} + 2 q^{21} - 4 q^{22} + 4 q^{23} + q^{24} + 8 q^{25} - 5 q^{26} - 2 q^{27} + q^{28} + 9 q^{29} + 3 q^{30} - q^{32} + 4 q^{33} - 10 q^{34} + 3 q^{35} - q^{36} - 7 q^{37} + 8 q^{38} + 5 q^{39} + 6 q^{40} - 7 q^{41} - q^{42} - 8 q^{43} + 8 q^{44} - 3 q^{45} + 4 q^{46} + 24 q^{47} + q^{48} - q^{49} - 4 q^{50} + 10 q^{51} - 2 q^{52} + 14 q^{53} + q^{54} - 12 q^{55} + q^{56} - 8 q^{57} + 9 q^{58} + 8 q^{59} - 6 q^{60} - 7 q^{61} + q^{63} + 2 q^{64} + 21 q^{65} - 8 q^{66} - 12 q^{67} + 5 q^{68} - 4 q^{69} - 6 q^{70} - 12 q^{71} - q^{72} - 2 q^{73} - 7 q^{74} + 4 q^{75} - 4 q^{76} - 8 q^{77} + 2 q^{78} - 32 q^{79} - 3 q^{80} - q^{81} - 7 q^{82} - 16 q^{83} - q^{84} + 15 q^{85} + 16 q^{86} - 9 q^{87} - 4 q^{88} + 6 q^{89} + 6 q^{90} + 2 q^{91} - 8 q^{92} - 12 q^{94} - 12 q^{95} - 2 q^{96} - 18 q^{97} - q^{98} + 8 q^{99}+O(q^{100})$$ 2 * q - q^2 + q^3 - q^4 + 6 * q^5 + q^6 + q^7 + 2 * q^8 - q^9 - 3 * q^10 - 4 * q^11 - 2 * q^12 + 7 * q^13 - 2 * q^14 + 3 * q^15 - q^16 + 5 * q^17 + 2 * q^18 - 4 * q^19 - 3 * q^20 + 2 * q^21 - 4 * q^22 + 4 * q^23 + q^24 + 8 * q^25 - 5 * q^26 - 2 * q^27 + q^28 + 9 * q^29 + 3 * q^30 - q^32 + 4 * q^33 - 10 * q^34 + 3 * q^35 - q^36 - 7 * q^37 + 8 * q^38 + 5 * q^39 + 6 * q^40 - 7 * q^41 - q^42 - 8 * q^43 + 8 * q^44 - 3 * q^45 + 4 * q^46 + 24 * q^47 + q^48 - q^49 - 4 * q^50 + 10 * q^51 - 2 * q^52 + 14 * q^53 + q^54 - 12 * q^55 + q^56 - 8 * q^57 + 9 * q^58 + 8 * q^59 - 6 * q^60 - 7 * q^61 + q^63 + 2 * q^64 + 21 * q^65 - 8 * q^66 - 12 * q^67 + 5 * q^68 - 4 * q^69 - 6 * q^70 - 12 * q^71 - q^72 - 2 * q^73 - 7 * q^74 + 4 * q^75 - 4 * q^76 - 8 * q^77 + 2 * q^78 - 32 * q^79 - 3 * q^80 - q^81 - 7 * q^82 - 16 * q^83 - q^84 + 15 * q^85 + 16 * q^86 - 9 * q^87 - 4 * q^88 + 6 * q^89 + 6 * q^90 + 2 * q^91 - 8 * q^92 - 12 * q^94 - 12 * q^95 - 2 * q^96 - 18 * q^97 - q^98 + 8 * q^99

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/546\mathbb{Z}\right)^\times$$.

 $$n$$ $$157$$ $$365$$ $$379$$ $$\chi(n)$$ $$1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ −0.500000 0.866025i −0.353553 0.612372i
$$3$$ 0.500000 + 0.866025i 0.288675 + 0.500000i
$$4$$ −0.500000 + 0.866025i −0.250000 + 0.433013i
$$5$$ 3.00000 1.34164 0.670820 0.741620i $$-0.265942\pi$$
0.670820 + 0.741620i $$0.265942\pi$$
$$6$$ 0.500000 0.866025i 0.204124 0.353553i
$$7$$ 0.500000 0.866025i 0.188982 0.327327i
$$8$$ 1.00000 0.353553
$$9$$ −0.500000 + 0.866025i −0.166667 + 0.288675i
$$10$$ −1.50000 2.59808i −0.474342 0.821584i
$$11$$ −2.00000 3.46410i −0.603023 1.04447i −0.992361 0.123371i $$-0.960630\pi$$
0.389338 0.921095i $$-0.372704\pi$$
$$12$$ −1.00000 −0.288675
$$13$$ 3.50000 0.866025i 0.970725 0.240192i
$$14$$ −1.00000 −0.267261
$$15$$ 1.50000 + 2.59808i 0.387298 + 0.670820i
$$16$$ −0.500000 0.866025i −0.125000 0.216506i
$$17$$ 2.50000 4.33013i 0.606339 1.05021i −0.385499 0.922708i $$-0.625971\pi$$
0.991838 0.127502i $$-0.0406959\pi$$
$$18$$ 1.00000 0.235702
$$19$$ −2.00000 + 3.46410i −0.458831 + 0.794719i −0.998899 0.0469020i $$-0.985065\pi$$
0.540068 + 0.841621i $$0.318398\pi$$
$$20$$ −1.50000 + 2.59808i −0.335410 + 0.580948i
$$21$$ 1.00000 0.218218
$$22$$ −2.00000 + 3.46410i −0.426401 + 0.738549i
$$23$$ 2.00000 + 3.46410i 0.417029 + 0.722315i 0.995639 0.0932891i $$-0.0297381\pi$$
−0.578610 + 0.815604i $$0.696405\pi$$
$$24$$ 0.500000 + 0.866025i 0.102062 + 0.176777i
$$25$$ 4.00000 0.800000
$$26$$ −2.50000 2.59808i −0.490290 0.509525i
$$27$$ −1.00000 −0.192450
$$28$$ 0.500000 + 0.866025i 0.0944911 + 0.163663i
$$29$$ 4.50000 + 7.79423i 0.835629 + 1.44735i 0.893517 + 0.449029i $$0.148230\pi$$
−0.0578882 + 0.998323i $$0.518437\pi$$
$$30$$ 1.50000 2.59808i 0.273861 0.474342i
$$31$$ 0 0 1.00000i $$-0.5\pi$$
1.00000i $$0.5\pi$$
$$32$$ −0.500000 + 0.866025i −0.0883883 + 0.153093i
$$33$$ 2.00000 3.46410i 0.348155 0.603023i
$$34$$ −5.00000 −0.857493
$$35$$ 1.50000 2.59808i 0.253546 0.439155i
$$36$$ −0.500000 0.866025i −0.0833333 0.144338i
$$37$$ −3.50000 6.06218i −0.575396 0.996616i −0.995998 0.0893706i $$-0.971514\pi$$
0.420602 0.907245i $$-0.361819\pi$$
$$38$$ 4.00000 0.648886
$$39$$ 2.50000 + 2.59808i 0.400320 + 0.416025i
$$40$$ 3.00000 0.474342
$$41$$ −3.50000 6.06218i −0.546608 0.946753i −0.998504 0.0546823i $$-0.982585\pi$$
0.451896 0.892071i $$-0.350748\pi$$
$$42$$ −0.500000 0.866025i −0.0771517 0.133631i
$$43$$ −4.00000 + 6.92820i −0.609994 + 1.05654i 0.381246 + 0.924473i $$0.375495\pi$$
−0.991241 + 0.132068i $$0.957838\pi$$
$$44$$ 4.00000 0.603023
$$45$$ −1.50000 + 2.59808i −0.223607 + 0.387298i
$$46$$ 2.00000 3.46410i 0.294884 0.510754i
$$47$$ 12.0000 1.75038 0.875190 0.483779i $$-0.160736\pi$$
0.875190 + 0.483779i $$0.160736\pi$$
$$48$$ 0.500000 0.866025i 0.0721688 0.125000i
$$49$$ −0.500000 0.866025i −0.0714286 0.123718i
$$50$$ −2.00000 3.46410i −0.282843 0.489898i
$$51$$ 5.00000 0.700140
$$52$$ −1.00000 + 3.46410i −0.138675 + 0.480384i
$$53$$ 7.00000 0.961524 0.480762 0.876851i $$-0.340360\pi$$
0.480762 + 0.876851i $$0.340360\pi$$
$$54$$ 0.500000 + 0.866025i 0.0680414 + 0.117851i
$$55$$ −6.00000 10.3923i −0.809040 1.40130i
$$56$$ 0.500000 0.866025i 0.0668153 0.115728i
$$57$$ −4.00000 −0.529813
$$58$$ 4.50000 7.79423i 0.590879 1.02343i
$$59$$ 4.00000 6.92820i 0.520756 0.901975i −0.478953 0.877841i $$-0.658984\pi$$
0.999709 0.0241347i $$-0.00768307\pi$$
$$60$$ −3.00000 −0.387298
