Properties

Label 546.2.k.e.445.5
Level $546$
Weight $2$
Character 546.445
Analytic conductor $4.360$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.k (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Defining polynomial: \(x^{10} - 2 x^{9} + 15 x^{8} + 14 x^{7} + 110 x^{6} + 36 x^{5} + 233 x^{4} + 164 x^{3} + 345 x^{2} + 76 x + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 445.5
Root \(-1.10337 + 1.91109i\) of defining polynomial
Character \(\chi\) \(=\) 546.445
Dual form 546.2.k.e.373.5

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} -1.00000 q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.10337 + 1.91109i) q^{5} +(-0.500000 + 0.866025i) q^{6} +(1.44928 - 2.21350i) q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{2} -1.00000 q^{3} +(-0.500000 - 0.866025i) q^{4} +(1.10337 + 1.91109i) q^{5} +(-0.500000 + 0.866025i) q^{6} +(1.44928 - 2.21350i) q^{7} -1.00000 q^{8} +1.00000 q^{9} +2.20674 q^{10} -1.05547 q^{11} +(0.500000 + 0.866025i) q^{12} +(3.18376 + 1.69224i) q^{13} +(-1.19230 - 2.36187i) q^{14} +(-1.10337 - 1.91109i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(0.472267 + 0.817990i) q^{17} +(0.500000 - 0.866025i) q^{18} +3.92744 q^{19} +(1.10337 - 1.91109i) q^{20} +(-1.44928 + 2.21350i) q^{21} +(-0.527733 + 0.914061i) q^{22} +(3.11385 - 5.39335i) q^{23} +1.00000 q^{24} +(0.0651512 - 0.112845i) q^{25} +(3.05741 - 1.91109i) q^{26} -1.00000 q^{27} +(-2.64159 - 0.148368i) q^{28} +(0.888084 + 1.53821i) q^{29} -2.20674 q^{30} +(3.63304 - 6.29261i) q^{31} +(0.500000 + 0.866025i) q^{32} +1.05547 q^{33} +0.944533 q^{34} +(5.82930 + 0.327409i) q^{35} +(-0.500000 - 0.866025i) q^{36} +(-1.13110 + 1.95913i) q^{37} +(1.96372 - 3.40126i) q^{38} +(-3.18376 - 1.69224i) q^{39} +(-1.10337 - 1.91109i) q^{40} +(-1.63110 - 2.82515i) q^{41} +(1.19230 + 2.36187i) q^{42} +(0.537418 - 0.930835i) q^{43} +(0.527733 + 0.914061i) q^{44} +(1.10337 + 1.91109i) q^{45} +(-3.11385 - 5.39335i) q^{46} +(2.42678 + 4.20330i) q^{47} +(0.500000 - 0.866025i) q^{48} +(-2.79915 - 6.41598i) q^{49} +(-0.0651512 - 0.112845i) q^{50} +(-0.472267 - 0.817990i) q^{51} +(-0.126352 - 3.60334i) q^{52} +(-4.94074 + 8.55761i) q^{53} +(-0.500000 + 0.866025i) q^{54} +(-1.16457 - 2.01709i) q^{55} +(-1.44928 + 2.21350i) q^{56} -3.92744 q^{57} +1.77617 q^{58} +(0.509684 + 0.882799i) q^{59} +(-1.10337 + 1.91109i) q^{60} +0.0764368 q^{61} +(-3.63304 - 6.29261i) q^{62} +(1.44928 - 2.21350i) q^{63} +1.00000 q^{64} +(0.278825 + 7.95162i) q^{65} +(0.527733 - 0.914061i) q^{66} -11.7062 q^{67} +(0.472267 - 0.817990i) q^{68} +(-3.11385 + 5.39335i) q^{69} +(3.19819 - 4.88461i) q^{70} +(-4.20868 + 7.28964i) q^{71} -1.00000 q^{72} +(6.57264 - 11.3841i) q^{73} +(1.13110 + 1.95913i) q^{74} +(-0.0651512 + 0.112845i) q^{75} +(-1.96372 - 3.40126i) q^{76} +(-1.52967 + 2.33627i) q^{77} +(-3.05741 + 1.91109i) q^{78} +(3.00194 + 5.19951i) q^{79} -2.20674 q^{80} +1.00000 q^{81} -3.26221 q^{82} -1.77617 q^{83} +(2.64159 + 0.148368i) q^{84} +(-1.04217 + 1.80509i) q^{85} +(-0.537418 - 0.930835i) q^{86} +(-0.888084 - 1.53821i) q^{87} +1.05547 q^{88} +(-6.66765 + 11.5487i) q^{89} +2.20674 q^{90} +(8.35995 - 4.59470i) q^{91} -6.22771 q^{92} +(-3.63304 + 6.29261i) q^{93} +4.85355 q^{94} +(4.33342 + 7.50570i) q^{95} +(-0.500000 - 0.866025i) q^{96} +(-8.99467 + 15.5792i) q^{97} +(-6.95597 - 0.783854i) q^{98} -1.05547 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10q + 5q^{2} - 10q^{3} - 5q^{4} - 2q^{5} - 5q^{6} + 4q^{7} - 10q^{8} + 10q^{9} + O(q^{10}) \) \( 10q + 5q^{2} - 10q^{3} - 5q^{4} - 2q^{5} - 5q^{6} + 4q^{7} - 10q^{8} + 10q^{9} - 4q^{10} - 12q^{11} + 5q^{12} - 4q^{13} + 2q^{14} + 2q^{15} - 5q^{16} + 4q^{17} + 5q^{18} - 6q^{19} - 2q^{20} - 4q^{21} - 6q^{22} + 6q^{23} + 10q^{24} - q^{25} - 2q^{26} - 10q^{27} - 2q^{28} + 4q^{30} - 10q^{31} + 5q^{32} + 12q^{33} + 8q^{34} - 2q^{35} - 5q^{36} + q^{37} - 3q^{38} + 4q^{39} + 2q^{40} - 4q^{41} - 2q^{42} + 3q^{43} + 6q^{44} - 2q^{45} - 6q^{46} - 15q^{47} + 5q^{48} - 20q^{49} + q^{50} - 4q^{51} + 2q^{52} - 17q^{53} - 5q^{54} + 3q^{55} - 4q^{56} + 6q^{57} + 2q^{59} + 2q^{60} - 22q^{61} + 10q^{62} + 4q^{63} + 10q^{64} + 41q^{65} + 6q^{66} + 2q^{67} + 4q^{68} - 6q^{69} - 16q^{70} + 18q^{71} - 10q^{72} + 12q^{73} - q^{74} + q^{75} + 3q^{76} + 18q^{77} + 2q^{78} - 4q^{79} + 4q^{80} + 10q^{81} - 8q^{82} + 2q^{84} + q^{85} - 3q^{86} + 12q^{88} + 7q^{89} - 4q^{90} - 4q^{91} - 12q^{92} + 10q^{93} - 30q^{94} + 24q^{95} - 5q^{96} - 6q^{97} - 16q^{98} - 12q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) −1.00000 −0.577350
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 1.10337 + 1.91109i 0.493442 + 0.854666i 0.999971 0.00755619i \(-0.00240523\pi\)
−0.506530 + 0.862223i \(0.669072\pi\)
\(6\) −0.500000 + 0.866025i −0.204124 + 0.353553i
\(7\) 1.44928 2.21350i 0.547778 0.836624i
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 2.20674 0.697832
\(11\) −1.05547 −0.318235 −0.159118 0.987260i \(-0.550865\pi\)
−0.159118 + 0.987260i \(0.550865\pi\)
\(12\) 0.500000 + 0.866025i 0.144338 + 0.250000i
\(13\) 3.18376 + 1.69224i 0.883015 + 0.469344i
\(14\) −1.19230 2.36187i −0.318657 0.631235i
\(15\) −1.10337 1.91109i −0.284889 0.493442i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 0.472267 + 0.817990i 0.114541 + 0.198392i 0.917596 0.397513i \(-0.130127\pi\)
−0.803055 + 0.595905i \(0.796793\pi\)
\(18\) 0.500000 0.866025i 0.117851 0.204124i
\(19\) 3.92744 0.901016 0.450508 0.892772i \(-0.351243\pi\)
0.450508 + 0.892772i \(0.351243\pi\)
\(20\) 1.10337 1.91109i 0.246721 0.427333i
\(21\) −1.44928 + 2.21350i −0.316260 + 0.483025i
\(22\) −0.527733 + 0.914061i −0.112513 + 0.194879i
\(23\) 3.11385 5.39335i 0.649284 1.12459i −0.334011 0.942569i \(-0.608402\pi\)
0.983294 0.182023i \(-0.0582645\pi\)
\(24\) 1.00000 0.204124
\(25\) 0.0651512 0.112845i 0.0130302 0.0225690i
\(26\) 3.05741 1.91109i 0.599606 0.374796i
\(27\) −1.00000 −0.192450
\(28\) −2.64159 0.148368i −0.499213 0.0280389i
