Properties

Label 546.2.k.e.445.4
Level $546$
Weight $2$
Character 546.445
Analytic conductor $4.360$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.k (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Defining polynomial: \(x^{10} - 2 x^{9} + 15 x^{8} + 14 x^{7} + 110 x^{6} + 36 x^{5} + 233 x^{4} + 164 x^{3} + 345 x^{2} + 76 x + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 445.4
Root \(-0.623307 + 1.07960i\) of defining polynomial
Character \(\chi\) \(=\) 546.445
Dual form 546.2.k.e.373.4

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} -1.00000 q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.623307 + 1.07960i) q^{5} +(-0.500000 + 0.866025i) q^{6} +(-2.27938 - 1.34329i) q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{2} -1.00000 q^{3} +(-0.500000 - 0.866025i) q^{4} +(0.623307 + 1.07960i) q^{5} +(-0.500000 + 0.866025i) q^{6} +(-2.27938 - 1.34329i) q^{7} -1.00000 q^{8} +1.00000 q^{9} +1.24661 q^{10} -2.49532 q^{11} +(0.500000 + 0.866025i) q^{12} +(-0.785103 - 3.51904i) q^{13} +(-2.30301 + 1.30235i) q^{14} +(-0.623307 - 1.07960i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-0.247662 - 0.428963i) q^{17} +(0.500000 - 0.866025i) q^{18} -7.67156 q^{19} +(0.623307 - 1.07960i) q^{20} +(2.27938 + 1.34329i) q^{21} +(-1.24766 + 2.16101i) q^{22} +(-0.224026 + 0.388024i) q^{23} +1.00000 q^{24} +(1.72298 - 2.98428i) q^{25} +(-3.44013 - 1.07960i) q^{26} -1.00000 q^{27} +(-0.0236360 + 2.64565i) q^{28} +(-3.71142 - 6.42837i) q^{29} -1.24661 q^{30} +(-4.06448 + 7.03989i) q^{31} +(0.500000 + 0.866025i) q^{32} +2.49532 q^{33} -0.495324 q^{34} +(0.0294650 - 3.29810i) q^{35} +(-0.500000 - 0.866025i) q^{36} +(-1.37097 + 2.37459i) q^{37} +(-3.83578 + 6.64376i) q^{38} +(0.785103 + 3.51904i) q^{39} +(-0.623307 - 1.07960i) q^{40} +(-1.87097 - 3.24061i) q^{41} +(2.30301 - 1.30235i) q^{42} +(1.47532 - 2.55532i) q^{43} +(1.24766 + 2.16101i) q^{44} +(0.623307 + 1.07960i) q^{45} +(0.224026 + 0.388024i) q^{46} +(3.29729 + 5.71107i) q^{47} +(0.500000 - 0.866025i) q^{48} +(3.39113 + 6.12374i) q^{49} +(-1.72298 - 2.98428i) q^{50} +(0.247662 + 0.428963i) q^{51} +(-2.65502 + 2.43944i) q^{52} +(3.86750 - 6.69870i) q^{53} +(-0.500000 + 0.866025i) q^{54} +(-1.55535 - 2.69395i) q^{55} +(2.27938 + 1.34329i) q^{56} +7.67156 q^{57} -7.42285 q^{58} +(0.727653 + 1.26033i) q^{59} +(-0.623307 + 1.07960i) q^{60} -4.19934 q^{61} +(4.06448 + 7.03989i) q^{62} +(-2.27938 - 1.34329i) q^{63} +1.00000 q^{64} +(3.30979 - 3.04103i) q^{65} +(1.24766 - 2.16101i) q^{66} +0.0276094 q^{67} +(-0.247662 + 0.428963i) q^{68} +(0.224026 - 0.388024i) q^{69} +(-2.84150 - 1.67457i) q^{70} +(4.68884 - 8.12130i) q^{71} -1.00000 q^{72} +(-5.07151 + 8.78412i) q^{73} +(1.37097 + 2.37459i) q^{74} +(-1.72298 + 2.98428i) q^{75} +(3.83578 + 6.64376i) q^{76} +(5.68779 + 3.35195i) q^{77} +(3.44013 + 1.07960i) q^{78} +(-4.93545 - 8.54845i) q^{79} -1.24661 q^{80} +1.00000 q^{81} -3.74194 q^{82} +7.42285 