$$61$$ −3.50000 + 6.06218i −0.448129 + 0.776182i −0.998264 0.0588933i $$-0.981243\pi$$
0.550135 + 0.835076i $$0.314576\pi$$
$$62$$ 0 0
$$63$$ 0.500000 + 0.866025i 0.0629941 + 0.109109i
$$64$$ 1.00000 0.125000
$$65$$ 10.5000 2.59808i 1.30236 0.322252i
$$66$$ −4.00000 −0.492366
$$67$$ −6.00000 10.3923i −0.733017 1.26962i −0.955588 0.294706i $$-0.904778\pi$$
0.222571 0.974916i $$-0.428555\pi$$
$$68$$ 2.50000 + 4.33013i 0.303170 + 0.525105i
$$69$$ −2.00000 + 3.46410i −0.240772 + 0.417029i
$$70$$ −3.00000 −0.358569
$$71$$ −6.00000 + 10.3923i −0.712069 + 1.23334i 0.252010 + 0.967725i $$0.418908\pi$$
−0.964079 + 0.265615i $$0.914425\pi$$
$$72$$ −0.500000 + 0.866025i −0.0589256 + 0.102062i
$$73$$ −1.00000 −0.117041 −0.0585206 0.998286i $$-0.518638\pi$$
−0.0585206 + 0.998286i $$0.518638\pi$$
$$74$$ −3.50000 + 6.06218i −0.406867 + 0.704714i
$$75$$ 2.00000 + 3.46410i 0.230940 + 0.400000i
$$76$$ −2.00000 3.46410i −0.229416 0.397360i
$$77$$ −4.00000 −0.455842
$$78$$ 1.00000 3.46410i 0.113228 0.392232i
$$79$$ −16.0000 −1.80014 −0.900070 0.435745i $$-0.856485\pi$$
−0.900070 + 0.435745i $$0.856485\pi$$
$$80$$ −1.50000 2.59808i −0.167705 0.290474i
$$81$$ −0.500000 0.866025i −0.0555556 0.0962250i
$$82$$ −3.50000 + 6.06218i −0.386510 + 0.669456i
$$83$$ −8.00000 −0.878114 −0.439057 0.898459i $$-0.644687\pi$$
−0.439057 + 0.898459i $$0.644687\pi$$
$$84$$ −0.500000 + 0.866025i −0.0545545 + 0.0944911i
$$85$$ 7.50000 12.9904i 0.813489 1.40900i
$$86$$ 8.00000 0.862662
$$87$$ −4.50000 + 7.79423i −0.482451 + 0.835629i
$$88$$ −2.00000 3.46410i −0.213201 0.369274i
$$89$$ 3.00000 + 5.19615i 0.317999 + 0.550791i 0.980071 0.198650i $$-0.0636557\pi$$
−0.662071 + 0.749441i $$0.730322\pi$$
$$90$$ 3.00000 0.316228
$$91$$ 1.00000 3.46410i 0.104828 0.363137i
$$92$$ −4.00000 −0.417029
$$93$$ 0 0
$$94$$ −6.00000 10.3923i −0.618853 1.07188i
$$95$$ −6.00000 + 10.3923i −0.615587 + 1.06623i
$$96$$ −1.00000 −0.102062
$$97$$ −9.00000 + 15.5885i −0.913812 + 1.58277i −0.105180 + 0.994453i $$0.533542\pi$$
−0.808632 + 0.588315i $$0.799792\pi$$
$$98$$ −0.500000 + 0.866025i −0.0505076 + 0.0874818i
$$99$$ 4.00000 0.402015
$$100$$ −2.00000 + 3.46410i −0.200000 + 0.346410i
$$101$$ −1.50000 2.59808i −0.149256 0.258518i 0.781697 0.623658i $$-0.214354\pi$$
−0.930953 + 0.365140i $$0.881021\pi$$
$$102$$ −2.50000 4.33013i −0.247537 0.428746i
$$103$$ −4.00000 −0.394132 −0.197066 0.980390i $$-0.563141\pi$$
−0.197066 + 0.980390i $$0.563141\pi$$
$$104$$ 3.50000 0.866025i 0.343203 0.0849208i
$$105$$ 3.00000 0.292770
$$106$$ −3.50000 6.06218i −0.339950 0.588811i
$$107$$ 0 0 0.866025 0.500000i $$-0.166667\pi$$
−0.866025 + 0.500000i $$0.833333\pi$$
$$108$$ 0.500000 0.866025i 0.0481125 0.0833333i
$$109$$ 14.0000 1.34096 0.670478 0.741929i $$-0.266089\pi$$
0.670478 + 0.741929i $$0.266089\pi$$
$$110$$ −6.00000 + 10.3923i −0.572078 + 0.990867i
$$111$$ 3.50000 6.06218i 0.332205 0.575396i
$$112$$ −1.00000 −0.0944911
$$113$$ 2.50000 4.33013i 0.235180 0.407344i −0.724145 0.689648i $$-0.757765\pi$$
0.959325 + 0.282304i $$0.0910986\pi$$
$$114$$ 2.00000 + 3.46410i 0.187317 + 0.324443i
$$115$$ 6.00000 + 10.3923i 0.559503 + 0.969087i
$$116$$ −9.00000 −0.835629
$$117$$ −1.00000 + 3.46410i −0.0924500 + 0.320256i
$$118$$ −8.00000 −0.736460
$$119$$ −2.50000 4.33013i −0.229175 0.396942i
$$120$$ 1.50000 + 2.59808i 0.136931 + 0.237171i
$$121$$ −2.50000 + 4.33013i −0.227273 + 0.393648i
$$122$$ 7.00000 0.633750
$$123$$ 3.50000 6.06218i 0.315584 0.546608i
$$124$$ 0 0
$$125$$ −3.00000 −0.268328
$$126$$ 0.500000 0.866025i 0.0445435 0.0771517i
$$127$$ 4.00000 + 6.92820i 0.354943 + 0.614779i 0.987108 0.160055i $$-0.0511671\pi$$
−0.632166 + 0.774833i $$0.717834\pi$$
$$128$$ −0.500000 0.866025i −0.0441942 0.0765466i
$$129$$ −8.00000 −0.704361
$$130$$ −7.50000 7.79423i −0.657794 0.683599i
$$131$$ −12.0000 −1.04844 −0.524222 0.851581i $$-0.675644\pi$$
−0.524222 + 0.851581i $$0.675644\pi$$
$$132$$ 2.00000 + 3.46410i 0.174078 + 0.301511i
$$133$$ 2.00000 + 3.46410i 0.173422 + 0.300376i
$$134$$ −6.00000 + 10.3923i −0.518321 + 0.897758i
$$135$$ −3.00000 −0.258199
$$136$$ 2.50000 4.33013i 0.214373 0.371305i
$$137$$ −1.50000 + 2.59808i −0.128154 + 0.221969i −0.922961 0.384893i $$-0.874238\pi$$
0.794808 + 0.606861i $$0.207572\pi$$
$$138$$ 4.00000 0.340503
$$139$$ −2.00000 + 3.46410i −0.169638 + 0.293821i −0.938293 0.345843i $$-0.887593\pi$$
0.768655 + 0.639664i $$0.220926\pi$$
$$140$$ 1.50000 + 2.59808i 0.126773 + 0.219578i
$$141$$ 6.00000 + 10.3923i 0.505291 + 0.875190i
$$142$$ 12.0000 1.00702
$$143$$ −10.0000 10.3923i −0.836242 0.869048i
$$144$$ 1.00000 0.0833333
$$145$$ 13.5000 + 23.3827i 1.12111 + 1.94183i
$$146$$ 0.500000 + 0.866025i 0.0413803 + 0.0716728i
$$147$$ 0.500000 0.866025i 0.0412393 0.0714286i
$$148$$ 7.00000 0.575396
$$149$$ −3.50000 + 6.06218i −0.286731 + 0.496633i −0.973028 0.230689i $$-0.925902\pi$$
0.686296 + 0.727322i $$0.259235\pi$$
$$150$$ 2.00000 3.46410i 0.163299 0.282843i
$$151$$ −8.00000 −0.651031 −0.325515 0.945537i $$-0.605538\pi$$
−0.325515 + 0.945537i $$0.605538\pi$$
$$152$$ −2.00000 + 3.46410i −0.162221 + 0.280976i
$$153$$ 2.50000 + 4.33013i 0.202113 + 0.350070i
$$154$$ 2.00000 + 3.46410i 0.161165 + 0.279145i
$$155$$ 0 0
$$156$$ −3.50000 + 0.866025i −0.280224 + 0.0693375i
$$157$$ −13.0000 −1.03751 −0.518756 0.854922i $$-0.673605\pi$$
−0.518756 + 0.854922i $$0.673605\pi$$