\(29\) 0.888084 + 1.53821i 0.164913 + 0.285638i 0.936624 0.350335i \(-0.113932\pi\)
−0.771711 + 0.635973i \(0.780599\pi\)
\(30\) −2.20674 −0.402894
\(31\) 3.63304 6.29261i 0.652513 1.13019i −0.329997 0.943982i \(-0.607048\pi\)
0.982511 0.186205i \(-0.0596188\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 1.05547 0.183733
\(34\) 0.944533 0.161986
\(35\) 5.82930 + 0.327409i 0.985331 + 0.0553423i
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) −1.13110 + 1.95913i −0.185952 + 0.322079i −0.943897 0.330240i \(-0.892870\pi\)
0.757945 + 0.652319i \(0.226204\pi\)
\(38\) 1.96372 3.40126i 0.318557 0.551758i
\(39\) −3.18376 1.69224i −0.509809 0.270976i
\(40\) −1.10337 1.91109i −0.174458 0.302170i
\(41\) −1.63110 2.82515i −0.254735 0.441215i 0.710088 0.704113i \(-0.248655\pi\)
−0.964824 + 0.262898i \(0.915322\pi\)
\(42\) 1.19230 + 2.36187i 0.183976 + 0.364444i
\(43\) 0.537418 0.930835i 0.0819554 0.141951i −0.822134 0.569293i \(-0.807217\pi\)
0.904090 + 0.427343i \(0.140550\pi\)
\(44\) 0.527733 + 0.914061i 0.0795588 + 0.137800i
\(45\) 1.10337 + 1.91109i 0.164481 + 0.284889i
\(46\) −3.11385 5.39335i −0.459113 0.795207i
\(47\) 2.42678 + 4.20330i 0.353982 + 0.613114i 0.986943 0.161069i \(-0.0514942\pi\)
−0.632961 + 0.774183i \(0.718161\pi\)
\(48\) 0.500000 0.866025i 0.0721688 0.125000i
\(49\) −2.79915 6.41598i −0.399879 0.916568i
\(50\) −0.0651512 0.112845i −0.00921377 0.0159587i
\(51\) −0.472267 0.817990i −0.0661305 0.114541i
\(52\) −0.126352 3.60334i −0.0175218 0.499693i
\(53\) −4.94074 + 8.55761i −0.678663 + 1.17548i 0.296721 + 0.954964i \(0.404107\pi\)
−0.975384 + 0.220514i \(0.929227\pi\)
\(54\) −0.500000 + 0.866025i −0.0680414 + 0.117851i
\(55\) −1.16457 2.01709i −0.157031 0.271985i
\(56\) −1.44928 + 2.21350i −0.193669 + 0.295791i
\(57\) −3.92744 −0.520202
\(58\) 1.77617 0.233222
\(59\) 0.509684 + 0.882799i 0.0663552 + 0.114931i 0.897294 0.441433i \(-0.145530\pi\)
−0.830939 + 0.556363i \(0.812196\pi\)
\(60\) −1.10337 + 1.91109i −0.142444 + 0.246721i
\(61\) 0.0764368 0.00978673 0.00489336 0.999988i \(-0.498442\pi\)
0.00489336 + 0.999988i \(0.498442\pi\)
\(62\) −3.63304 6.29261i −0.461397 0.799163i
\(63\) 1.44928 2.21350i 0.182593 0.278875i
\(64\) 1.00000 0.125000
\(65\) 0.278825 + 7.95162i 0.0345840 + 0.986278i
\(66\) 0.527733 0.914061i 0.0649595 0.112513i
\(67\) −11.7062 −1.43013 −0.715067 0.699056i \(-0.753604\pi\)
−0.715067 + 0.699056i \(0.753604\pi\)
\(68\) 0.472267 0.817990i 0.0572707 0.0991958i
\(69\) −3.11385 + 5.39335i −0.374864 + 0.649284i
\(70\) 3.19819 4.88461i 0.382257 0.583823i
\(71\) −4.20868 + 7.28964i −0.499478 + 0.865121i −1.00000 0.000602515i \(-0.999808\pi\)
0.500522 + 0.865724i \(0.333142\pi\)
\(72\) −1.00000 −0.117851
\(73\) 6.57264 11.3841i 0.769269 1.33241i −0.168690 0.985669i \(-0.553954\pi\)
0.937960 0.346745i \(-0.112713\pi\)
\(74\) 1.13110 + 1.95913i 0.131488 + 0.227744i
\(75\) −0.0651512 + 0.112845i −0.00752301 + 0.0130302i
\(76\) −1.96372 3.40126i −0.225254 0.390152i
\(77\) −1.52967 + 2.33627i −0.174322 + 0.266243i
\(78\) −3.05741 + 1.91109i −0.346183 + 0.216389i
\(79\) 3.00194 + 5.19951i 0.337744 + 0.584991i 0.984008 0.178124i \(-0.0570027\pi\)
−0.646264 + 0.763114i \(0.723669\pi\)
\(80\) −2.20674 −0.246721
\(81\) 1.00000 0.111111
\(82\) −3.26221 −0.360250
\(83\) −1.77617 −0.194960 −0.0974799 0.995237i \(-0.531078\pi\)
−0.0974799 + 0.995237i \(0.531078\pi\)
\(84\) 2.64159 + 0.148368i 0.288221 + 0.0161883i
\(85\) −1.04217 + 1.80509i −0.113039 + 0.195789i
\(86\) −0.537418 0.930835i −0.0579512 0.100374i
\(87\) −0.888084 1.53821i −0.0952126 0.164913i
\(88\) 1.05547 0.112513
\(89\) −6.66765 + 11.5487i −0.706769 + 1.22416i 0.259280 + 0.965802i \(0.416515\pi\)
−0.966049 + 0.258358i \(0.916819\pi\)
\(90\) 2.20674 0.232611
\(91\) 8.35995 4.59470i 0.876361 0.481655i
\(92\) −6.22771 −0.649284
\(93\) −3.63304 + 6.29261i −0.376729 + 0.652513i
\(94\) 4.85355 0.500606
\(95\) 4.33342 + 7.50570i 0.444599 + 0.770069i
\(96\) −0.500000 0.866025i −0.0510310 0.0883883i
\(97\) −8.99467 + 15.5792i −0.913270 + 1.58183i −0.103855 + 0.994592i \(0.533118\pi\)
−0.809415 + 0.587238i \(0.800215\pi\)
\(98\) −6.95597 0.783854i −0.702659 0.0791812i
\(99\) −1.05547 −0.106078
\(100\) −0.130302 −0.0130302
\(101\) 13.5004 1.34334 0.671668 0.740852i \(-0.265578\pi\)
0.671668 + 0.740852i \(0.265578\pi\)
\(102\) −0.944533 −0.0935227
\(103\) 1.46258 + 2.53327i 0.144113 + 0.249610i 0.929041 0.369976i \(-0.120634\pi\)
−0.784929 + 0.619586i \(0.787301\pi\)
\(104\) −3.18376 1.69224i −0.312193 0.165938i
\(105\) −5.82930 0.327409i −0.568881 0.0319519i
\(106\) 4.94074 + 8.55761i 0.479887 + 0.831188i
\(107\) −7.05459 + 12.2189i −0.681993 + 1.18125i 0.292378 + 0.956303i \(0.405553\pi\)
−0.974372 + 0.224944i \(0.927780\pi\)
\(108\) 0.500000 + 0.866025i 0.0481125 + 0.0833333i
\(109\) 0.723832 1.25371i 0.0693306 0.120084i −0.829276 0.558839i \(-0.811247\pi\)
0.898607 + 0.438755i \(0.144580\pi\)
\(110\) −2.32914 −0.222075
\(111\) 1.13110 1.95913i 0.107360 0.185952i
\(112\) 1.19230 + 2.36187i 0.112662 + 0.223175i
\(113\) −1.67707 + 2.90477i −0.157765 + 0.273257i −0.934062 0.357110i \(-0.883762\pi\)
0.776297 + 0.630367i \(0.217096\pi\)
\(114\) −1.96372 + 3.40126i −0.183919 + 0.318557i
\(115\) 13.7429 1.28153
\(116\) 0.888084 1.53821i 0.0824565 0.142819i
\(117\) 3.18376 + 1.69224i 0.294338 + 0.156448i
\(118\) 1.01937 0.0938405
\(119\) 2.49507 + 0.140138i 0.228722 + 0.0128465i
\(120\) 1.10337 + 1.91109i 0.100723 + 0.174458i
\(121\) −9.88599 −0.898726
\(122\) 0.0382184 0.0661962i 0.00346013 0.00599312i
\(123\) 1.63110 + 2.82515i 0.147072 + 0.254735i
\(124\) −7.26608 −0.652513
\(125\) 11.3212 1.01260
\(126\) −1.19230 2.36187i −0.106219 0.210412i
\(127\) −4.80963 8.33053i −0.426786 0.739215i 0.569799 0.821784i \(-0.307021\pi\)
−0.996585 + 0.0825687i \(0.973688\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) −0.537418 + 0.930835i −0.0473170 + 0.0819554i