q^{83} +(0.0236360 - 2.64565i) q^{84} +(0.308739 - 0.534751i) q^{85} +(-1.47532 - 2.55532i) q^{86} +(3.71142 + 6.42837i) q^{87} +2.49532 q^{88} +(5.74056 - 9.94294i) q^{89} +1.24661 q^{90} +(-2.93755 + 9.07584i) q^{91} +0.448052 q^{92} +(4.06448 - 7.03989i) q^{93} +6.59458 q^{94} +(-4.78173 - 8.28221i) q^{95} +(-0.500000 - 0.866025i) q^{96} +(-0.509831 + 0.883054i) q^{97} +(6.99888 + 0.125065i) q^{98} -2.49532 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10q + 5q^{2} - 10q^{3} - 5q^{4} - 2q^{5} - 5q^{6} + 4q^{7} - 10q^{8} + 10q^{9} + O(q^{10}) \) \( 10q + 5q^{2} - 10q^{3} - 5q^{4} - 2q^{5} - 5q^{6} + 4q^{7} - 10q^{8} + 10q^{9} - 4q^{10} - 12q^{11} + 5q^{12} - 4q^{13} + 2q^{14} + 2q^{15} - 5q^{16} + 4q^{17} + 5q^{18} - 6q^{19} - 2q^{20} - 4q^{21} - 6q^{22} + 6q^{23} + 10q^{24} - q^{25} - 2q^{26} - 10q^{27} - 2q^{28} + 4q^{30} - 10q^{31} + 5q^{32} + 12q^{33} + 8q^{34} - 2q^{35} - 5q^{36} + q^{37} - 3q^{38} + 4q^{39} + 2q^{40} - 4q^{41} - 2q^{42} + 3q^{43} + 6q^{44} - 2q^{45} - 6q^{46} - 15q^{47} + 5q^{48} - 20q^{49} + q^{50} - 4q^{51} + 2q^{52} - 17q^{53} - 5q^{54} + 3q^{55} - 4q^{56} + 6q^{57} + 2q^{59} + 2q^{60} - 22q^{61} + 10q^{62} + 4q^{63} + 10q^{64} + 41q^{65} + 6q^{66} + 2q^{67} + 4q^{68} - 6q^{69} - 16q^{70} + 18q^{71} - 10q^{72} + 12q^{73} - q^{74} + q^{75} + 3q^{76} + 18q^{77} + 2q^{78} - 4q^{79} + 4q^{80} + 10q^{81} - 8q^{82} + 2q^{84} + q^{85} - 3q^{86} + 12q^{88} + 7q^{89} - 4q^{90} - 4q^{91} - 12q^{92} + 10q^{93} - 30q^{94} + 24q^{95} - 5q^{96} - 6q^{97} - 16q^{98} - 12q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) −1.00000 −0.577350
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0.623307 + 1.07960i 0.278751 + 0.482811i 0.971075 0.238776i \(-0.0767462\pi\)
−0.692323 + 0.721587i \(0.743413\pi\)
\(6\) −0.500000 + 0.866025i −0.204124 + 0.353553i
\(7\) −2.27938 1.34329i −0.861524 0.507717i
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 1.24661 0.394214
\(11\) −2.49532 −0.752369 −0.376184 0.926545i \(-0.622764\pi\)
−0.376184 + 0.926545i \(0.622764\pi\)
\(12\) 0.500000 + 0.866025i 0.144338 + 0.250000i
\(13\) −0.785103 3.51904i −0.217748 0.976005i
\(14\) −2.30301 + 1.30235i −0.615506 + 0.348069i
\(15\) −0.623307 1.07960i −0.160937 0.278751i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −0.247662 0.428963i −0.0600669 0.104039i 0.834428 0.551117i \(-0.185798\pi\)
−0.894495 + 0.447078i \(0.852465\pi\)
\(18\) 0.500000 0.866025i 0.117851 0.204124i
\(19\) −7.67156 −1.75998 −0.879988 0.474996i \(-0.842450\pi\)
−0.879988 + 0.474996i \(0.842450\pi\)
\(20\) 0.623307 1.07960i 0.139376 0.241406i
\(21\) 2.27938 + 1.34329i 0.497401 + 0.293130i
\(22\) −1.24766 + 2.16101i −0.266002 + 0.460730i
\(23\) −0.224026 + 0.388024i −0.0467127 + 0.0809087i −0.888436 0.459000i \(-0.848208\pi\)
0.841724 + 0.539909i \(0.181541\pi\)
\(24\) 1.00000 0.204124
\(25\) 1.72298 2.98428i 0.344595 0.596857i
\(26\) −3.44013 1.07960i −0.674664 0.211727i