$$158$$ 8.00000 + 13.8564i 0.636446 + 1.10236i
$$159$$ 3.50000 + 6.06218i 0.277568 + 0.480762i
$$160$$ −1.50000 + 2.59808i −0.118585 + 0.205396i
$$161$$ 4.00000 0.315244
$$162$$ −0.500000 + 0.866025i −0.0392837 + 0.0680414i
$$163$$ −2.00000 + 3.46410i −0.156652 + 0.271329i −0.933659 0.358162i $$-0.883403\pi$$
0.777007 + 0.629492i $$0.216737\pi$$
$$164$$ 7.00000 0.546608
$$165$$ 6.00000 10.3923i 0.467099 0.809040i
$$166$$ 4.00000 + 6.92820i 0.310460 + 0.537733i
$$167$$ 4.00000 + 6.92820i 0.309529 + 0.536120i 0.978259 0.207385i $$-0.0664952\pi$$
−0.668730 + 0.743505i $$0.733162\pi$$
$$168$$ 1.00000 0.0771517
$$169$$ 11.5000 6.06218i 0.884615 0.466321i
$$170$$ −15.0000 −1.15045
$$171$$ −2.00000 3.46410i −0.152944 0.264906i
$$172$$ −4.00000 6.92820i −0.304997 0.528271i
$$173$$ −7.00000 + 12.1244i −0.532200 + 0.921798i 0.467093 + 0.884208i $$0.345301\pi$$
−0.999293 + 0.0375896i $$0.988032\pi$$
$$174$$ 9.00000 0.682288
$$175$$ 2.00000 3.46410i 0.151186 0.261861i
$$176$$ −2.00000 + 3.46410i −0.150756 + 0.261116i
$$177$$ 8.00000 0.601317
$$178$$ 3.00000 5.19615i 0.224860 0.389468i
$$179$$ −10.0000 17.3205i −0.747435 1.29460i −0.949048 0.315130i $$-0.897952\pi$$
0.201613 0.979465i $$-0.435382\pi$$
$$180$$ −1.50000 2.59808i −0.111803 0.193649i
$$181$$ −5.00000 −0.371647 −0.185824 0.982583i $$-0.559495\pi$$
−0.185824 + 0.982583i $$0.559495\pi$$
$$182$$ −3.50000 + 0.866025i −0.259437 + 0.0641941i
$$183$$ −7.00000 −0.517455
$$184$$ 2.00000 + 3.46410i 0.147442 + 0.255377i
$$185$$ −10.5000 18.1865i −0.771975 1.33710i
$$186$$ 0 0
$$187$$ −20.0000 −1.46254
$$188$$ −6.00000 + 10.3923i −0.437595 + 0.757937i
$$189$$ −0.500000 + 0.866025i −0.0363696 + 0.0629941i
$$190$$ 12.0000 0.870572
$$191$$ 12.0000 20.7846i 0.868290 1.50392i 0.00454614 0.999990i $$-0.498553\pi$$
0.863743 0.503932i $$-0.168114\pi$$
$$192$$ 0.500000 + 0.866025i 0.0360844 + 0.0625000i
$$193$$ −9.50000 16.4545i −0.683825 1.18442i −0.973805 0.227387i $$-0.926982\pi$$
0.289980 0.957033i $$-0.406351\pi$$
$$194$$ 18.0000 1.29232
$$195$$ 7.50000 + 7.79423i 0.537086 + 0.558156i
$$196$$ 1.00000 0.0714286
$$197$$ −11.0000 19.0526i −0.783718 1.35744i −0.929762 0.368161i $$-0.879988\pi$$
0.146045 0.989278i $$-0.453346\pi$$
$$198$$ −2.00000 3.46410i −0.142134 0.246183i
$$199$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$200$$ 4.00000 0.282843
$$201$$ 6.00000 10.3923i 0.423207 0.733017i
$$202$$ −1.50000 + 2.59808i −0.105540 + 0.182800i
$$203$$ 9.00000 0.631676
$$204$$ −2.50000 + 4.33013i −0.175035 + 0.303170i
$$205$$ −10.5000 18.1865i −0.733352 1.27020i
$$206$$ 2.00000 + 3.46410i 0.139347 + 0.241355i
$$207$$ −4.00000 −0.278019
$$208$$ −2.50000 2.59808i −0.173344 0.180144i
$$209$$ 16.0000 1.10674
$$210$$ −1.50000 2.59808i −0.103510 0.179284i
$$211$$ 4.00000 + 6.92820i 0.275371 + 0.476957i 0.970229 0.242190i $$-0.0778659\pi$$
−0.694857 + 0.719148i $$0.744533\pi$$
$$212$$ −3.50000 + 6.06218i −0.240381 + 0.416352i
$$213$$ −12.0000 −0.822226
$$214$$ 0 0
$$215$$ −12.0000 + 20.7846i −0.818393 + 1.41750i
$$216$$ −1.00000 −0.0680414
$$217$$ 0 0
$$218$$ −7.00000 12.1244i −0.474100 0.821165i
$$219$$ −0.500000 0.866025i −0.0337869 0.0585206i
$$220$$ 12.0000 0.809040
$$221$$ 5.00000 17.3205i 0.336336 1.16510i
$$222$$ −7.00000 −0.469809
$$223$$ 14.0000 + 24.2487i 0.937509 + 1.62381i 0.770097 + 0.637927i $$0.220208\pi$$
0.167412 + 0.985887i $$0.446459\pi$$
$$224$$ 0.500000 + 0.866025i 0.0334077 + 0.0578638i
$$225$$ −2.00000 + 3.46410i −0.133333 + 0.230940i
$$226$$ −5.00000 −0.332595
$$227$$ −12.0000 + 20.7846i −0.796468 + 1.37952i 0.125435 + 0.992102i $$0.459967\pi$$
−0.921903 + 0.387421i $$0.873366\pi$$
$$228$$ 2.00000 3.46410i 0.132453 0.229416i
$$229$$ 6.00000 0.396491 0.198246 0.980152i $$-0.436476\pi$$
0.198246 + 0.980152i $$0.436476\pi$$
$$230$$ 6.00000 10.3923i 0.395628 0.685248i
$$231$$ −2.00000 3.46410i −0.131590 0.227921i
$$232$$ 4.50000 + 7.79423i 0.295439 + 0.511716i
$$233$$ −6.00000 −0.393073 −0.196537 0.980497i $$-0.562969\pi$$
−0.196537 + 0.980497i $$0.562969\pi$$
$$234$$ 3.50000 0.866025i 0.228802 0.0566139i
$$235$$ 36.0000 2.34838
$$236$$ 4.00000 + 6.92820i 0.260378 + 0.450988i
$$237$$ −8.00000 13.8564i −0.519656 0.900070i
$$238$$ −2.50000 + 4.33013i −0.162051 + 0.280680i
$$239$$ −4.00000 −0.258738 −0.129369 0.991596i $$-0.541295\pi$$
−0.129369 + 0.991596i $$0.541295\pi$$
$$240$$ 1.50000 2.59808i 0.0968246 0.167705i
$$241$$ 4.50000 7.79423i 0.289870 0.502070i −0.683908 0.729568i $$-0.739721\pi$$
0.973779 + 0.227498i $$0.0730544\pi$$
$$242$$ 5.00000 0.321412
$$243$$ 0.500000 0.866025i 0.0320750 0.0555556i
$$244$$ −3.50000 6.06218i −0.224065 0.388091i
$$245$$ −1.50000 2.59808i −0.0958315 0.165985i
$$246$$ −7.00000 −0.446304
$$247$$ −4.00000 + 13.8564i −0.254514 + 0.881662i
$$248$$ 0 0
$$249$$ −4.00000 6.92820i −0.253490 0.439057i
$$250$$ 1.50000 + 2.59808i 0.0948683 + 0.164317i
$$251$$ 6.00000 10.3923i 0.378717 0.655956i −0.612159 0.790735i $$-0.709699\pi$$
0.990876 + 0.134778i $$0.0430322\pi$$
$$252$$ −1.00000 −0.0629941
$$253$$ 8.00000 13.8564i 0.502956 0.871145i
$$254$$ 4.00000 6.92820i 0.250982 0.434714i
$$255$$ 15.0000 0.939336
$$256$$ −0.500000 + 0.866025i −0.0312500 + 0.0541266i
$$257$$ −3.50000 6.06218i −0.218324 0.378148i 0.735972 0.677012i $$-0.236726\pi$$
−0.954296 + 0.298864i $$0.903392\pi$$
$$258$$ 4.00000 + 6.92820i 0.249029 + 0.431331i