\(130\) 7.02572 + 3.73434i 0.616197 + 0.327523i
\(131\) −3.27649 5.67504i −0.286268 0.495831i 0.686648 0.726990i \(-0.259081\pi\)
−0.972916 + 0.231159i \(0.925748\pi\)
\(132\) −0.527733 0.914061i −0.0459333 0.0795588i
\(133\) 5.69198 8.69338i 0.493557 0.753812i
\(134\) −5.85308 + 10.1378i −0.505629 + 0.875775i
\(135\) −1.10337 1.91109i −0.0949629 0.164481i
\(136\) −0.472267 0.817990i −0.0404965 0.0701420i
\(137\) −3.56234 6.17015i −0.304351 0.527152i 0.672766 0.739856i \(-0.265106\pi\)
−0.977117 + 0.212704i \(0.931773\pi\)
\(138\) 3.11385 + 5.39335i 0.265069 + 0.459113i
\(139\) −3.09957 + 5.36862i −0.262902 + 0.455360i −0.967012 0.254731i \(-0.918013\pi\)
0.704109 + 0.710091i \(0.251346\pi\)
\(140\) −2.63110 5.21202i −0.222369 0.440496i
\(141\) −2.42678 4.20330i −0.204371 0.353982i
\(142\) 4.20868 + 7.28964i 0.353184 + 0.611733i
\(143\) −3.36035 1.78611i −0.281007 0.149362i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) −1.95977 + 3.39442i −0.162750 + 0.281891i
\(146\) −6.57264 11.3841i −0.543956 0.942159i
\(147\) 2.79915 + 6.41598i 0.230870 + 0.529181i
\(148\) 2.26221 0.185952
\(149\) −21.8748 −1.79206 −0.896028 0.443997i \(-0.853560\pi\)
−0.896028 + 0.443997i \(0.853560\pi\)
\(150\) 0.0651512 + 0.112845i 0.00531957 + 0.00921377i
\(151\) 7.25658 12.5688i 0.590532 1.02283i −0.403629 0.914923i \(-0.632251\pi\)
0.994161 0.107909i \(-0.0344154\pi\)
\(152\) −3.92744 −0.318557
\(153\) 0.472267 + 0.817990i 0.0381805 + 0.0661305i
\(154\) 1.25844 + 2.49287i 0.101408 + 0.200881i
\(155\) 16.0343 1.28791
\(156\) 0.126352 + 3.60334i 0.0101162 + 0.288498i
\(157\) 2.13538 3.69859i 0.170422 0.295179i −0.768146 0.640275i \(-0.778820\pi\)
0.938567 + 0.345096i \(0.112154\pi\)
\(158\) 6.00388 0.477643
\(159\) 4.94074 8.55761i 0.391826 0.678663i
\(160\) −1.10337 + 1.91109i −0.0872290 + 0.151085i
\(161\) −7.42532 14.7090i −0.585197 1.15923i
\(162\) 0.500000 0.866025i 0.0392837 0.0680414i
\(163\) 6.06417 0.474982 0.237491 0.971390i \(-0.423675\pi\)
0.237491 + 0.971390i \(0.423675\pi\)
\(164\) −1.63110 + 2.82515i −0.127368 + 0.220607i
\(165\) 1.16457 + 2.01709i 0.0906617 + 0.157031i
\(166\) −0.888084 + 1.53821i −0.0689287 + 0.119388i
\(167\) −7.86930 13.6300i −0.608944 1.05472i −0.991415 0.130755i \(-0.958260\pi\)
0.382470 0.923968i \(-0.375073\pi\)
\(168\) 1.44928 2.21350i 0.111815 0.170775i
\(169\) 7.27262 + 10.7754i 0.559432 + 0.828876i
\(170\) 1.04217 + 1.80509i 0.0799307 + 0.138444i
\(171\) 3.92744 0.300339
\(172\) −1.07484 −0.0819554
\(173\) −10.5844 −0.804717 −0.402358 0.915482i \(-0.631809\pi\)
−0.402358 + 0.915482i \(0.631809\pi\)
\(174\) −1.77617 −0.134651
\(175\) −0.155360 0.307757i −0.0117441 0.0232642i
\(176\) 0.527733 0.914061i 0.0397794 0.0689000i
\(177\) −0.509684 0.882799i −0.0383102 0.0663552i
\(178\) 6.66765 + 11.5487i 0.499761 + 0.865612i
\(179\) 14.2382 1.06421 0.532105 0.846678i \(-0.321401\pi\)
0.532105 + 0.846678i \(0.321401\pi\)
\(180\) 1.10337 1.91109i 0.0822403 0.142444i
\(181\) −13.7312 −1.02063 −0.510314 0.859988i \(-0.670471\pi\)
−0.510314 + 0.859988i \(0.670471\pi\)
\(182\) 0.200850 9.53728i 0.0148880 0.706950i
\(183\) −0.0764368 −0.00565037
\(184\) −3.11385 + 5.39335i −0.229556 + 0.397603i
\(185\) −4.99210 −0.367026
\(186\) 3.63304 + 6.29261i 0.266388 + 0.461397i
\(187\) −0.498462 0.863361i −0.0364511 0.0631352i
\(188\) 2.42678 4.20330i 0.176991 0.306557i
\(189\) −1.44928 + 2.21350i −0.105420 + 0.161008i
\(190\) 8.66684 0.628758
\(191\) 0.875997 0.0633850 0.0316925 0.999498i \(-0.489910\pi\)
0.0316925 + 0.999498i \(0.489910\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −22.6625 −1.63128 −0.815640 0.578560i \(-0.803615\pi\)
−0.815640 + 0.578560i \(0.803615\pi\)
\(194\) 8.99467 + 15.5792i 0.645779 + 1.11852i
\(195\) −0.278825 7.95162i −0.0199671 0.569428i
\(196\) −4.15682 + 5.63212i −0.296916 + 0.402295i
\(197\) 8.44249 + 14.6228i 0.601502 + 1.04183i 0.992594 + 0.121481i \(0.0387642\pi\)
−0.391092 + 0.920352i \(0.627902\pi\)
\(198\) −0.527733 + 0.914061i −0.0375044 + 0.0649595i
\(199\) 2.95042 + 5.11028i 0.209150 + 0.362258i 0.951447 0.307813i \(-0.0995970\pi\)
−0.742297 + 0.670071i \(0.766264\pi\)
\(200\) −0.0651512 + 0.112845i −0.00460688 + 0.00797936i
\(201\) 11.7062 0.825689
\(202\) 6.75018 11.6917i 0.474941 0.822622i
\(203\) 4.69190 + 0.263526i 0.329307 + 0.0184959i
\(204\) −0.472267 + 0.817990i −0.0330653 + 0.0572707i
\(205\) 3.59942 6.23438i 0.251394 0.435428i
\(206\) 2.92516 0.203806
\(207\) 3.11385 5.39335i 0.216428 0.374864i
\(208\) −3.05741 + 1.91109i −0.211993 + 0.132510i
\(209\) −4.14528 −0.286735
\(210\) −3.19819 + 4.88461i −0.220696 + 0.337070i
\(211\) −11.7856 20.4132i −0.811353 1.40531i −0.911917 0.410375i \(-0.865398\pi\)
0.100564 0.994931i \(-0.467935\pi\)
\(212\) 9.88148 0.678663
\(213\) 4.20868 7.28964i 0.288374 0.499478i
\(214\) 7.05459 + 12.2189i 0.482242 + 0.835268i
\(215\) 2.37188 0.161761
\(216\) 1.00000 0.0680414
\(217\) −8.66338 17.1615i −0.588108 1.16500i
\(218\) −0.723832 1.25371i −0.0490241 0.0849123i
\(219\) −6.57264 + 11.3841i −0.444138 + 0.769269i
\(220\) −1.16457 + 2.01709i −0.0785153 + 0.135992i
\(221\) 0.119343 + 3.40347i 0.00802791 + 0.228942i
\(222\) −1.13110 1.95913i −0.0759147 0.131488i
\(223\) −2.87906 4.98667i −0.192796 0.333932i 0.753380 0.657586i \(-0.228422\pi\)
−0.946176 + 0.323653i \(0.895089\pi\)
\(224\) 2.64159 + 0.148368i 0.176499 + 0.00991325i
\(225\) 0.0651512 0.112845i 0.00434341 0.00752301i
\(226\) 1.67707 + 2.90477i 0.111557 + 0.193222i
\(227\) −9.84025 17.0438i −0.653121 1.13124i −0.982361 0.186992i \(-0.940126\pi\)
0.329241 0.944246i \(-0.393207\pi\)
\(228\) 1.96372 + 3.40126i 0.130051 + 0.225254i
\(229\) 10.0430 + 17.3951i 0.663663 + 1.14950i 0.979646 + 0.200733i \(0.0643324\pi\)
−0.315983 + 0.948765i \(0.602334\pi\)
\(230\) 6.87146 11.9017i 0.453091 0.784777i
\(231\) 1.52967 2.33627i 0.100645 0.153716i
\(232\) −0.888084 1.53821i −0.0583056 0.100988i