\(27\) −1.00000 −0.192450
\(28\) −0.0236360 + 2.64565i −0.00446679 + 0.499980i
\(29\) −3.71142 6.42837i −0.689194 1.19372i −0.972099 0.234571i \(-0.924631\pi\)
0.282905 0.959148i \(-0.408702\pi\)
\(30\) −1.24661 −0.227599
\(31\) −4.06448 + 7.03989i −0.730002 + 1.26440i 0.226879 + 0.973923i \(0.427148\pi\)
−0.956882 + 0.290478i \(0.906186\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 2.49532 0.434380
\(34\) −0.495324 −0.0849474
\(35\) 0.0294650 3.29810i 0.00498050 0.557480i
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) −1.37097 + 2.37459i −0.225386 + 0.390380i −0.956435 0.291945i \(-0.905698\pi\)
0.731049 + 0.682325i \(0.239031\pi\)
\(38\) −3.83578 + 6.64376i −0.622246 + 1.07776i
\(39\) 0.785103 + 3.51904i 0.125717 + 0.563497i
\(40\) −0.623307 1.07960i −0.0985534 0.170700i
\(41\) −1.87097 3.24061i −0.292196 0.506099i 0.682133 0.731229i \(-0.261053\pi\)
−0.974329 + 0.225130i \(0.927719\pi\)
\(42\) 2.30301 1.30235i 0.355363 0.200958i
\(43\) 1.47532 2.55532i 0.224983 0.389683i −0.731331 0.682023i \(-0.761101\pi\)
0.956314 + 0.292340i \(0.0944339\pi\)
\(44\) 1.24766 + 2.16101i 0.188092 + 0.325785i
\(45\) 0.623307 + 1.07960i 0.0929171 + 0.160937i
\(46\) 0.224026 + 0.388024i 0.0330308 + 0.0572111i
\(47\) 3.29729 + 5.71107i 0.480959 + 0.833046i 0.999761 0.0218486i \(-0.00695519\pi\)
−0.518802 + 0.854894i \(0.673622\pi\)
\(48\) 0.500000 0.866025i 0.0721688 0.125000i
\(49\) 3.39113 + 6.12374i 0.484447 + 0.874820i
\(50\) −1.72298 2.98428i −0.243666 0.422042i
\(51\) 0.247662 + 0.428963i 0.0346796 + 0.0600669i
\(52\) −2.65502 + 2.43944i −0.368185 + 0.338289i
\(53\) 3.86750 6.69870i 0.531241 0.920137i −0.468094 0.883679i \(-0.655059\pi\)
0.999335 0.0364583i \(-0.0116076\pi\)
\(54\) −0.500000 + 0.866025i −0.0680414 + 0.117851i
\(55\) −1.55535 2.69395i −0.209724 0.363252i
\(56\) 2.27938 + 1.34329i 0.304595 + 0.179505i
\(57\) 7.67156 1.01612
\(58\) −7.42285 −0.974668
\(59\) 0.727653 + 1.26033i 0.0947324 + 0.164081i 0.909497 0.415711i \(-0.136467\pi\)
−0.814764 + 0.579792i \(0.803134\pi\)
\(60\) −0.623307 + 1.07960i −0.0804686 + 0.139376i
\(61\) −4.19934 −0.537671 −0.268835 0.963186i \(-0.586639\pi\)
−0.268835 + 0.963186i \(0.586639\pi\)
\(62\) 4.06448 + 7.03989i 0.516190 + 0.894067i
\(63\) −2.27938 1.34329i −0.287175 0.169239i
\(64\) 1.00000 0.125000
\(65\) 3.30979 3.04103i 0.410529 0.377194i
\(66\) 1.24766 2.16101i 0.153577 0.266002i
\(67\) 0.0276094 0.00337303 0.00168652 0.999999i \(-0.499463\pi\)
0.00168652 + 0.999999i \(0.499463\pi\)
\(68\) −0.247662 + 0.428963i −0.0300334 + 0.0520194i
\(69\) 0.224026 0.388024i 0.0269696 0.0467127i
\(70\) −2.84150 1.67457i −0.339625 0.200149i
\(71\) 4.68884 8.12130i 0.556463 0.963821i −0.441326 0.897347i \(-0.645492\pi\)
0.997788 0.0664743i \(-0.0211751\pi\)
\(72\) −1.00000 −0.117851
\(73\) −5.07151 + 8.78412i −0.593576 + 1.02810i 0.400170 + 0.916441i \(0.368951\pi\)
−0.993746 + 0.111663i \(0.964382\pi\)
\(74\) 1.37097 + 2.37459i 0.159372 + 0.276040i