$$259$$ −7.00000 −0.434959
$$260$$ −3.00000 + 10.3923i −0.186052 + 0.644503i
$$261$$ −9.00000 −0.557086
$$262$$ 6.00000 + 10.3923i 0.370681 + 0.642039i
$$263$$ −4.00000 6.92820i −0.246651 0.427211i 0.715944 0.698158i $$-0.245997\pi$$
−0.962594 + 0.270947i $$0.912663\pi$$
$$264$$ 2.00000 3.46410i 0.123091 0.213201i
$$265$$ 21.0000 1.29002
$$266$$ 2.00000 3.46410i 0.122628 0.212398i
$$267$$ −3.00000 + 5.19615i −0.183597 + 0.317999i
$$268$$ 12.0000 0.733017
$$269$$ −7.00000 + 12.1244i −0.426798 + 0.739235i −0.996586 0.0825561i $$-0.973692\pi$$
0.569789 + 0.821791i $$0.307025\pi$$
$$270$$ 1.50000 + 2.59808i 0.0912871 + 0.158114i
$$271$$ −12.0000 20.7846i −0.728948 1.26258i −0.957328 0.289003i $$-0.906676\pi$$
0.228380 0.973572i $$-0.426657\pi$$
$$272$$ −5.00000 −0.303170
$$273$$ 3.50000 0.866025i 0.211830 0.0524142i
$$274$$ 3.00000 0.181237
$$275$$ −8.00000 13.8564i −0.482418 0.835573i
$$276$$ −2.00000 3.46410i −0.120386 0.208514i
$$277$$ −9.50000 + 16.4545i −0.570800 + 0.988654i 0.425684 + 0.904872i $$0.360033\pi$$
−0.996484 + 0.0837823i $$0.973300\pi$$
$$278$$ 4.00000 0.239904
$$279$$ 0 0
$$280$$ 1.50000 2.59808i 0.0896421 0.155265i
$$281$$ 15.0000 0.894825 0.447412 0.894328i $$-0.352346\pi$$
0.447412 + 0.894328i $$0.352346\pi$$
$$282$$ 6.00000 10.3923i 0.357295 0.618853i
$$283$$ 2.00000 + 3.46410i 0.118888 + 0.205919i 0.919327 0.393494i $$-0.128734\pi$$
−0.800439 + 0.599414i $$0.795400\pi$$
$$284$$ −6.00000 10.3923i −0.356034 0.616670i
$$285$$ −12.0000 −0.710819
$$286$$ −4.00000 + 13.8564i −0.236525 + 0.819346i
$$287$$ −7.00000 −0.413197
$$288$$ −0.500000 0.866025i −0.0294628 0.0510310i
$$289$$ −4.00000 6.92820i −0.235294 0.407541i
$$290$$ 13.5000 23.3827i 0.792747 1.37308i
$$291$$ −18.0000 −1.05518
$$292$$ 0.500000 0.866025i 0.0292603 0.0506803i
$$293$$ 16.5000 28.5788i 0.963940 1.66959i 0.251505 0.967856i $$-0.419075\pi$$
0.712436 0.701737i $$-0.247592\pi$$
$$294$$ −1.00000 −0.0583212
$$295$$ 12.0000 20.7846i 0.698667 1.21013i
$$296$$ −3.50000 6.06218i −0.203433 0.352357i
$$297$$ 2.00000 + 3.46410i 0.116052 + 0.201008i
$$298$$ 7.00000 0.405499
$$299$$ 10.0000 + 10.3923i 0.578315 + 0.601003i
$$300$$ −4.00000 −0.230940
$$301$$ 4.00000 + 6.92820i 0.230556 + 0.399335i
$$302$$ 4.00000 + 6.92820i 0.230174 + 0.398673i
$$303$$ 1.50000 2.59808i 0.0861727 0.149256i
$$304$$ 4.00000 0.229416
$$305$$ −10.5000 + 18.1865i −0.601228 + 1.04136i
$$306$$ 2.50000 4.33013i 0.142915 0.247537i
$$307$$ 4.00000 0.228292 0.114146 0.993464i $$-0.463587\pi$$
0.114146 + 0.993464i $$0.463587\pi$$
$$308$$ 2.00000 3.46410i 0.113961 0.197386i
$$309$$ −2.00000 3.46410i −0.113776 0.197066i
$$310$$ 0 0
$$311$$ 8.00000 0.453638 0.226819 0.973937i $$-0.427167\pi$$
0.226819 + 0.973937i $$0.427167\pi$$
$$312$$ 2.50000 + 2.59808i 0.141535 + 0.147087i
$$313$$ −6.00000 −0.339140 −0.169570 0.985518i $$-0.554238\pi$$
−0.169570 + 0.985518i $$0.554238\pi$$
$$314$$ 6.50000 + 11.2583i 0.366816 + 0.635344i
$$315$$ 1.50000 + 2.59808i 0.0845154 + 0.146385i
$$316$$ 8.00000 13.8564i 0.450035 0.779484i
$$317$$ 35.0000 1.96580 0.982898 0.184151i $$-0.0589536\pi$$
0.982898 + 0.184151i $$0.0589536\pi$$
$$318$$ 3.50000 6.06218i 0.196270 0.339950i
$$319$$ 18.0000 31.1769i 1.00781 1.74557i
$$320$$ 3.00000 0.167705
$$321$$ 0 0
$$322$$ −2.00000 3.46410i −0.111456 0.193047i
$$323$$ 10.0000 + 17.3205i 0.556415 + 0.963739i
$$324$$ 1.00000 0.0555556
$$325$$ 14.0000 3.46410i 0.776580 0.192154i
$$326$$ 4.00000 0.221540
$$327$$ 7.00000 + 12.1244i 0.387101 + 0.670478i
$$328$$ −3.50000 6.06218i −0.193255 0.334728i
$$329$$ 6.00000 10.3923i 0.330791 0.572946i
$$330$$ −12.0000 −0.660578
$$331$$ 10.0000 17.3205i 0.549650 0.952021i −0.448649 0.893708i $$-0.648095\pi$$
0.998298 0.0583130i $$-0.0185721\pi$$
$$332$$ 4.00000 6.92820i 0.219529 0.380235i
$$333$$ 7.00000 0.383598
$$334$$ 4.00000 6.92820i 0.218870 0.379094i
$$335$$ −18.0000 31.1769i −0.983445 1.70338i
$$336$$ −0.500000 0.866025i −0.0272772 0.0472456i
$$337$$ −9.00000 −0.490261 −0.245131 0.969490i $$-0.578831\pi$$
−0.245131 + 0.969490i $$0.578831\pi$$
$$338$$ −11.0000 6.92820i −0.598321 0.376845i
$$339$$ 5.00000 0.271563
$$340$$ 7.50000 + 12.9904i 0.406745 + 0.704502i
$$341$$ 0 0
$$342$$ −2.00000 + 3.46410i −0.108148 + 0.187317i
$$343$$ −1.00000 −0.0539949
$$344$$ −4.00000 + 6.92820i −0.215666 + 0.373544i
$$345$$ −6.00000 + 10.3923i −0.323029 + 0.559503i
$$346$$ 14.0000 0.752645
$$347$$ −10.0000 + 17.3205i −0.536828 + 0.929814i 0.462244 + 0.886753i $$0.347044\pi$$
−0.999072 + 0.0430610i $$0.986289\pi$$
$$348$$ −4.50000 7.79423i −0.241225 0.417815i
$$349$$ −7.00000 12.1244i −0.374701 0.649002i 0.615581 0.788074i $$-0.288921\pi$$
−0.990282 + 0.139072i $$0.955588\pi$$
$$350$$ −4.00000 −0.213809
$$351$$ −3.50000 + 0.866025i −0.186816 + 0.0462250i
$$352$$ 4.00000 0.213201
$$353$$ 12.5000 + 21.6506i 0.665308 + 1.15235i 0.979202 + 0.202889i $$0.0650330\pi$$
−0.313894 + 0.949458i $$0.601634\pi$$
$$354$$ −4.00000 6.92820i −0.212598 0.368230i
$$355$$ −18.0000 + 31.1769i −0.955341 + 1.65470i
$$356$$ −6.00000 −0.317999
$$357$$ 2.50000 4.33013i 0.132314 0.229175i
$$358$$ −10.0000 + 17.3205i −0.528516 + 0.915417i
$$359$$ −12.0000 −0.633336 −0.316668 0.948536i $$-0.602564\pi$$
−0.316668 + 0.948536i $$0.602564\pi$$
$$360$$ −1.50000 + 2.59808i −0.0790569 + 0.136931i
$$361$$ 1.50000 + 2.59808i 0.0789474 + 0.136741i