\(233\) −2.82261 4.88890i −0.184915 0.320282i 0.758633 0.651518i \(-0.225868\pi\)
−0.943548 + 0.331236i \(0.892534\pi\)
\(234\) 3.05741 1.91109i 0.199869 0.124932i
\(235\) −5.35526 + 9.27559i −0.349339 + 0.605073i
\(236\) 0.509684 0.882799i 0.0331776 0.0574653i
\(237\) −3.00194 5.19951i −0.194997 0.337744i
\(238\) 1.36890 2.09072i 0.0887324 0.135521i
\(239\) 8.20960 0.531035 0.265517 0.964106i \(-0.414457\pi\)
0.265517 + 0.964106i \(0.414457\pi\)
\(240\) 2.20674 0.142444
\(241\) 10.5084 + 18.2011i 0.676908 + 1.17244i 0.975907 + 0.218186i \(0.0700139\pi\)
−0.298999 + 0.954253i \(0.596653\pi\)
\(242\) −4.94299 + 8.56152i −0.317748 + 0.550355i
\(243\) −1.00000 −0.0641500
\(244\) −0.0382184 0.0661962i −0.00244668 0.00423778i
\(245\) 9.17303 12.4286i 0.586043 0.794036i
\(246\) 3.26221 0.207991
\(247\) 12.5040 + 6.64619i 0.795611 + 0.422887i
\(248\) −3.63304 + 6.29261i −0.230698 + 0.399581i
\(249\) 1.77617 0.112560
\(250\) 5.66062 9.80448i 0.358009 0.620090i
\(251\) −12.0281 + 20.8333i −0.759209 + 1.31499i 0.184045 + 0.982918i \(0.441081\pi\)
−0.943254 + 0.332071i \(0.892253\pi\)
\(252\) −2.64159 0.148368i −0.166404 0.00934630i
\(253\) −3.28657 + 5.69251i −0.206625 + 0.357885i
\(254\) −9.61927 −0.603567
\(255\) 1.04217 1.80509i 0.0652632 0.113039i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 1.79955 3.11691i 0.112253 0.194428i −0.804425 0.594054i \(-0.797527\pi\)
0.916678 + 0.399626i \(0.130860\pi\)
\(258\) 0.537418 + 0.930835i 0.0334582 + 0.0579512i
\(259\) 2.69724 + 5.34303i 0.167598 + 0.332000i
\(260\) 6.74690 4.21728i 0.418425 0.261545i
\(261\) 0.888084 + 1.53821i 0.0549710 + 0.0952126i
\(262\) −6.55297 −0.404844
\(263\) −30.2393 −1.86463 −0.932317 0.361643i \(-0.882216\pi\)
−0.932317 + 0.361643i \(0.882216\pi\)
\(264\) −1.05547 −0.0649595
\(265\) −21.8058 −1.33952
\(266\) −4.68270 9.27609i −0.287115 0.568753i
\(267\) 6.66765 11.5487i 0.408053 0.706769i
\(268\) 5.85308 + 10.1378i 0.357534 + 0.619266i
\(269\) −5.21964 9.04068i −0.318247 0.551220i 0.661875 0.749614i \(-0.269761\pi\)
−0.980122 + 0.198394i \(0.936427\pi\)
\(270\) −2.20674 −0.134298
\(271\) 5.33456 9.23972i 0.324051 0.561273i −0.657269 0.753656i \(-0.728288\pi\)
0.981320 + 0.192383i \(0.0616217\pi\)
\(272\) −0.944533 −0.0572707
\(273\) −8.35995 + 4.59470i −0.505967 + 0.278084i
\(274\) −7.12468 −0.430417
\(275\) −0.0687649 + 0.119104i −0.00414668 + 0.00718226i
\(276\) 6.22771 0.374864
\(277\) −9.53530 16.5156i −0.572920 0.992327i −0.996264 0.0863582i \(-0.972477\pi\)
0.423344 0.905969i \(-0.360856\pi\)
\(278\) 3.09957 + 5.36862i 0.185900 + 0.321988i
\(279\) 3.63304 6.29261i 0.217504 0.376729i
\(280\) −5.82930 0.327409i −0.348367 0.0195664i
\(281\) 23.3309 1.39181 0.695903 0.718136i \(-0.255005\pi\)
0.695903 + 0.718136i \(0.255005\pi\)
\(282\) −4.85355 −0.289025
\(283\) 8.22931 0.489182 0.244591 0.969626i \(-0.421346\pi\)
0.244591 + 0.969626i \(0.421346\pi\)
\(284\) 8.41735 0.499478
\(285\) −4.33342 7.50570i −0.256690 0.444599i
\(286\) −3.22699 + 2.01709i −0.190816 + 0.119273i
\(287\) −8.61740 0.484007i −0.508669 0.0285700i
\(288\) 0.500000 + 0.866025i 0.0294628 + 0.0510310i
\(289\) 8.05393 13.9498i 0.473761 0.820577i
\(290\) 1.95977 + 3.39442i 0.115082 + 0.199327i
\(291\) 8.99467 15.5792i 0.527277 0.913270i
\(292\) −13.1453 −0.769269
\(293\) 9.34471 16.1855i 0.545924 0.945568i −0.452624 0.891701i \(-0.649512\pi\)
0.998548 0.0538667i \(-0.0171546\pi\)
\(294\) 6.95597 + 0.783854i 0.405681 + 0.0457153i
\(295\) −1.12474 + 1.94811i −0.0654849 + 0.113423i
\(296\) 1.13110 1.95913i 0.0657440 0.113872i
\(297\) 1.05547 0.0612444
\(298\) −10.9374 + 18.9442i −0.633588 + 1.09741i
\(299\) 19.0406 11.9017i 1.10115 0.688295i
\(300\) 0.130302 0.00752301
\(301\) −1.28153 2.53862i −0.0738662 0.146323i
\(302\) −7.25658 12.5688i −0.417569 0.723251i
\(303\) −13.5004 −0.775576
\(304\) −1.96372 + 3.40126i −0.112627 + 0.195076i
\(305\) 0.0843380 + 0.146078i 0.00482918 + 0.00836439i
\(306\) 0.944533 0.0539954
\(307\) 18.0495 1.03014 0.515069 0.857149i \(-0.327766\pi\)
0.515069 + 0.857149i \(0.327766\pi\)
\(308\) 2.78811 + 0.156597i 0.158867 + 0.00892297i
\(309\) −1.46258 2.53327i −0.0832034 0.144113i
\(310\) 8.01717 13.8862i 0.455345 0.788681i
\(311\) −8.46321 + 14.6587i −0.479905 + 0.831219i −0.999734 0.0230506i \(-0.992662\pi\)
0.519830 + 0.854270i \(0.325995\pi\)
\(312\) 3.18376 + 1.69224i 0.180245 + 0.0958045i
\(313\) −11.0035 19.0587i −0.621957 1.07726i −0.989121 0.147105i \(-0.953004\pi\)
0.367163 0.930156i \(-0.380329\pi\)
\(314\) −2.13538 3.69859i −0.120506 0.208723i
\(315\) 5.82930 + 0.327409i 0.328444 + 0.0184474i
\(316\) 3.00194 5.19951i 0.168872 0.292495i
\(317\) 4.46606 + 7.73544i 0.250839 + 0.434466i 0.963757 0.266782i \(-0.0859602\pi\)
−0.712918 + 0.701247i \(0.752627\pi\)
\(318\) −4.94074 8.55761i −0.277063 0.479887i
\(319\) −0.937343 1.62353i −0.0524811 0.0909000i
\(320\) 1.10337 + 1.91109i 0.0616802 + 0.106833i
\(321\) 7.05459 12.2189i 0.393749 0.681993i
\(322\) −16.4510 0.923992i −0.916781 0.0514921i
\(323\) 1.85480 + 3.21260i 0.103204 + 0.178754i
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) 0.398387 0.249020i 0.0220985 0.0138131i
\(326\) 3.03208 5.25172i 0.167932 0.290866i
\(327\) −0.723832 + 1.25371i −0.0400280 + 0.0693306i
\(328\) 1.63110 + 2.82515i 0.0900626 + 0.155993i
\(329\) 12.8211 + 0.720111i 0.706849 + 0.0397010i
\(330\) 2.32914 0.128215
\(331\) 4.32850 0.237916 0.118958 0.992899i \(-0.462045\pi\)
0.118958 + 0.992899i \(0.462045\pi\)
\(332\) 0.888084 + 1.53821i 0.0487399 + 0.0844200i
\(333\) −1.13110 + 1.95913i −0.0619841 + 0.107360i
\(334\) −15.7386 −0.861178
\(335\) −12.9162 22.3715i −0.705688 1.22229i
\(336\) −1.19230 2.36187i −0.0650455 0.128850i
\(337\) −0.416096 −0.0226662 −0.0113331 0.999936i \(-0.503608\pi\)
−0.0113331 + 0.999936i \(0.503608\pi\)
\(338\) 12.9681 0.910576i 0.705370 0.0495288i
\(339\) 1.67707 2.90477i 0.0910858 0.157765i
\(340\) 2.08434 0.113039
\(341\) −3.83456 + 6.64164i −0.207653 + 0.359665i