\(75\) −1.72298 + 2.98428i −0.198952 + 0.344595i
\(76\) 3.83578 + 6.64376i 0.439994 + 0.762092i
\(77\) 5.68779 + 3.35195i 0.648184 + 0.381990i
\(78\) 3.44013 + 1.07960i 0.389518 + 0.122241i
\(79\) −4.93545 8.54845i −0.555282 0.961776i −0.997882 0.0650567i \(-0.979277\pi\)
0.442600 0.896719i \(-0.354056\pi\)
\(80\) −1.24661 −0.139376
\(81\) 1.00000 0.111111
\(82\) −3.74194 −0.413228
\(83\) 7.42285 0.814763 0.407382 0.913258i \(-0.366442\pi\)
0.407382 + 0.913258i \(0.366442\pi\)
\(84\) 0.0236360 2.64565i 0.00257890 0.288664i
\(85\) 0.308739 0.534751i 0.0334874 0.0580019i
\(86\) −1.47532 2.55532i −0.159087 0.275547i
\(87\) 3.71142 + 6.42837i 0.397906 + 0.689194i
\(88\) 2.49532 0.266002
\(89\) 5.74056 9.94294i 0.608498 1.05395i −0.382990 0.923753i \(-0.625106\pi\)
0.991488 0.130197i \(-0.0415611\pi\)
\(90\) 1.24661 0.131405
\(91\) −2.93755 + 9.07584i −0.307939 + 0.951406i
\(92\) 0.448052 0.0467127
\(93\) 4.06448 7.03989i 0.421467 0.730002i
\(94\) 6.59458 0.680179
\(95\) −4.78173 8.28221i −0.490596 0.849736i
\(96\) −0.500000 0.866025i −0.0510310 0.0883883i
\(97\) −0.509831 + 0.883054i −0.0517655 + 0.0896605i −0.890747 0.454499i \(-0.849818\pi\)
0.838982 + 0.544160i \(0.183152\pi\)
\(98\) 6.99888 + 0.125065i 0.706994 + 0.0126335i
\(99\) −2.49532 −0.250790
\(100\) −3.44595 −0.344595
\(101\) 17.9425 1.78535 0.892675 0.450701i \(-0.148826\pi\)
0.892675 + 0.450701i \(0.148826\pi\)
\(102\) 0.495324 0.0490444
\(103\) 0.524685 + 0.908780i 0.0516987 + 0.0895448i 0.890717 0.454559i \(-0.150203\pi\)
−0.839018 + 0.544104i \(0.816870\pi\)
\(104\) 0.785103 + 3.51904i 0.0769857 + 0.345070i
\(105\) −0.0294650 + 3.29810i −0.00287549 + 0.321861i
\(106\) −3.86750 6.69870i −0.375644 0.650635i
\(107\) 5.09152 8.81877i 0.492216 0.852543i −0.507744 0.861508i \(-0.669520\pi\)
0.999960 + 0.00896501i \(0.00285369\pi\)
\(108\) 0.500000 + 0.866025i 0.0481125 + 0.0833333i
\(109\) 9.92285 17.1869i 0.950436 1.64620i 0.205955 0.978562i \(-0.433970\pi\)
0.744482 0.667643i \(-0.232697\pi\)
\(110\) −3.11070 −0.296594
\(111\) 1.37097 2.37459i 0.130127 0.225386i
\(112\) 2.30301 1.30235i 0.217614 0.123061i
\(113\) −7.93440 + 13.7428i −0.746406 + 1.29281i 0.203129 + 0.979152i \(0.434889\pi\)
−0.949535 + 0.313661i \(0.898445\pi\)
\(114\) 3.83578 6.64376i 0.359254 0.622246i
\(115\) −0.558548 −0.0520848
\(116\) −3.71142 + 6.42837i −0.344597 + 0.596860i
\(117\) −0.785103 3.51904i −0.0725828 0.325335i
\(118\) 1.45531 0.133972
\(119\) −0.0117075 + 1.31045i −0.00107322 + 0.120129i
\(120\) 0.623307 + 1.07960i 0.0568999 + 0.0985534i
\(121\) −4.77336 −0.433942
\(122\) −2.09967 + 3.63674i −0.190095 + 0.329255i
\(123\) 1.87097 + 3.24061i 0.168700 + 0.292196i
\(124\) 8.12896 0.730002
\(125\) 10.5288 0.941728
\(126\) −2.30301 + 1.30235i −0.205169 + 0.116023i
\(127\) 4.23846 + 7.34124i 0.376103 + 0.651429i 0.990491 0.137574i \(-0.0439306\pi\)