$$362$$ 2.50000 + 4.33013i 0.131397 + 0.227586i
$$363$$ −5.00000 −0.262432
$$364$$ 2.50000 + 2.59808i 0.131036 + 0.136176i
$$365$$ −3.00000 −0.157027
$$366$$ 3.50000 + 6.06218i 0.182948 + 0.316875i
$$367$$ 2.00000 + 3.46410i 0.104399 + 0.180825i 0.913493 0.406855i $$-0.133375\pi$$
−0.809093 + 0.587680i $$0.800041\pi$$
$$368$$ 2.00000 3.46410i 0.104257 0.180579i
$$369$$ 7.00000 0.364405
$$370$$ −10.5000 + 18.1865i −0.545869 + 0.945473i
$$371$$ 3.50000 6.06218i 0.181711 0.314733i
$$372$$ 0 0
$$373$$ −7.50000 + 12.9904i −0.388335 + 0.672616i −0.992226 0.124451i $$-0.960283\pi$$
0.603890 + 0.797067i $$0.293616\pi$$
$$374$$ 10.0000 + 17.3205i 0.517088 + 0.895622i
$$375$$ −1.50000 2.59808i −0.0774597 0.134164i
$$376$$ 12.0000 0.618853
$$377$$ 22.5000 + 23.3827i 1.15881 + 1.20427i
$$378$$ 1.00000 0.0514344
$$379$$ 14.0000 + 24.2487i 0.719132 + 1.24557i 0.961344 + 0.275349i $$0.0887935\pi$$
−0.242213 + 0.970223i $$0.577873\pi$$
$$380$$ −6.00000 10.3923i −0.307794 0.533114i
$$381$$ −4.00000 + 6.92820i −0.204926 + 0.354943i
$$382$$ −24.0000 −1.22795
$$383$$ 14.0000 24.2487i 0.715367 1.23905i −0.247451 0.968900i $$-0.579593\pi$$
0.962818 0.270151i $$-0.0870736\pi$$
$$384$$ 0.500000 0.866025i 0.0255155 0.0441942i
$$385$$ −12.0000 −0.611577
$$386$$ −9.50000 + 16.4545i −0.483537 + 0.837511i
$$387$$ −4.00000 6.92820i −0.203331 0.352180i
$$388$$ −9.00000 15.5885i −0.456906 0.791384i
$$389$$ 7.00000 0.354914 0.177457 0.984129i $$-0.443213\pi$$
0.177457 + 0.984129i $$0.443213\pi$$
$$390$$ 3.00000 10.3923i 0.151911 0.526235i
$$391$$ 20.0000 1.01144
$$392$$ −0.500000 0.866025i −0.0252538 0.0437409i
$$393$$ −6.00000 10.3923i −0.302660 0.524222i
$$394$$ −11.0000 + 19.0526i −0.554172 + 0.959854i
$$395$$ −48.0000 −2.41514
$$396$$ −2.00000 + 3.46410i −0.100504 + 0.174078i
$$397$$ 1.00000 1.73205i 0.0501886 0.0869291i −0.839840 0.542834i $$-0.817351\pi$$
0.890028 + 0.455905i $$0.150684\pi$$
$$398$$ 0 0
$$399$$ −2.00000 + 3.46410i −0.100125 + 0.173422i
$$400$$ −2.00000 3.46410i −0.100000 0.173205i
$$401$$ 8.50000 + 14.7224i 0.424470 + 0.735203i 0.996371 0.0851195i $$-0.0271272\pi$$
−0.571901 + 0.820323i $$0.693794\pi$$
$$402$$ −12.0000 −0.598506
$$403$$ 0 0
$$404$$ 3.00000 0.149256
$$405$$ −1.50000 2.59808i −0.0745356 0.129099i
$$406$$ −4.50000 7.79423i −0.223331 0.386821i
$$407$$ −14.0000 + 24.2487i −0.693954 + 1.20196i
$$408$$ 5.00000 0.247537
$$409$$ 6.50000 11.2583i 0.321404 0.556689i −0.659374 0.751815i $$-0.729178\pi$$
0.980778 + 0.195127i $$0.0625118\pi$$
$$410$$ −10.5000 + 18.1865i −0.518558 + 0.898169i
$$411$$ −3.00000 −0.147979
$$412$$ 2.00000 3.46410i 0.0985329 0.170664i
$$413$$ −4.00000 6.92820i −0.196827 0.340915i
$$414$$ 2.00000 + 3.46410i 0.0982946 + 0.170251i
$$415$$ −24.0000 −1.17811
$$416$$ −1.00000 + 3.46410i −0.0490290 + 0.169842i
$$417$$ −4.00000 −0.195881
$$418$$ −8.00000 13.8564i −0.391293 0.677739i
$$419$$ 8.00000 + 13.8564i 0.390826 + 0.676930i 0.992559 0.121768i $$-0.0388562\pi$$
−0.601733 + 0.798697i $$0.705523\pi$$
$$420$$ −1.50000 + 2.59808i −0.0731925 + 0.126773i
$$421$$ −1.00000 −0.0487370 −0.0243685 0.999703i $$-0.507758\pi$$
−0.0243685 + 0.999703i $$0.507758\pi$$
$$422$$ 4.00000 6.92820i 0.194717 0.337260i
$$423$$ −6.00000 + 10.3923i −0.291730 + 0.505291i
$$424$$ 7.00000 0.339950
$$425$$ 10.0000 17.3205i 0.485071 0.840168i
$$426$$ 6.00000 + 10.3923i 0.290701 + 0.503509i
$$427$$ 3.50000 + 6.06218i 0.169377 + 0.293369i
$$428$$ 0 0
$$429$$ 4.00000 13.8564i 0.193122 0.668994i
$$430$$ 24.0000 1.15738
$$431$$ 2.00000 + 3.46410i 0.0963366 + 0.166860i 0.910166 0.414244i $$-0.135954\pi$$
−0.813829 + 0.581104i $$0.802621\pi$$
$$432$$ 0.500000 + 0.866025i 0.0240563 + 0.0416667i
$$433$$ −15.5000 + 26.8468i −0.744882 + 1.29017i 0.205367 + 0.978685i $$0.434161\pi$$
−0.950250 + 0.311489i $$0.899172\pi$$
$$434$$ 0 0
$$435$$ −13.5000 + 23.3827i −0.647275 + 1.12111i
$$436$$ −7.00000 + 12.1244i −0.335239 + 0.580651i
$$437$$ −16.0000 −0.765384
$$438$$ −0.500000 + 0.866025i −0.0238909 + 0.0413803i
$$439$$ 8.00000 + 13.8564i 0.381819 + 0.661330i 0.991322 0.131453i $$-0.0419644\pi$$
−0.609503 + 0.792784i $$0.708631\pi$$
$$440$$ −6.00000 10.3923i −0.286039 0.495434i
$$441$$ 1.00000 0.0476190
$$442$$ −17.5000 + 4.33013i −0.832390 + 0.205963i
$$443$$ −16.0000 −0.760183 −0.380091 0.924949i $$-0.624107\pi$$
−0.380091 + 0.924949i $$0.624107\pi$$
$$444$$ 3.50000 + 6.06218i 0.166103 + 0.287698i
$$445$$ 9.00000 + 15.5885i 0.426641 + 0.738964i
$$446$$ 14.0000 24.2487i 0.662919 1.14821i
$$447$$ −7.00000 −0.331089
$$448$$ 0.500000 0.866025i 0.0236228 0.0409159i
$$449$$ 7.00000 12.1244i 0.330350 0.572184i −0.652230 0.758021i $$-0.726166\pi$$
0.982581 + 0.185837i $$0.0594997\pi$$
$$450$$ 4.00000 0.188562
$$451$$ −14.0000 + 24.2487i −0.659234 + 1.14183i
$$452$$ 2.50000 + 4.33013i 0.117590 + 0.203672i
$$453$$ −4.00000 6.92820i −0.187936 0.325515i
$$454$$ 24.0000 1.12638
$$455$$ 3.00000 10.3923i 0.140642 0.487199i
$$456$$ −4.00000 −0.187317
$$457$$ 0.500000 + 0.866025i 0.0233890 + 0.0405110i 0.877483 0.479608i $$-0.159221\pi$$
−0.854094 + 0.520119i $$0.825888\pi$$
$$458$$ −3.00000 5.19615i −0.140181 0.242800i
$$459$$ −2.50000 + 4.33013i −0.116690 + 0.202113i
$$460$$ −12.0000 −0.559503
$$461$$ −9.50000 + 16.4545i −0.442459 + 0.766362i −0.997871 0.0652135i $$-0.979227\pi$$
0.555412 + 0.831575i $$0.312560\pi$$
$$462$$ −2.00000 + 3.46410i −0.0930484 + 0.161165i