\(342\) 1.96372 3.40126i 0.106186 0.183919i
\(343\) −18.2585 3.10266i −0.985867 0.167528i
\(344\) −0.537418 + 0.930835i −0.0289756 + 0.0501872i
\(345\) −13.7429 −0.739894
\(346\) −5.29220 + 9.16635i −0.284510 + 0.492786i
\(347\) −10.8726 18.8319i −0.583671 1.01095i −0.995040 0.0994787i \(-0.968282\pi\)
0.411369 0.911469i \(-0.365051\pi\)
\(348\) −0.888084 + 1.53821i −0.0476063 + 0.0824565i
\(349\) 15.8128 + 27.3885i 0.846438 + 1.46607i 0.884366 + 0.466794i \(0.154591\pi\)
−0.0379278 + 0.999280i \(0.512076\pi\)
\(350\) −0.344205 0.0193327i −0.0183985 0.00103338i
\(351\) −3.18376 1.69224i −0.169936 0.0903253i
\(352\) −0.527733 0.914061i −0.0281283 0.0487196i
\(353\) 27.7887 1.47905 0.739523 0.673131i \(-0.235051\pi\)
0.739523 + 0.673131i \(0.235051\pi\)
\(354\) −1.01937 −0.0541788
\(355\) −18.5749 −0.985854
\(356\) 13.3353 0.706769
\(357\) −2.49507 0.140138i −0.132053 0.00741691i
\(358\) 7.11908 12.3306i 0.376255 0.651693i
\(359\) 4.17747 + 7.23559i 0.220478 + 0.381880i 0.954953 0.296756i \(-0.0959048\pi\)
−0.734475 + 0.678636i \(0.762572\pi\)
\(360\) −1.10337 1.91109i −0.0581527 0.100723i
\(361\) −3.57522 −0.188169
\(362\) −6.86558 + 11.8915i −0.360847 + 0.625005i
\(363\) 9.88599 0.518880
\(364\) −8.15910 4.94258i −0.427653 0.259062i
\(365\) 29.0082 1.51836
\(366\) −0.0382184 + 0.0661962i −0.00199771 + 0.00346013i
\(367\) −20.7810 −1.08476 −0.542379 0.840134i \(-0.682476\pi\)
−0.542379 + 0.840134i \(0.682476\pi\)
\(368\) 3.11385 + 5.39335i 0.162321 + 0.281148i
\(369\) −1.63110 2.82515i −0.0849118 0.147072i
\(370\) −2.49605 + 4.32328i −0.129763 + 0.224757i
\(371\) 11.7817 + 23.3387i 0.611676 + 1.21169i
\(372\) 7.26608 0.376729
\(373\) 15.4568 0.800323 0.400161 0.916445i \(-0.368954\pi\)
0.400161 + 0.916445i \(0.368954\pi\)
\(374\) −0.996923 −0.0515497
\(375\) −11.3212 −0.584626
\(376\) −2.42678 4.20330i −0.125151 0.216769i
\(377\) 0.224422 + 6.40013i 0.0115583 + 0.329623i
\(378\) 1.19230 + 2.36187i 0.0613255 + 0.121481i
\(379\) 12.1123 + 20.9792i 0.622169 + 1.07763i 0.989081 + 0.147372i \(0.0470816\pi\)
−0.366912 + 0.930256i \(0.619585\pi\)
\(380\) 4.33342 7.50570i 0.222300 0.385034i
\(381\) 4.80963 + 8.33053i 0.246405 + 0.426786i
\(382\) 0.437999 0.758636i 0.0224100 0.0388152i
\(383\) 14.9993 0.766431 0.383215 0.923659i \(-0.374817\pi\)
0.383215 + 0.923659i \(0.374817\pi\)
\(384\) −0.500000 + 0.866025i −0.0255155 + 0.0441942i
\(385\) −6.15263 0.345570i −0.313567 0.0176119i
\(386\) −11.3312 + 19.6263i −0.576745 + 0.998951i
\(387\) 0.537418 0.930835i 0.0273185 0.0473170i
\(388\) 17.9893 0.913270
\(389\) 4.37986 7.58613i 0.222068 0.384632i −0.733368 0.679832i \(-0.762053\pi\)
0.955436 + 0.295200i \(0.0953861\pi\)
\(390\) −7.02572 3.73434i −0.355761 0.189096i
\(391\) 5.88228 0.297480
\(392\) 2.79915 + 6.41598i 0.141378 + 0.324056i
\(393\) 3.27649 + 5.67504i 0.165277 + 0.286268i
\(394\) 16.8850 0.850653
\(395\) −6.62449 + 11.4740i −0.333315 + 0.577318i
\(396\) 0.527733 + 0.914061i 0.0265196 + 0.0459333i
\(397\) 34.8800 1.75058 0.875289 0.483601i \(-0.160671\pi\)
0.875289 + 0.483601i \(0.160671\pi\)
\(398\) 5.90084 0.295783
\(399\) −5.69198 + 8.69338i −0.284955 + 0.435213i
\(400\) 0.0651512 + 0.112845i 0.00325756 + 0.00564226i
\(401\) 6.47372 11.2128i 0.323282 0.559941i −0.657881 0.753122i \(-0.728547\pi\)
0.981163 + 0.193181i \(0.0618803\pi\)
\(402\) 5.85308 10.1378i 0.291925 0.505629i
\(403\) 22.2154 13.8862i 1.10663 0.691719i
\(404\) −6.75018 11.6917i −0.335834 0.581682i
\(405\) 1.10337 + 1.91109i 0.0548269 + 0.0949629i
\(406\) 2.57417 3.93154i 0.127754 0.195119i
\(407\) 1.19384 2.06779i 0.0591765 0.102497i
\(408\) 0.472267 + 0.817990i 0.0233807 + 0.0404965i
\(409\) 17.0621 + 29.5524i 0.843666 + 1.46127i 0.886775 + 0.462201i \(0.152940\pi\)
−0.0431093 + 0.999070i \(0.513726\pi\)
\(410\) −3.59942 6.23438i −0.177763 0.307894i
\(411\) 3.56234 + 6.17015i 0.175717 + 0.304351i
\(412\) 1.46258 2.53327i 0.0720563 0.124805i
\(413\) 2.69275 + 0.151242i 0.132502 + 0.00744211i
\(414\) −3.11385 5.39335i −0.153038 0.265069i
\(415\) −1.95977 3.39442i −0.0962013 0.166626i
\(416\) 0.126352 + 3.60334i 0.00619490 + 0.176668i
\(417\) 3.09957 5.36862i 0.151787 0.262902i
\(418\) −2.07264 + 3.58992i −0.101376 + 0.175589i
\(419\) 11.0690 + 19.1720i 0.540754 + 0.936613i 0.998861 + 0.0477160i \(0.0151943\pi\)
−0.458107 + 0.888897i \(0.651472\pi\)
\(420\) 2.63110 + 5.21202i 0.128385 + 0.254321i
\(421\) −31.1012 −1.51578 −0.757890 0.652382i \(-0.773770\pi\)
−0.757890 + 0.652382i \(0.773770\pi\)
\(422\) −23.5712 −1.14743
\(423\) 2.42678 + 4.20330i 0.117994 + 0.204371i
\(424\) 4.94074 8.55761i 0.239943 0.415594i
\(425\) 0.123075 0.00597001
\(426\) −4.20868 7.28964i −0.203911 0.353184i
\(427\) 0.110779 0.169193i 0.00536095 0.00818781i
\(428\) 14.1092 0.681993
\(429\) 3.36035 + 1.78611i 0.162239 + 0.0862341i
\(430\) 1.18594 2.05411i 0.0571911 0.0990580i
\(431\) 11.3146 0.545005 0.272502 0.962155i \(-0.412149\pi\)
0.272502 + 0.962155i \(0.412149\pi\)
\(432\) 0.500000 0.866025i 0.0240563 0.0416667i
\(433\) −19.0285 + 32.9583i −0.914450 + 1.58387i −0.106746 + 0.994286i \(0.534043\pi\)
−0.807704 + 0.589588i \(0.799290\pi\)
\(434\) −19.1940 1.07805i −0.921341 0.0517482i
\(435\) 1.95977 3.39442i 0.0939637 0.162750i
\(436\) −1.44766 −0.0693306
\(437\) 12.2295 21.1821i 0.585015 1.01328i
\(438\) 6.57264 + 11.3841i 0.314053 + 0.543956i
\(439\) 1.48304 2.56871i 0.0707818 0.122598i −0.828462 0.560045i \(-0.810784\pi\)
0.899244 + 0.437447i \(0.144117\pi\)
\(440\) 1.16457 + 2.01709i 0.0555187 + 0.0961612i
\(441\) −2.79915 6.41598i −0.133293 0.305523i
\(442\) 3.00716 + 1.59838i 0.143036 + 0.0760272i
\(443\) −10.1253 17.5375i −0.481067 0.833233i 0.518697 0.854958i \(-0.326417\pi\)
−0.999764 + 0.0217253i \(0.993084\pi\)
\(444\) −2.26221 −0.107360
\(445\) −29.4275 −1.39500
\(446\) −5.75811 −0.272654
\(447\) 21.8748 1.03464
\(448\) 1.44928 2.21350i 0.0684722 0.104578i