−0.614389 + 0.789004i \(0.710597\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) −1.47532 + 2.55532i −0.129894 + 0.224983i
\(130\) −0.978720 4.38688i −0.0858394 0.384755i
\(131\) −8.26678 14.3185i −0.722272 1.25101i −0.960087 0.279701i \(-0.909765\pi\)
0.237816 0.971310i \(-0.423569\pi\)
\(132\) −1.24766 2.16101i −0.108595 0.188092i
\(133\) 17.4864 + 10.3051i 1.51626 + 0.893569i
\(134\) 0.0138047 0.0239105i 0.00119255 0.00206555i
\(135\) −0.623307 1.07960i −0.0536457 0.0929171i
\(136\) 0.247662 + 0.428963i 0.0212368 + 0.0367833i
\(137\) 0.428418 + 0.742042i 0.0366023 + 0.0633970i 0.883746 0.467966i \(-0.155013\pi\)
−0.847144 + 0.531363i \(0.821680\pi\)
\(138\) −0.224026 0.388024i −0.0190704 0.0330308i
\(139\) 4.74886 8.22528i 0.402793 0.697659i −0.591268 0.806475i \(-0.701373\pi\)
0.994062 + 0.108816i \(0.0347060\pi\)
\(140\) −2.87097 + 1.62353i −0.242641 + 0.137213i
\(141\) −3.29729 5.71107i −0.277682 0.480959i
\(142\) −4.68884 8.12130i −0.393478 0.681525i
\(143\) 1.95909 + 8.78114i 0.163827 + 0.734315i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) 4.62671 8.01370i 0.384227 0.665501i
\(146\) 5.07151 + 8.78412i 0.419721 + 0.726979i
\(147\) −3.39113 6.12374i −0.279696 0.505078i
\(148\) 2.74194 0.225386
\(149\) −4.73744 −0.388106 −0.194053 0.980991i \(-0.562163\pi\)
−0.194053 + 0.980991i \(0.562163\pi\)
\(150\) 1.72298 + 2.98428i 0.140681 + 0.243666i
\(151\) −3.56085 + 6.16758i −0.289778 + 0.501911i −0.973757 0.227592i \(-0.926915\pi\)
0.683978 + 0.729502i \(0.260248\pi\)
\(152\) 7.67156 0.622246
\(153\) −0.247662 0.428963i −0.0200223 0.0346796i
\(154\) 5.74677 3.24979i 0.463088 0.261876i
\(155\) −10.1337 −0.813956
\(156\) 2.65502 2.43944i 0.212572 0.195311i
\(157\) −7.52147 + 13.0276i −0.600279 + 1.03971i 0.392500 + 0.919752i \(0.371610\pi\)
−0.992779 + 0.119961i \(0.961723\pi\)
\(158\) −9.87090 −0.785287
\(159\) −3.86750 + 6.69870i −0.306712 + 0.531241i
\(160\) −0.623307 + 1.07960i −0.0492767 + 0.0853498i
\(161\) 1.03187 0.583522i 0.0813228 0.0459880i
\(162\) 0.500000 0.866025i 0.0392837 0.0680414i
\(163\) −9.02971 −0.707261 −0.353631 0.935385i \(-0.615053\pi\)
−0.353631 + 0.935385i \(0.615053\pi\)
\(164\) −1.87097 + 3.24061i −0.146098 + 0.253049i
\(165\) 1.55535 + 2.69395i 0.121084 + 0.209724i
\(166\) 3.71142 6.42837i 0.288062 0.498939i
\(167\) 1.42442 + 2.46716i 0.110225 + 0.190915i 0.915861 0.401496i \(-0.131510\pi\)
−0.805636 + 0.592411i \(0.798176\pi\)
\(168\) −2.27938 1.34329i −0.175858 0.103637i
\(169\) −11.7672 + 5.52561i −0.905171 + 0.425047i
\(170\) −0.308739 0.534751i −0.0236792 0.0410136i
\(171\) −7.67156 −0.586659
\(172\) −2.95063 −0.224983
\(173\) −25.4875 −1.93778 −0.968891 0.247487i \(-0.920395\pi\)
−0.968891 + 0.247487i \(0.920395\pi\)
\(174\) 7.42285 0.562725
\(175\) −7.93608 + 4.48785i −0.599912 + 0.339250i
\(176\) 1.24766 2.16101i 0.0940461 0.162893i
\(177\) −0.727653 1.26033i −0.0546938 0.0947324i
\(178\) −5.74056 9.94294i −0.430273 0.745255i
\(179\) 18.2006 1.36038 0.680189 0.733037i \(-0.261898\pi\)