$$463$$ 32.0000 1.48717 0.743583 0.668644i $$-0.233125\pi$$
0.743583 + 0.668644i $$0.233125\pi$$
$$464$$ 4.50000 7.79423i 0.208907 0.361838i
$$465$$ 0 0
$$466$$ 3.00000 + 5.19615i 0.138972 + 0.240707i
$$467$$ −12.0000 −0.555294 −0.277647 0.960683i $$-0.589555\pi$$
−0.277647 + 0.960683i $$0.589555\pi$$
$$468$$ −2.50000 2.59808i −0.115563 0.120096i
$$469$$ −12.0000 −0.554109
$$470$$ −18.0000 31.1769i −0.830278 1.43808i
$$471$$ −6.50000 11.2583i −0.299504 0.518756i
$$472$$ 4.00000 6.92820i 0.184115 0.318896i
$$473$$ 32.0000 1.47136
$$474$$ −8.00000 + 13.8564i −0.367452 + 0.636446i
$$475$$ −8.00000 + 13.8564i −0.367065 + 0.635776i
$$476$$ 5.00000 0.229175
$$477$$ −3.50000 + 6.06218i −0.160254 + 0.277568i
$$478$$ 2.00000 + 3.46410i 0.0914779 + 0.158444i
$$479$$ −14.0000 24.2487i −0.639676 1.10795i −0.985504 0.169654i $$-0.945735\pi$$
0.345827 0.938298i $$-0.387598\pi$$
$$480$$ −3.00000 −0.136931
$$481$$ −17.5000 18.1865i −0.797931 0.829235i
$$482$$ −9.00000 −0.409939
$$483$$ 2.00000 + 3.46410i 0.0910032 + 0.157622i
$$484$$ −2.50000 4.33013i −0.113636 0.196824i
$$485$$ −27.0000 + 46.7654i −1.22601 + 2.12351i
$$486$$ −1.00000 −0.0453609
$$487$$ −2.00000 + 3.46410i −0.0906287 + 0.156973i −0.907776 0.419456i $$-0.862221\pi$$
0.817147 + 0.576429i $$0.195554\pi$$
$$488$$ −3.50000 + 6.06218i −0.158438 + 0.274422i
$$489$$ −4.00000 −0.180886
$$490$$ −1.50000 + 2.59808i −0.0677631 + 0.117369i
$$491$$ −10.0000 17.3205i −0.451294 0.781664i 0.547173 0.837020i $$-0.315704\pi$$
−0.998467 + 0.0553560i $$0.982371\pi$$
$$492$$ 3.50000 + 6.06218i 0.157792 + 0.273304i
$$493$$ 45.0000 2.02670
$$494$$ 14.0000 3.46410i 0.629890 0.155857i
$$495$$ 12.0000 0.539360
$$496$$ 0 0
$$497$$ 6.00000 + 10.3923i 0.269137 + 0.466159i
$$498$$ −4.00000 + 6.92820i −0.179244 + 0.310460i
$$499$$ 4.00000 0.179065 0.0895323 0.995984i $$-0.471463\pi$$
0.0895323 + 0.995984i $$0.471463\pi$$
$$500$$ 1.50000 2.59808i 0.0670820 0.116190i
$$501$$ −4.00000 + 6.92820i −0.178707 + 0.309529i
$$502$$ −12.0000 −0.535586
$$503$$ 12.0000 20.7846i 0.535054 0.926740i −0.464107 0.885779i $$-0.653625\pi$$
0.999161 0.0409609i $$-0.0130419\pi$$
$$504$$ 0.500000 + 0.866025i 0.0222718 + 0.0385758i
$$505$$ −4.50000 7.79423i −0.200247 0.346839i
$$506$$ −16.0000 −0.711287
$$507$$ 11.0000 + 6.92820i 0.488527 + 0.307692i
$$508$$ −8.00000 −0.354943
$$509$$ −7.50000 12.9904i −0.332432 0.575789i 0.650556 0.759458i $$-0.274536\pi$$
−0.982988 + 0.183669i $$0.941202\pi$$
$$510$$ −7.50000 12.9904i −0.332106 0.575224i
$$511$$ −0.500000 + 0.866025i −0.0221187 + 0.0383107i
$$512$$ 1.00000 0.0441942
$$513$$ 2.00000 3.46410i 0.0883022 0.152944i
$$514$$ −3.50000 + 6.06218i −0.154378 + 0.267391i
$$515$$ −12.0000 −0.528783
$$516$$ 4.00000 6.92820i 0.176090 0.304997i
$$517$$ −24.0000 41.5692i −1.05552 1.82821i
$$518$$ 3.50000 + 6.06218i 0.153781 + 0.266357i
$$519$$ −14.0000 −0.614532
$$520$$ 10.5000 2.59808i 0.460455 0.113933i
$$521$$ −17.0000 −0.744784 −0.372392 0.928076i $$-0.621462\pi$$
−0.372392 + 0.928076i $$0.621462\pi$$
$$522$$ 4.50000 + 7.79423i 0.196960 + 0.341144i
$$523$$ 8.00000 + 13.8564i 0.349816 + 0.605898i 0.986216 0.165460i $$-0.0529109\pi$$
−0.636401 + 0.771358i $$0.719578\pi$$
$$524$$ 6.00000 10.3923i 0.262111 0.453990i
$$525$$ 4.00000 0.174574
$$526$$ −4.00000 + 6.92820i −0.174408 + 0.302084i
$$527$$ 0 0
$$528$$ −4.00000 −0.174078
$$529$$ 3.50000 6.06218i 0.152174 0.263573i
$$530$$ −10.5000 18.1865i −0.456091 0.789973i
$$531$$ 4.00000 + 6.92820i 0.173585 + 0.300658i
$$532$$ −4.00000 −0.173422
$$533$$ −17.5000 18.1865i −0.758009 0.787746i
$$534$$ 6.00000 0.259645
$$535$$ 0 0
$$536$$ −6.00000 10.3923i −0.259161 0.448879i
$$537$$ 10.0000 17.3205i 0.431532 0.747435i
$$538$$ 14.0000 0.603583
$$539$$ −2.00000 + 3.46410i −0.0861461 + 0.149209i
$$540$$ 1.50000 2.59808i 0.0645497 0.111803i
$$541$$ 43.0000 1.84871 0.924357 0.381528i $$-0.124602\pi$$
0.924357 + 0.381528i $$0.124602\pi$$
$$542$$ −12.0000 + 20.7846i −0.515444 + 0.892775i
$$543$$ −2.50000 4.33013i −0.107285 0.185824i
$$544$$ 2.50000 + 4.33013i 0.107187 + 0.185653i
$$545$$ 42.0000 1.79908
$$546$$ −2.50000 2.59808i −0.106990 0.111187i
$$547$$ 16.0000 0.684111 0.342055 0.939680i $$-0.388877\pi$$
0.342055 + 0.939680i $$0.388877\pi$$
$$548$$ −1.50000 2.59808i −0.0640768 0.110984i
$$549$$ −3.50000 6.06218i −0.149376 0.258727i
$$550$$ −8.00000 + 13.8564i −0.341121 + 0.590839i
$$551$$ −36.0000 −1.53365
$$552$$ −2.00000 + 3.46410i −0.0851257 + 0.147442i
$$553$$ −8.00000 + 13.8564i −0.340195 + 0.589234i
$$554$$ 19.0000 0.807233
$$555$$ 10.5000 18.1865i 0.445700 0.771975i
$$556$$ −2.00000 3.46410i −0.0848189 0.146911i
$$557$$ 16.5000 + 28.5788i 0.699127 + 1.21092i 0.968769 + 0.247964i $$0.0797613\pi$$
−0.269642 + 0.962961i $$0.586905\pi$$
$$558$$ 0 0
$$559$$ −8.00000 + 27.7128i −0.338364 + 1.17213i
$$560$$ −3.00000 −0.126773
$$561$$ −10.0000 17.3205i −0.422200 0.731272i
$$562$$ −7.50000 12.9904i −0.316368 0.547966i
$$563$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$564$$ −12.0000 −0.505291
$$565$$ 7.50000 12.9904i 0.315527 0.546509i
$$566$$ 2.00000 3.46410i 0.0840663 0.145607i
$$567$$ −1.00000 −0.0419961
$$568$$ −6.00000 + 10.3923i −0.251754 + 0.436051i
$$569$$ 11.0000 + 19.0526i 0.461144 + 0.798725i 0.999018 0.0443003i $$-0.0141058\pi$$
−0.537874 + 0.843025i $$0.680772\pi$$