\(449\) 5.97830 10.3547i 0.282133 0.488669i −0.689777 0.724022i \(-0.742291\pi\)
0.971910 + 0.235353i \(0.0756246\pi\)
\(450\) −0.0651512 0.112845i −0.00307126 0.00531957i
\(451\) 1.72158 + 2.98186i 0.0810658 + 0.140410i
\(452\) 3.35413 0.157765
\(453\) −7.25658 + 12.5688i −0.340944 + 0.590532i
\(454\) −19.6805 −0.923652
\(455\) 18.0050 + 10.9070i 0.844088 + 0.511327i
\(456\) 3.92744 0.183919
\(457\) −11.5421 + 19.9915i −0.539916 + 0.935162i 0.458992 + 0.888440i \(0.348211\pi\)
−0.998908 + 0.0467216i \(0.985123\pi\)
\(458\) 20.0861 0.938561
\(459\) −0.472267 0.817990i −0.0220435 0.0381805i
\(460\) −6.87146 11.9017i −0.320384 0.554921i
\(461\) −9.46131 + 16.3875i −0.440657 + 0.763240i −0.997738 0.0672176i \(-0.978588\pi\)
0.557081 + 0.830458i \(0.311921\pi\)
\(462\) −1.25844 2.49287i −0.0585478 0.115979i
\(463\) −32.7770 −1.52328 −0.761638 0.648002i \(-0.775605\pi\)
−0.761638 + 0.648002i \(0.775605\pi\)
\(464\) −1.77617 −0.0824565
\(465\) −16.0343 −0.743575
\(466\) −5.64521 −0.261509
\(467\) −10.7307 18.5861i −0.496557 0.860061i 0.503436 0.864033i \(-0.332069\pi\)
−0.999992 + 0.00397163i \(0.998736\pi\)
\(468\) −0.126352 3.60334i −0.00584061 0.166564i
\(469\) −16.9655 + 25.9116i −0.783396 + 1.19648i
\(470\) 5.35526 + 9.27559i 0.247020 + 0.427851i
\(471\) −2.13538 + 3.69859i −0.0983931 + 0.170422i
\(472\) −0.509684 0.882799i −0.0234601 0.0406341i
\(473\) −0.567227 + 0.982465i −0.0260811 + 0.0451738i
\(474\) −6.00388 −0.275767
\(475\) 0.255877 0.443193i 0.0117405 0.0203351i
\(476\) −1.12617 2.23086i −0.0516179 0.102251i
\(477\) −4.94074 + 8.55761i −0.226221 + 0.391826i
\(478\) 4.10480 7.10972i 0.187749 0.325191i
\(479\) −31.8921 −1.45719 −0.728593 0.684947i \(-0.759826\pi\)
−0.728593 + 0.684947i \(0.759826\pi\)
\(480\) 1.10337 1.91109i 0.0503617 0.0872290i
\(481\) −6.91648 + 4.32328i −0.315364 + 0.197125i
\(482\) 21.0169 0.957293
\(483\) 7.42532 + 14.7090i 0.337864 + 0.669283i
\(484\) 4.94299 + 8.56152i 0.224682 + 0.389160i
\(485\) −39.6978 −1.80258
\(486\) −0.500000 + 0.866025i −0.0226805 + 0.0392837i
\(487\) −0.372339 0.644911i −0.0168723 0.0292237i 0.857466 0.514541i \(-0.172038\pi\)
−0.874338 + 0.485317i \(0.838704\pi\)
\(488\) −0.0764368 −0.00346013
\(489\) −6.06417 −0.274231
\(490\) −6.17699 14.1584i −0.279048 0.639611i
\(491\) −20.5033 35.5127i −0.925301 1.60267i −0.791077 0.611717i \(-0.790479\pi\)
−0.134224 0.990951i \(-0.542854\pi\)
\(492\) 1.63110 2.82515i 0.0735358 0.127368i
\(493\) −0.838824 + 1.45289i −0.0377788 + 0.0654347i
\(494\) 12.0078 7.50570i 0.540255 0.337697i
\(495\) −1.16457 2.01709i −0.0523435 0.0906617i
\(496\) 3.63304 + 6.29261i 0.163128 + 0.282547i
\(497\) 10.0360 + 19.8807i 0.450178 + 0.891770i
\(498\) 0.888084 1.53821i 0.0397960 0.0689287i
\(499\) 5.61372 + 9.72324i 0.251305 + 0.435272i 0.963885 0.266318i \(-0.0858071\pi\)
−0.712581 + 0.701590i \(0.752474\pi\)
\(500\) −5.66062 9.80448i −0.253151 0.438470i
\(501\) 7.86930 + 13.6300i 0.351574 + 0.608944i
\(502\) 12.0281 + 20.8333i 0.536842 + 0.929837i
\(503\) −19.4719 + 33.7264i −0.868211 + 1.50379i −0.00438828 + 0.999990i \(0.501397\pi\)
−0.863823 + 0.503796i \(0.831936\pi\)
\(504\) −1.44928 + 2.21350i −0.0645563 + 0.0985971i
\(505\) 14.8959 + 25.8004i 0.662859 + 1.14810i
\(506\) 3.28657 + 5.69251i 0.146106 + 0.253063i
\(507\) −7.27262 10.7754i −0.322988 0.478552i
\(508\) −4.80963 + 8.33053i −0.213393 + 0.369608i
\(509\) 10.8076 18.7194i 0.479039 0.829721i −0.520672 0.853757i \(-0.674318\pi\)
0.999711 + 0.0240364i \(0.00765175\pi\)
\(510\) −1.04217 1.80509i −0.0461480 0.0799307i
\(511\) −15.6732 31.0474i −0.693340 1.37346i
\(512\) −1.00000 −0.0441942
\(513\) −3.92744 −0.173401
\(514\) −1.79955 3.11691i −0.0793747 0.137481i
\(515\) −3.22754 + 5.59026i −0.142222 + 0.246336i
\(516\) 1.07484 0.0473170
\(517\) −2.56138 4.43644i −0.112649 0.195115i
\(518\) 5.97582 + 0.335639i 0.262562 + 0.0147471i
\(519\) 10.5844 0.464603
\(520\) −0.278825 7.95162i −0.0122273 0.348702i
\(521\) 3.75964 6.51188i 0.164713 0.285291i −0.771840 0.635816i \(-0.780664\pi\)
0.936553 + 0.350525i \(0.113997\pi\)
\(522\) 1.77617 0.0777407
\(523\) −16.8098 + 29.1154i −0.735041 + 1.27313i 0.219665 + 0.975575i \(0.429504\pi\)
−0.954705 + 0.297553i \(0.903830\pi\)
\(524\) −3.27649 + 5.67504i −0.143134 + 0.247915i
\(525\) 0.155360 + 0.307757i 0.00678047 + 0.0134316i
\(526\) −15.1196 + 26.1880i −0.659247 + 1.14185i
\(527\) 6.86306 0.298959
\(528\) −0.527733 + 0.914061i −0.0229667 + 0.0397794i
\(529\) −7.89218 13.6697i −0.343138 0.594333i
\(530\) −10.9029 + 18.8844i −0.473593 + 0.820286i
\(531\) 0.509684 + 0.882799i 0.0221184 + 0.0383102i
\(532\) −10.3747 0.582706i −0.449799 0.0252635i
\(533\) −0.412185 11.7548i −0.0178537 0.509158i
\(534\) −6.66765 11.5487i −0.288537 0.499761i
\(535\) −31.1353 −1.34610
\(536\) 11.7062 0.505629
\(537\) −14.2382 −0.614422
\(538\) −10.4393 −0.450069
\(539\) 2.95441 + 6.77185i 0.127255 + 0.291684i
\(540\) −1.10337 + 1.91109i −0.0474815 + 0.0822403i
\(541\) 3.62006 + 6.27013i 0.155639 + 0.269574i 0.933291 0.359120i \(-0.116923\pi\)
−0.777653 + 0.628694i \(0.783590\pi\)
\(542\) −5.33456 9.23972i −0.229139 0.396880i
\(543\) 13.7312 0.589260
\(544\) −0.472267 + 0.817990i −0.0202483 + 0.0350710i
\(545\) 3.19462 0.136842
\(546\) −0.200850 + 9.53728i −0.00859560 + 0.408158i
\(547\) 13.7236 0.586779 0.293390 0.955993i \(-0.405217\pi\)
0.293390 + 0.955993i \(0.405217\pi\)
\(548\) −3.56234 + 6.17015i −0.152176 + 0.263576i
\(549\) 0.0764368 0.00326224
\(550\) 0.0687649 + 0.119104i 0.00293215 + 0.00507863i
\(551\) 3.48790 + 6.04121i 0.148589 + 0.257364i
\(552\) 3.11385 5.39335i 0.132534 0.229556i
\(553\) 15.8598 + 0.890783i 0.674426 + 0.0378799i
\(554\) −19.0706 −0.810232
\(555\) 4.99210 0.211903
\(556\) 6.19915 0.262902
\(557\) −23.2244 −0.984048 −0.492024 0.870582i \(-0.663743\pi\)
−0.492024 + 0.870582i \(0.663743\pi\)
\(558\) −3.63304 6.29261i −0.153799 0.266388i
\(559\) 3.28621 2.05411i 0.138992 0.0868796i
\(560\) −3.19819 + 4.88461i −0.135148 + 0.206413i