0.680189 + 0.733037i \(0.261898\pi\)
\(180\) 0.623307 1.07960i 0.0464585 0.0804686i
\(181\) −13.7305 −1.02058 −0.510290 0.860003i \(-0.670462\pi\)
−0.510290 + 0.860003i \(0.670462\pi\)
\(182\) 6.39113 + 7.08191i 0.473742 + 0.524946i
\(183\) 4.19934 0.310424
\(184\) 0.224026 0.388024i 0.0165154 0.0286055i
\(185\) −3.41814 −0.251306
\(186\) −4.06448 7.03989i −0.298022 0.516190i
\(187\) 0.617997 + 1.07040i 0.0451924 + 0.0782756i
\(188\) 3.29729 5.71107i 0.240480 0.416523i
\(189\) 2.27938 + 1.34329i 0.165800 + 0.0977101i
\(190\) −9.56347 −0.693807
\(191\) 5.28588 0.382473 0.191236 0.981544i \(-0.438750\pi\)
0.191236 + 0.981544i \(0.438750\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 4.81197 0.346373 0.173187 0.984889i \(-0.444594\pi\)
0.173187 + 0.984889i \(0.444594\pi\)
\(194\) 0.509831 + 0.883054i 0.0366038 + 0.0633996i
\(195\) −3.30979 + 3.04103i −0.237019 + 0.217773i
\(196\) 3.60775 5.99868i 0.257696 0.428477i
\(197\) 11.7743 + 20.3937i 0.838883 + 1.45299i 0.890829 + 0.454339i \(0.150124\pi\)
−0.0519458 + 0.998650i \(0.516542\pi\)
\(198\) −1.24766 + 2.16101i −0.0886675 + 0.153577i
\(199\) −5.63984 9.76849i −0.399798 0.692470i 0.593903 0.804537i \(-0.297586\pi\)
−0.993701 + 0.112067i \(0.964253\pi\)
\(200\) −1.72298 + 2.98428i −0.121833 + 0.211021i
\(201\) −0.0276094 −0.00194742
\(202\) 8.97127 15.5387i 0.631217 1.09330i
\(203\) −0.175447 + 19.6382i −0.0123139 + 1.37833i
\(204\) 0.247662 0.428963i 0.0173398 0.0300334i
\(205\) 2.33237 4.03979i 0.162900 0.282151i
\(206\) 1.04937 0.0731130
\(207\) −0.224026 + 0.388024i −0.0155709 + 0.0269696i
\(208\) 3.44013 + 1.07960i 0.238530 + 0.0748567i
\(209\) 19.1430 1.32415
\(210\) 2.84150 + 1.67457i 0.196082 + 0.115556i
\(211\) −6.22021 10.7737i −0.428217 0.741693i 0.568498 0.822685i \(-0.307525\pi\)
−0.996715 + 0.0809915i \(0.974191\pi\)
\(212\) −7.73499 −0.531241
\(213\) −4.68884 + 8.12130i −0.321274 + 0.556463i
\(214\) −5.09152 8.81877i −0.348049 0.602839i
\(215\) 3.67830 0.250858
\(216\) 1.00000 0.0680414
\(217\) 18.7211 10.5868i 1.27087 0.718678i
\(218\) −9.92285 17.1869i −0.672060 1.16404i
\(219\) 5.07151 8.78412i 0.342701 0.593576i
\(220\) −1.55535 + 2.69395i −0.104862 + 0.181626i
\(221\) −1.31510 + 1.20831i −0.0884630 + 0.0812799i
\(222\) −1.37097 2.37459i −0.0920134 0.159372i
\(223\) −10.4651 18.1260i −0.700793 1.21381i −0.968188 0.250222i \(-0.919496\pi\)
0.267396 0.963587i \(-0.413837\pi\)
\(224\) 0.0236360 2.64565i 0.00157925 0.176770i
\(225\) 1.72298 2.98428i 0.114865 0.198952i
\(226\) 7.93440 + 13.7428i 0.527789 + 0.914157i
\(227\) −8.79052 15.2256i −0.583447 1.01056i −0.995067 0.0992044i \(-0.968370\pi\)
0.411620 0.911356i \(-0.364963\pi\)
\(228\) −3.83578 6.64376i −0.254031 0.439994i
\(229\) 7.24620 + 12.5508i 0.478842 + 0.829379i 0.999706 0.0242609i \(-0.00772324\pi\)
−0.520863 + 0.853640i \(0.674390\pi\)
\(230\) −0.279274 + 0.483717i −0.0184148 + 0.0318953i