$$570$$ 6.00000 + 10.3923i 0.251312 + 0.435286i
$$571$$ 40.0000 1.67395 0.836974 0.547243i $$-0.184323\pi$$
0.836974 + 0.547243i $$0.184323\pi$$
$$572$$ 14.0000 3.46410i 0.585369 0.144841i
$$573$$ 24.0000 1.00261
$$574$$ 3.50000 + 6.06218i 0.146087 + 0.253030i
$$575$$ 8.00000 + 13.8564i 0.333623 + 0.577852i
$$576$$ −0.500000 + 0.866025i −0.0208333 + 0.0360844i
$$577$$ −5.00000 −0.208153 −0.104076 0.994569i $$-0.533189\pi$$
−0.104076 + 0.994569i $$0.533189\pi$$
$$578$$ −4.00000 + 6.92820i −0.166378 + 0.288175i
$$579$$ 9.50000 16.4545i 0.394807 0.683825i
$$580$$ −27.0000 −1.12111
$$581$$ −4.00000 + 6.92820i −0.165948 + 0.287430i
$$582$$ 9.00000 + 15.5885i 0.373062 + 0.646162i
$$583$$ −14.0000 24.2487i −0.579821 1.00428i
$$584$$ −1.00000 −0.0413803
$$585$$ −3.00000 + 10.3923i −0.124035 + 0.429669i
$$586$$ −33.0000 −1.36322
$$587$$ 12.0000 + 20.7846i 0.495293 + 0.857873i 0.999985 0.00542667i $$-0.00172737\pi$$
−0.504692 + 0.863299i $$0.668394\pi$$
$$588$$ 0.500000 + 0.866025i 0.0206197 + 0.0357143i
$$589$$ 0 0
$$590$$ −24.0000 −0.988064
$$591$$ 11.0000 19.0526i 0.452480 0.783718i
$$592$$ −3.50000 + 6.06218i −0.143849 + 0.249154i
$$593$$ −33.0000 −1.35515 −0.677574 0.735455i $$-0.736969\pi$$
−0.677574 + 0.735455i $$0.736969\pi$$
$$594$$ 2.00000 3.46410i 0.0820610 0.142134i
$$595$$ −7.50000 12.9904i −0.307470 0.532554i
$$596$$ −3.50000 6.06218i −0.143366 0.248316i
$$597$$ 0 0
$$598$$ 4.00000 13.8564i 0.163572 0.566631i
$$599$$ −4.00000 −0.163436 −0.0817178 0.996656i $$-0.526041\pi$$
−0.0817178 + 0.996656i $$0.526041\pi$$
$$600$$ 2.00000 + 3.46410i 0.0816497 + 0.141421i
$$601$$ 8.50000 + 14.7224i 0.346722 + 0.600541i 0.985665 0.168714i $$-0.0539613\pi$$
−0.638943 + 0.769254i $$0.720628\pi$$
$$602$$ 4.00000 6.92820i 0.163028 0.282372i
$$603$$ 12.0000 0.488678
$$604$$ 4.00000 6.92820i 0.162758 0.281905i
$$605$$ −7.50000 + 12.9904i −0.304918 + 0.528134i
$$606$$ −3.00000 −0.121867
$$607$$ 4.00000 6.92820i 0.162355 0.281207i −0.773358 0.633970i $$-0.781424\pi$$
0.935713 + 0.352763i $$0.114758\pi$$
$$608$$ −2.00000 3.46410i −0.0811107 0.140488i
$$609$$ 4.50000 + 7.79423i 0.182349 + 0.315838i
$$610$$ 21.0000 0.850265
$$611$$ 42.0000 10.3923i 1.69914 0.420428i
$$612$$ −5.00000 −0.202113
$$613$$ 0.500000 + 0.866025i 0.0201948 + 0.0349784i 0.875946 0.482409i $$-0.160238\pi$$
−0.855751 + 0.517387i $$0.826905\pi$$
$$614$$ −2.00000 3.46410i −0.0807134 0.139800i
$$615$$ 10.5000 18.1865i 0.423401 0.733352i
$$616$$ −4.00000 −0.161165
$$617$$ 16.5000 28.5788i 0.664265 1.15054i −0.315219 0.949019i $$-0.602078\pi$$
0.979484 0.201522i $$-0.0645887\pi$$
$$618$$ −2.00000 + 3.46410i −0.0804518 + 0.139347i
$$619$$ −32.0000 −1.28619 −0.643094 0.765787i $$-0.722350\pi$$
−0.643094 + 0.765787i $$0.722350\pi$$
$$620$$ 0 0
$$621$$ −2.00000 3.46410i −0.0802572 0.139010i
$$622$$ −4.00000 6.92820i −0.160385 0.277796i
$$623$$ 6.00000 0.240385
$$624$$ 1.00000 3.46410i 0.0400320 0.138675i
$$625$$ −29.0000 −1.16000
$$626$$ 3.00000 + 5.19615i 0.119904 + 0.207680i
$$627$$ 8.00000 + 13.8564i 0.319489 + 0.553372i
$$628$$ 6.50000 11.2583i 0.259378 0.449256i
$$629$$ −35.0000 −1.39554
$$630$$ 1.50000 2.59808i 0.0597614 0.103510i
$$631$$ 20.0000 34.6410i 0.796187 1.37904i −0.125895 0.992044i $$-0.540180\pi$$
0.922082 0.386994i $$-0.126486\pi$$
$$632$$ −16.0000 −0.636446
$$633$$ −4.00000 + 6.92820i −0.158986 + 0.275371i
$$634$$ −17.5000 30.3109i −0.695014 1.20380i
$$635$$ 12.0000 + 20.7846i 0.476205 + 0.824812i
$$636$$ −7.00000 −0.277568
$$637$$ −2.50000 2.59808i −0.0990536 0.102940i
$$638$$ −36.0000 −1.42525
$$639$$ −6.00000 10.3923i −0.237356 0.411113i
$$640$$ −1.50000 2.59808i −0.0592927 0.102698i
$$641$$ 16.5000 28.5788i 0.651711 1.12880i −0.330997 0.943632i $$-0.607385\pi$$
0.982708 0.185164i $$-0.0592817\pi$$
$$642$$ 0 0
$$643$$ −6.00000 + 10.3923i −0.236617 + 0.409832i −0.959741 0.280885i $$-0.909372\pi$$
0.723124 + 0.690718i $$0.242705\pi$$
$$644$$ −2.00000 + 3.46410i −0.0788110 + 0.136505i
$$645$$ −24.0000 −0.944999
$$646$$ 10.0000 17.3205i 0.393445 0.681466i
$$647$$ −6.00000 10.3923i −0.235884 0.408564i 0.723645 0.690172i $$-0.242465\pi$$
−0.959529 + 0.281609i $$0.909132\pi$$
$$648$$ −0.500000 0.866025i −0.0196419 0.0340207i
$$649$$ −32.0000 −1.25611
$$650$$ −10.0000 10.3923i −0.392232 0.407620i
$$651$$ 0 0
$$652$$ −2.00000 3.46410i −0.0783260 0.135665i
$$653$$ 17.0000 + 29.4449i 0.665261 + 1.15227i 0.979214 + 0.202828i $$0.0650132\pi$$
−0.313953 + 0.949439i $$0.601653\pi$$
$$654$$ 7.00000 12.1244i 0.273722 0.474100i
$$655$$ −36.0000 −1.40664
$$656$$ −3.50000 + 6.06218i −0.136652 + 0.236688i
$$657$$ 0.500000 0.866025i 0.0195069 0.0337869i
$$658$$ −12.0000 −0.467809
$$659$$ 0 0 −0.866025 0.500000i $$-0.833333\pi$$
0.866025 + 0.500000i $$0.166667\pi$$
$$660$$ 6.00000 + 10.3923i 0.233550 + 0.404520i
$$661$$ 0.500000 + 0.866025i 0.0194477 + 0.0336845i 0.875585 0.483063i $$-0.160476\pi$$
−0.856138 + 0.516748i $$0.827143\pi$$
$$662$$ −20.0000 −0.777322
$$663$$ 17.5000 4.33013i 0.679644 0.168168i
$$664$$ −8.00000 −0.310460
$$665$$ 6.00000 + 10.3923i 0.232670 + 0.402996i
$$666$$ −3.50000 6.06218i −0.135622 0.234905i
$$667$$ −18.0000 + 31.1769i −0.696963 + 1.20717i
$$668$$ −8.00000 −0.309529
$$669$$ −14.0000 + 24.2487i −0.541271 + 0.937509i
$$670$$ −18.0000 + 31.1769i −0.695401 + 1.20447i
$$671$$ 28.0000 1.08093
$$672$$ −0.500000 + 0.866025i −0.0192879 + 0.0334077i