\(561\) 0.498462 + 0.863361i 0.0210451 + 0.0364511i
\(562\) 11.6655 20.2052i 0.492077 0.852303i
\(563\) 7.80616 + 13.5207i 0.328990 + 0.569828i 0.982312 0.187253i \(-0.0599583\pi\)
−0.653321 + 0.757081i \(0.726625\pi\)
\(564\) −2.42678 + 4.20330i −0.102186 + 0.176991i
\(565\) −7.40170 −0.311392
\(566\) 4.11466 7.12679i 0.172952 0.299561i
\(567\) 1.44928 2.21350i 0.0608642 0.0929582i
\(568\) 4.20868 7.28964i 0.176592 0.305867i
\(569\) 6.65159 11.5209i 0.278849 0.482981i −0.692250 0.721658i \(-0.743380\pi\)
0.971099 + 0.238677i \(0.0767137\pi\)
\(570\) −8.66684 −0.363014
\(571\) 15.4972 26.8420i 0.648539 1.12330i −0.334933 0.942242i \(-0.608714\pi\)
0.983472 0.181061i \(-0.0579530\pi\)
\(572\) 0.133360 + 3.80320i 0.00557607 + 0.159020i
\(573\) −0.875997 −0.0365953
\(574\) −4.72786 + 7.22089i −0.197337 + 0.301394i
\(575\) −0.405743 0.702767i −0.0169206 0.0293074i
\(576\) 1.00000 0.0416667
\(577\) −22.8416 + 39.5629i −0.950910 + 1.64702i −0.207449 + 0.978246i \(0.566516\pi\)
−0.743462 + 0.668779i \(0.766817\pi\)
\(578\) −8.05393 13.9498i −0.334999 0.580236i
\(579\) 22.6625 0.941820
\(580\) 3.91954 0.162750
\(581\) −2.57417 + 3.93154i −0.106795 + 0.163108i
\(582\) −8.99467 15.5792i −0.372841 0.645779i
\(583\) 5.21479 9.03227i 0.215974 0.374079i
\(584\) −6.57264 + 11.3841i −0.271978 + 0.471079i
\(585\) 0.278825 + 7.95162i 0.0115280 + 0.328759i
\(586\) −9.34471 16.1855i −0.386027 0.668618i
\(587\) −1.75183 3.03426i −0.0723057 0.125237i 0.827606 0.561310i \(-0.189702\pi\)
−0.899911 + 0.436073i \(0.856369\pi\)
\(588\) 4.15682 5.63212i 0.171425 0.232265i
\(589\) 14.2686 24.7139i 0.587925 1.01832i
\(590\) 1.12474 + 1.94811i 0.0463048 + 0.0802023i
\(591\) −8.44249 14.6228i −0.347277 0.601502i
\(592\) −1.13110 1.95913i −0.0464880 0.0805197i
\(593\) −6.29875 10.9098i −0.258659 0.448010i 0.707224 0.706989i \(-0.249947\pi\)
−0.965883 + 0.258979i \(0.916614\pi\)
\(594\) 0.527733 0.914061i 0.0216532 0.0375044i
\(595\) 2.48516 + 4.92293i 0.101882 + 0.201820i
\(596\) 10.9374 + 18.9442i 0.448014 + 0.775983i
\(597\) −2.95042 5.11028i −0.120753 0.209150i
\(598\) −0.786882 22.4405i −0.0321780 0.917662i
\(599\) −15.2844 + 26.4733i −0.624503 + 1.08167i 0.364134 + 0.931347i \(0.381365\pi\)
−0.988637 + 0.150324i \(0.951968\pi\)
\(600\) 0.0651512 0.112845i 0.00265979 0.00460688i
\(601\) 7.11682 + 12.3267i 0.290301 + 0.502817i 0.973881 0.227059i \(-0.0729112\pi\)
−0.683580 + 0.729876i \(0.739578\pi\)
\(602\) −2.83927 0.159471i −0.115720 0.00649956i
\(603\) −11.7062 −0.476712
\(604\) −14.5132 −0.590532
\(605\) −10.9079 18.8930i −0.443469 0.768111i
\(606\) −6.75018 + 11.6917i −0.274207 + 0.474941i
\(607\) 2.41963 0.0982098 0.0491049 0.998794i \(-0.484363\pi\)
0.0491049 + 0.998794i \(0.484363\pi\)
\(608\) 1.96372 + 3.40126i 0.0796394 + 0.137939i
\(609\) −4.69190 0.263526i −0.190125 0.0106786i
\(610\) 0.168676 0.00682949
\(611\) 0.613255 + 17.4890i 0.0248096 + 0.707529i
\(612\) 0.472267 0.817990i 0.0190902 0.0330653i
\(613\) 0.538956 0.0217682 0.0108841 0.999941i \(-0.496535\pi\)
0.0108841 + 0.999941i \(0.496535\pi\)
\(614\) 9.02474 15.6313i 0.364209 0.630828i
\(615\) −3.59942 + 6.23438i −0.145143 + 0.251394i
\(616\) 1.52967 2.33627i 0.0616322 0.0941312i
\(617\) 22.1866 38.4283i 0.893198 1.54706i 0.0571781 0.998364i \(-0.481790\pi\)
0.836020 0.548700i \(-0.184877\pi\)
\(618\) −2.92516 −0.117667
\(619\) 9.10976 15.7786i 0.366152 0.634194i −0.622808 0.782375i \(-0.714008\pi\)
0.988960 + 0.148180i \(0.0473416\pi\)
\(620\) −8.01717 13.8862i −0.321977 0.557681i
\(621\) −3.11385 + 5.39335i −0.124955 + 0.216428i
\(622\) 8.46321 + 14.6587i 0.339344 + 0.587761i
\(623\) 15.8997 + 31.4962i 0.637009 + 1.26187i
\(624\) 3.05741 1.91109i 0.122394 0.0765049i
\(625\) 12.1658 + 21.0717i 0.486630 + 0.842868i
\(626\) −22.0071 −0.879581
\(627\) 4.14528 0.165547
\(628\) −4.27076 −0.170422
\(629\) −2.13673 −0.0851969
\(630\) 3.19819 4.88461i 0.127419 0.194608i
\(631\) −1.76140 + 3.05083i −0.0701200 + 0.121451i −0.898954 0.438044i \(-0.855672\pi\)
0.828834 + 0.559495i \(0.189005\pi\)
\(632\) −3.00194 5.19951i −0.119411 0.206825i
\(633\) 11.7856 + 20.4132i 0.468435 + 0.811353i
\(634\) 8.93212 0.354740
\(635\) 10.6136 18.3833i 0.421188 0.729519i
\(636\) −9.88148 −0.391826
\(637\) 1.94559 25.1638i 0.0770871 0.997024i
\(638\) −1.87469 −0.0742195
\(639\) −4.20868 + 7.28964i −0.166493 + 0.288374i
\(640\) 2.20674 0.0872290
\(641\) 13.6088 + 23.5711i 0.537515 + 0.931003i 0.999037 + 0.0438742i \(0.0139701\pi\)
−0.461522 + 0.887129i \(0.652697\pi\)
\(642\) −7.05459 12.2189i −0.278423 0.482242i
\(643\) −20.1450 + 34.8922i −0.794442 + 1.37601i 0.128750 + 0.991677i \(0.458903\pi\)
−0.923193 + 0.384338i \(0.874430\pi\)
\(644\) −9.02572 + 13.7850i −0.355663 + 0.543206i
\(645\) −2.37188 −0.0933927
\(646\) 3.70960 0.145952
\(647\) −31.1858 −1.22604 −0.613020 0.790068i \(-0.710045\pi\)
−0.613020 + 0.790068i \(0.710045\pi\)
\(648\) −1.00000 −0.0392837
\(649\) −0.537955 0.931765i −0.0211166 0.0365750i
\(650\) −0.0164639 0.469523i −0.000645768 0.0184162i
\(651\) 8.66338 + 17.1615i 0.339544 + 0.672613i
\(652\) −3.03208 5.25172i −0.118746 0.205673i
\(653\) −0.232998 + 0.403565i −0.00911792 + 0.0157927i −0.870548 0.492083i \(-0.836236\pi\)
0.861430 + 0.507876i \(0.169569\pi\)
\(654\) 0.723832 + 1.25371i 0.0283041 + 0.0490241i
\(655\) 7.23035 12.5233i 0.282513 0.489327i
\(656\) 3.26221 0.127368
\(657\) 6.57264 11.3841i 0.256423 0.444138i
\(658\) 7.03418 10.7433i 0.274221 0.418819i
\(659\) −22.1490 + 38.3632i −0.862803 + 1.49442i 0.00640903 + 0.999979i \(0.497960\pi\)
−0.869212 + 0.494439i \(0.835373\pi\)
\(660\) 1.16457 2.01709i 0.0453308 0.0785153i
\(661\) 31.9836 1.24402 0.622008 0.783011i \(-0.286317\pi\)
0.622008 + 0.783011i \(0.286317\pi\)
\(662\) 2.16425 3.74859i 0.0841160 0.145693i
\(663\) −0.119343 3.40347i −0.00463491 0.132180i
\(664\) 1.77617 0.0689287
\(665\) 22.8942 + 1.28588i 0.887799 + 0.0498643i