\(231\) −5.68779 3.35195i −0.374229 0.220542i
\(232\) 3.71142 + 6.42837i 0.243667 + 0.422043i
\(233\) −7.24897 12.5556i −0.474896 0.822544i 0.524691 0.851293i \(-0.324181\pi\)
−0.999587 + 0.0287492i \(0.990848\pi\)
\(234\) −3.44013 1.07960i −0.224888 0.0705756i
\(235\) −4.11045 + 7.11950i −0.268136 + 0.464425i
\(236\) 0.727653 1.26033i 0.0473662 0.0820407i
\(237\) 4.93545 + 8.54845i 0.320592 + 0.555282i
\(238\) 1.12903 + 0.665365i 0.0731842 + 0.0431292i
\(239\) 3.15093 0.203817 0.101908 0.994794i \(-0.467505\pi\)
0.101908 + 0.994794i \(0.467505\pi\)
\(240\) 1.24661 0.0804686
\(241\) 12.4223 + 21.5160i 0.800189 + 1.38597i 0.919491 + 0.393111i \(0.128601\pi\)
−0.119302 + 0.992858i \(0.538066\pi\)
\(242\) −2.38668 + 4.13385i −0.153422 + 0.265734i
\(243\) −1.00000 −0.0641500
\(244\) 2.09967 + 3.63674i 0.134418 + 0.232818i
\(245\) −4.49747 + 7.47803i −0.287333 + 0.477754i
\(246\) 3.74194 0.238577
\(247\) 6.02296 + 26.9965i 0.383232 + 1.71775i
\(248\) 4.06448 7.03989i 0.258095 0.447033i
\(249\) −7.42285 −0.470404
\(250\) 5.26442 9.11824i 0.332951 0.576688i
\(251\) −3.69421 + 6.39857i −0.233177 + 0.403874i −0.958741 0.284280i \(-0.908245\pi\)
0.725564 + 0.688154i \(0.241579\pi\)
\(252\) −0.0236360 + 2.64565i −0.00148893 + 0.166660i
\(253\) 0.559018 0.968247i 0.0351451 0.0608732i
\(254\) 8.47693 0.531890
\(255\) −0.308739 + 0.534751i −0.0193340 + 0.0334874i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −13.4446 + 23.2867i −0.838650 + 1.45258i 0.0523740 + 0.998628i \(0.483321\pi\)
−0.891024 + 0.453957i \(0.850012\pi\)
\(258\) 1.47532 + 2.55532i 0.0918491 + 0.159087i
\(259\) 6.31472 3.57097i 0.392378 0.221889i
\(260\) −4.28851 1.34584i −0.265962 0.0834656i
\(261\) −3.71142 6.42837i −0.229731 0.397906i
\(262\) −16.5336 −1.02145
\(263\) −2.93123 −0.180748 −0.0903738 0.995908i \(-0.528806\pi\)
−0.0903738 + 0.995908i \(0.528806\pi\)
\(264\) −2.49532 −0.153577
\(265\) 9.64254 0.592337
\(266\) 17.6677 9.99108i 1.08328 0.612592i
\(267\) −5.74056 + 9.94294i −0.351317 + 0.608498i
\(268\) −0.0138047 0.0239105i −0.000843258 0.00146056i
\(269\) −1.07222 1.85713i −0.0653741 0.113231i 0.831486 0.555546i \(-0.187491\pi\)
−0.896860 + 0.442315i \(0.854157\pi\)
\(270\) −1.24661 −0.0758665
\(271\) −8.64220 + 14.9687i −0.524976 + 0.909285i 0.474601 + 0.880201i \(0.342592\pi\)
−0.999577 + 0.0290842i \(0.990741\pi\)
\(272\) 0.495324 0.0300334
\(273\) 2.93755 9.07584i 0.177788 0.549295i
\(274\) 0.856837 0.0517634
\(275\) −4.29939 + 7.44676i −0.259263 + 0.449056i
\(276\) −0.448052 −0.0269696
\(277\) 1.41690 + 2.45415i 0.0851336 + 0.147456i 0.905448 0.424457i \(-0.139535\pi\)
−0.820315 + 0.571913i \(0.806202\pi\)
\(278\) −4.74886 8.22528i −0.284818 0.493319i
\(279\) −4.06448 + 7.03989i −0.243334 + 0.421467i
\(280\) −0.0294650 + 3.29810i −0.00176087 + 0.197099i
\(281\) −28.5254 −1.70168 −0.850842 0.525422i \(-0.823907\pi\)
−0.850842 + 0.525422i \(0.823907\pi\)
\(282\) −6.59458 −0.392702