$$673$$ −9.50000 16.4545i −0.366198 0.634274i 0.622770 0.782405i $$-0.286007\pi$$
−0.988968 + 0.148132i $$0.952674\pi$$
$$674$$ 4.50000 + 7.79423i 0.173334 + 0.300222i
$$675$$ −4.00000 −0.153960
$$676$$ −0.500000 + 12.9904i −0.0192308 + 0.499630i
$$677$$ 22.0000 0.845529 0.422764 0.906240i $$-0.361060\pi$$
0.422764 + 0.906240i $$0.361060\pi$$
$$678$$ −2.50000 4.33013i −0.0960119 0.166298i
$$679$$ 9.00000 + 15.5885i 0.345388 + 0.598230i
$$680$$ 7.50000 12.9904i 0.287612 0.498158i
$$681$$ −24.0000 −0.919682
$$682$$ 0 0
$$683$$ −10.0000 + 17.3205i −0.382639 + 0.662751i −0.991439 0.130573i $$-0.958318\pi$$
0.608799 + 0.793324i $$0.291651\pi$$
$$684$$ 4.00000 0.152944
$$685$$ −4.50000 + 7.79423i −0.171936 + 0.297802i
$$686$$ 0.500000 + 0.866025i 0.0190901 + 0.0330650i
$$687$$ 3.00000 + 5.19615i 0.114457 + 0.198246i
$$688$$ 8.00000 0.304997
$$689$$ 24.5000 6.06218i 0.933376 0.230951i
$$690$$ 12.0000 0.456832
$$691$$ 20.0000 + 34.6410i 0.760836 + 1.31781i 0.942420 + 0.334431i $$0.108544\pi$$
−0.181584 + 0.983375i $$0.558123\pi$$
$$692$$ −7.00000 12.1244i −0.266100 0.460899i
$$693$$ 2.00000 3.46410i 0.0759737 0.131590i
$$694$$ 20.0000 0.759190
$$695$$ −6.00000 + 10.3923i −0.227593 + 0.394203i
$$696$$ −4.50000 + 7.79423i −0.170572 + 0.295439i
$$697$$ −35.0000 −1.32572
$$698$$ −7.00000 + 12.1244i −0.264954 + 0.458914i
$$699$$ −3.00000 5.19615i −0.113470 0.196537i
$$700$$ 2.00000 + 3.46410i 0.0755929 + 0.130931i
$$701$$ 30.0000 1.13308 0.566542 0.824033i $$-0.308281\pi$$
0.566542 + 0.824033i $$0.308281\pi$$
$$702$$ 2.50000 + 2.59808i 0.0943564 + 0.0980581i
$$703$$ 28.0000 1.05604
$$704$$ −2.00000 3.46410i −0.0753778 0.130558i
$$705$$ 18.0000 + 31.1769i 0.677919 + 1.17419i
$$706$$ 12.5000 21.6506i 0.470444 0.814832i
$$707$$ −3.00000 −0.112827
$$708$$ −4.00000 + 6.92820i −0.150329 + 0.260378i
$$709$$ 0.500000 0.866025i 0.0187779 0.0325243i −0.856484 0.516174i $$-0.827356\pi$$
0.875262 + 0.483650i $$0.160689\pi$$
$$710$$ 36.0000 1.35106
$$711$$ 8.00000 13.8564i 0.300023 0.519656i
$$712$$ 3.00000 + 5.19615i 0.112430 + 0.194734i
$$713$$ 0 0
$$714$$ −5.00000 −0.187120
$$715$$ −30.0000 31.1769i −1.12194 1.16595i
$$716$$ 20.0000 0.747435
$$717$$ −2.00000 3.46410i −0.0746914 0.129369i
$$718$$ 6.00000 + 10.3923i 0.223918 + 0.387837i
$$719$$ 24.0000 41.5692i 0.895049 1.55027i 0.0613050 0.998119i $$-0.480474\pi$$
0.833744 0.552151i $$-0.186193\pi$$
$$720$$ 3.00000 0.111803
$$721$$ −2.00000 + 3.46410i −0.0744839 + 0.129010i
$$722$$ 1.50000 2.59808i 0.0558242 0.0966904i
$$723$$ 9.00000 0.334714
$$724$$ 2.50000 4.33013i 0.0929118 0.160928i
$$725$$ 18.0000 + 31.1769i 0.668503 + 1.15788i
$$726$$ 2.50000 + 4.33013i 0.0927837 + 0.160706i
$$727$$ −8.00000 −0.296704 −0.148352 0.988935i $$-0.547397\pi$$
−0.148352 + 0.988935i $$0.547397\pi$$
$$728$$ 1.00000 3.46410i 0.0370625 0.128388i
$$729$$ 1.00000 0.0370370
$$730$$ 1.50000 + 2.59808i 0.0555175 + 0.0961591i
$$731$$ 20.0000 + 34.6410i 0.739727 + 1.28124i
$$732$$ 3.50000 6.06218i 0.129364 0.224065i
$$733$$ 23.0000 0.849524 0.424762 0.905305i $$-0.360358\pi$$
0.424762 + 0.905305i $$0.360358\pi$$
$$734$$ 2.00000 3.46410i 0.0738213 0.127862i
$$735$$ 1.50000 2.59808i 0.0553283 0.0958315i
$$736$$ −4.00000 −0.147442
$$737$$ −24.0000 + 41.5692i −0.884051 + 1.53122i
$$738$$ −3.50000 6.06218i −0.128837 0.223152i
$$739$$ −4.00000 6.92820i −0.147142 0.254858i 0.783028 0.621987i $$-0.213674\pi$$
−0.930170 + 0.367129i $$0.880341\pi$$
$$740$$ 21.0000 0.771975
$$741$$ −14.0000 + 3.46410i −0.514303 + 0.127257i
$$742$$ −7.00000 −0.256978
$$743$$ −8.00000 13.8564i −0.293492 0.508342i 0.681141 0.732152i $$-0.261484\pi$$
−0.974633 + 0.223810i $$0.928151\pi$$
$$744$$ 0 0
$$745$$ −10.5000 + 18.1865i −0.384690 + 0.666303i
$$746$$ 15.0000 0.549189
$$747$$ 4.00000 6.92820i 0.146352 0.253490i
$$748$$ 10.0000 17.3205i 0.365636 0.633300i
$$749$$ 0 0
$$750$$ −1.50000 + 2.59808i −0.0547723 + 0.0948683i
$$751$$ 20.0000 + 34.6410i 0.729810 + 1.26407i 0.956963 + 0.290209i $$0.0937250\pi$$
−0.227153 + 0.973859i $$0.572942\pi$$
$$752$$ −6.00000 10.3923i −0.218797 0.378968i
$$753$$ 12.0000 0.437304
$$754$$ 9.00000 31.1769i 0.327761 1.13540i
$$755$$ −24.0000 −0.873449
$$756$$ −0.500000 0.866025i −0.0181848 0.0314970i
$$757$$ −19.0000 32.9090i −0.690567 1.19610i −0.971652 0.236414i $$-0.924028\pi$$
0.281086 0.959683i $$-0.409305\pi$$
$$758$$ 14.0000 24.2487i 0.508503 0.880753i
$$759$$ 16.0000 0.580763
$$760$$ −6.00000 + 10.3923i −0.217643 + 0.376969i
$$761$$ −5.00000 + 8.66025i −0.181250 + 0.313934i −0.942306 0.334752i $$-0.891348\pi$$
0.761057 + 0.648686i $$0.224681\pi$$
$$762$$ 8.00000 0.289809
$$763$$ 7.00000 12.1244i 0.253417 0.438931i
$$764$$ 12.0000 + 20.7846i 0.434145 + 0.751961i
$$765$$ 7.50000 + 12.9904i 0.271163 + 0.469668i
$$766$$ −28.0000 −1.01168
$$767$$ 8.00000 27.7128i 0.288863 1.00065i
$$768$$ −1.00000 −0.0360844
$$769$$ −25.0000 43.3013i −0.901523 1.56148i −0.825518 0.564376i $$-0.809117\pi$$
−0.0760054 0.997107i $$-0.524217\pi$$
$$770$$ 6.00000 + 10.3923i 0.216225 + 0.374513i
$$771$$ 3.50000 6.06218i 0.126049 0.218324i
$$772$$ 19.0000 0.683825
$$773$$ −19.0000 + 32.9090i −0.683383 + 1.18365i 0.290560 + 0.956857i $$0.406159\pi$$
−0.973942 + 0.226796i $$0.927175\pi$$
$$774$$ −4.00000 + 6.92820i −0.143777 + 0.249029i
$$775$$ 0 0
$$776$$ −9.00000 + 15.5885i −0.323081 +