\(666\) 1.13110 + 1.95913i 0.0438294 + 0.0759147i
\(667\) 11.0615 0.428301
\(668\) −7.86930 + 13.6300i −0.304472 + 0.527361i
\(669\) 2.87906 + 4.98667i 0.111311 + 0.192796i
\(670\) −25.8324 −0.997994
\(671\) −0.0806765 −0.00311448
\(672\) −2.64159 0.148368i −0.101901 0.00572342i
\(673\) 2.49379 + 4.31938i 0.0961286 + 0.166500i 0.910079 0.414435i \(-0.136021\pi\)
−0.813950 + 0.580934i \(0.802687\pi\)
\(674\) −0.208048 + 0.360350i −0.00801371 + 0.0138802i
\(675\) −0.0651512 + 0.112845i −0.00250767 + 0.00434341i
\(676\) 5.69545 11.6860i 0.219056 0.449460i
\(677\) −17.6543 30.5782i −0.678511 1.17522i −0.975429 0.220312i \(-0.929292\pi\)
0.296919 0.954903i \(-0.404041\pi\)
\(678\) −1.67707 2.90477i −0.0644074 0.111557i
\(679\) 21.4487 + 42.4884i 0.823127 + 1.63056i
\(680\) 1.04217 1.80509i 0.0399654 0.0692220i
\(681\) 9.84025 + 17.0438i 0.377079 + 0.653121i
\(682\) 3.83456 + 6.64164i 0.146833 + 0.254322i
\(683\) 17.8038 + 30.8371i 0.681243 + 1.17995i 0.974602 + 0.223945i \(0.0718937\pi\)
−0.293359 + 0.956003i \(0.594773\pi\)
\(684\) −1.96372 3.40126i −0.0750847 0.130051i
\(685\) 7.86115 13.6159i 0.300359 0.520237i
\(686\) −11.8162 + 14.2610i −0.451146 + 0.544488i
\(687\) −10.0430 17.3951i −0.383166 0.663663i
\(688\) 0.537418 + 0.930835i 0.0204889 + 0.0354877i
\(689\) −30.2117 + 18.8844i −1.15097 + 0.719439i
\(690\) −6.87146 + 11.9017i −0.261592 + 0.453091i
\(691\) 8.50855 14.7372i 0.323680 0.560631i −0.657564 0.753399i \(-0.728413\pi\)
0.981244 + 0.192768i \(0.0617464\pi\)
\(692\) 5.29220 + 9.16635i 0.201179 + 0.348452i
\(693\) −1.52967 + 2.33627i −0.0581074 + 0.0887477i
\(694\) −21.7452 −0.825435
\(695\) −13.6799 −0.518908
\(696\) 0.888084 + 1.53821i 0.0336627 + 0.0583056i
\(697\) 1.54063 2.66845i 0.0583555 0.101075i
\(698\) 31.6255 1.19704
\(699\) 2.82261 + 4.88890i 0.106761 + 0.184915i
\(700\) −0.188845 + 0.288424i −0.00713768 + 0.0109014i
\(701\) −24.2469 −0.915792 −0.457896 0.889006i \(-0.651397\pi\)
−0.457896 + 0.889006i \(0.651397\pi\)
\(702\) −3.05741 + 1.91109i −0.115394 + 0.0721295i
\(703\) −4.44234 + 7.69436i −0.167546 + 0.290198i
\(704\) −1.05547 −0.0397794
\(705\) 5.35526 9.27559i 0.201691 0.349339i
\(706\) 13.8944 24.0658i 0.522922 0.905727i
\(707\) 19.5659 29.8830i 0.735850 1.12387i
\(708\) −0.509684 + 0.882799i −0.0191551 + 0.0331776i
\(709\) 6.27866 0.235800 0.117900 0.993025i \(-0.462384\pi\)
0.117900 + 0.993025i \(0.462384\pi\)
\(710\) −9.28745 + 16.0863i −0.348552 + 0.603710i
\(711\) 3.00194 + 5.19951i 0.112581 + 0.194997i
\(712\) 6.66765 11.5487i 0.249881 0.432806i
\(713\) −22.6255 39.1886i −0.847333 1.46762i
\(714\) −1.36890 + 2.09072i −0.0512297 + 0.0782433i
\(715\) −0.294291 8.39268i −0.0110059 0.313868i
\(716\) −7.11908 12.3306i −0.266053 0.460816i
\(717\) −8.20960 −0.306593
\(718\) 8.35493 0.311803
\(719\) −19.9288 −0.743218 −0.371609 0.928389i \(-0.621194\pi\)
−0.371609 + 0.928389i \(0.621194\pi\)
\(720\) −2.20674 −0.0822403
\(721\) 7.72708 + 0.434001i 0.287771 + 0.0161630i
\(722\) −1.78761 + 3.09623i −0.0665279 + 0.115230i
\(723\) −10.5084 18.2011i −0.390813 0.676908i
\(724\) 6.86558 + 11.8915i 0.255157 + 0.441945i
\(725\) 0.231439 0.00859542
\(726\) 4.94299 8.56152i 0.183452 0.317748i
\(727\) 10.1916 0.377984 0.188992 0.981979i \(-0.439478\pi\)
0.188992 + 0.981979i \(0.439478\pi\)
\(728\) −8.35995 + 4.59470i −0.309840 + 0.170291i
\(729\) 1.00000 0.0370370
\(730\) 14.5041 25.1218i 0.536821 0.929801i
\(731\) 1.01522 0.0375492
\(732\) 0.0382184 + 0.0661962i 0.00141259 + 0.00244668i
\(733\) 14.7321 + 25.5168i 0.544144 + 0.942485i 0.998660 + 0.0517467i \(0.0164788\pi\)
−0.454516 + 0.890738i \(0.650188\pi\)
\(734\) −10.3905 + 17.9969i −0.383520 + 0.664276i
\(735\) −9.17303 + 12.4286i −0.338352 + 0.458437i
\(736\) 6.22771 0.229556
\(737\) 12.3555 0.455119
\(738\) −3.26221 −0.120083
\(739\) 32.6951 1.20271 0.601354 0.798983i \(-0.294628\pi\)
0.601354 + 0.798983i \(0.294628\pi\)
\(740\) 2.49605 + 4.32328i 0.0917566 + 0.158927i
\(741\) −12.5040 6.64619i −0.459346 0.244154i
\(742\) 26.1028 + 1.46609i 0.958263 + 0.0538220i
\(743\) −10.7085 18.5477i −0.392857 0.680448i 0.599968 0.800024i \(-0.295180\pi\)
−0.992825 + 0.119576i \(0.961846\pi\)
\(744\) 3.63304 6.29261i 0.133194 0.230698i
\(745\) −24.1360 41.8048i −0.884276 1.53161i
\(746\) 7.72840 13.3860i 0.282957 0.490096i
\(747\) −1.77617 −0.0649866
\(748\) −0.498462 + 0.863361i −0.0182256 + 0.0315676i
\(749\) 16.8224 + 33.3240i 0.614678 + 1.21763i
\(750\) −5.66062 + 9.80448i −0.206697 + 0.358009i
\(751\) 15.7078 27.2067i 0.573185 0.992785i −0.423051 0.906106i \(-0.639041\pi\)
0.996236 0.0866797i \(-0.0276257\pi\)
\(752\) −4.85355 −0.176991
\(753\) 12.0281 20.8333i 0.438330 0.759209i
\(754\) 5.65489 + 3.00571i 0.205939 + 0.109461i
\(755\) 32.0268 1.16557
\(756\) 2.64159 + 0.148368i 0.0960736 + 0.00539609i
\(757\) −9.28891 16.0889i −0.337611 0.584760i 0.646372 0.763023i \(-0.276286\pi\)
−0.983983 + 0.178263i \(0.942952\pi\)
\(758\) 24.2247 0.879880
\(759\) 3.28657 5.69251i 0.119295 0.206625i
\(760\) −4.33342 7.50570i −0.157190 0.272260i
\(761\) 25.8283 0.936275 0.468137 0.883656i \(-0.344925\pi\)
0.468137 + 0.883656i \(0.344925\pi\)
\(762\) 9.61927 0.348469
\(763\) −1.72606 3.41919i −0.0624874 0.123783i
\(764\) −0.437999 0.758636i −0.0158462 0.0274465i
\(765\) −1.04217 + 1.80509i −0.0376797 + 0.0652632i
\(766\) 7.49967 12.9898i 0.270974 0.469341i
\(767\) 0.128799 + 3.67313i 0.00465066 + 0.132629i
\(768\) 0.500000 + 0.866025i 0.0180422 + 0.0312500i
\(769\) −9.92009 17.1821i −0.357727 0.619602i 0.629853 0.776714i \(-0.283115\pi\)
−0.987581 + 0.157112i \(0.949782\pi\)
\(770\) −3.37559 + 5.15555i −0.121648 + 0.185793i
\(771\) −1.79955 + 3.11691i −0.0648092 + 0.112253i
\(772\) 11.3312 + 19.6263i 0.407820 + 0.706365i
\(773\) −21.5162 37.2672i −0.773885 1.34041i −0.935419 0.353541i \(-0.884978\pi\)
0.161534 0.986867i \(-0.448356\pi\)
\(774\) −0.537418 0.930835i −0.0193171 0.0334582i
\(775\) −0.473394 0.819942i