\(283\) −4.59802 −0.273324 −0.136662 0.990618i \(-0.543637\pi\)
−0.136662 + 0.990618i \(0.543637\pi\)
\(284\) −9.37767 −0.556463
\(285\) 4.78173 + 8.28221i 0.283245 + 0.490596i
\(286\) 8.58423 + 2.69395i 0.507596 + 0.159297i
\(287\) −0.0884446 + 9.89984i −0.00522072 + 0.584369i
\(288\) 0.500000 + 0.866025i 0.0294628 + 0.0510310i
\(289\) 8.37733 14.5100i 0.492784 0.853527i
\(290\) −4.62671 8.01370i −0.271690 0.470581i
\(291\) 0.509831 0.883054i 0.0298868 0.0517655i
\(292\) 10.1430 0.593576
\(293\) 3.19384 5.53189i 0.186586 0.323177i −0.757524 0.652808i \(-0.773591\pi\)
0.944110 + 0.329631i \(0.106924\pi\)
\(294\) −6.99888 0.125065i −0.408183 0.00729395i
\(295\) −0.907102 + 1.57115i −0.0528135 + 0.0914757i
\(296\) 1.37097 2.37459i 0.0796859 0.138020i
\(297\) 2.49532 0.144793
\(298\) −2.36872 + 4.10274i −0.137216 + 0.237665i
\(299\) 1.54136 + 0.483717i 0.0891389 + 0.0279740i
\(300\) 3.44595 0.198952
\(301\) −6.79535 + 3.84276i −0.391677 + 0.221493i
\(302\) 3.56085 + 6.16758i 0.204904 + 0.354904i
\(303\) −17.9425 −1.03077
\(304\) 3.83578 6.64376i 0.219997 0.381046i
\(305\) −2.61748 4.53360i −0.149876 0.259593i
\(306\) −0.495324 −0.0283158
\(307\) −1.39899 −0.0798446 −0.0399223 0.999203i \(-0.512711\pi\)
−0.0399223 + 0.999203i \(0.512711\pi\)
\(308\) 0.0589796 6.60174i 0.00336067 0.376169i
\(309\) −0.524685 0.908780i −0.0298483 0.0516987i
\(310\) −5.06684 + 8.77602i −0.287777 + 0.498444i
\(311\) −8.55183 + 14.8122i −0.484930 + 0.839923i −0.999850 0.0173150i \(-0.994488\pi\)
0.514920 + 0.857238i \(0.327822\pi\)
\(312\) −0.785103 3.51904i −0.0444477 0.199226i
\(313\) −5.81247 10.0675i −0.328540 0.569048i 0.653682 0.756769i \(-0.273223\pi\)
−0.982222 + 0.187721i \(0.939890\pi\)
\(314\) 7.52147 + 13.0276i 0.424461 + 0.735188i
\(315\) 0.0294650 3.29810i 0.00166017 0.185827i
\(316\) −4.93545 + 8.54845i −0.277641 + 0.480888i
\(317\) −3.29277 5.70324i −0.184940 0.320326i 0.758616 0.651538i \(-0.225876\pi\)
−0.943556 + 0.331212i \(0.892543\pi\)
\(318\) 3.86750 + 6.69870i 0.216878 + 0.375644i
\(319\) 9.26121 + 16.0409i 0.518528 + 0.898117i
\(320\) 0.623307 + 1.07960i 0.0348439 + 0.0603514i
\(321\) −5.09152 + 8.81877i −0.284181 + 0.492216i
\(322\) 0.0105902 1.18539i 0.000590168 0.0660590i
\(323\) 1.89995 + 3.29082i 0.105716 + 0.183106i
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) −11.8545 3.72025i −0.657570 0.206362i
\(326\) −4.51485 + 7.81996i −0.250055 + 0.433107i
\(327\) −9.92285 + 17.1869i −0.548735 + 0.950436i
\(328\) 1.87097 + 3.24061i 0.103307 + 0.178933i
\(329\) 0.155870 17.4469i 0.00859338 0.961880i
\(330\) 3.11070 0.171239
\(331\) −23.2685 −1.27895 −0.639477 0.768810i \(-0.720849\pi\)
−0.639477 + 0.768810i \(0.720849\pi\)
\(332\) −3.71142 6.42837i −0.203691 0.352803i
\(333\) −1.37097 + 2.37459i −0.0751286 + 0.130127i
\(334\) 2.84883 0.155881
\(335\) 0.0172092 + 0.0298071i 0.000940236 + 0.00162854i
\(336\) −2.30301 + 1.30235i −0.125640 + 0.0710492i
\(337\) 19.4320 1.05853 0.529263 0.848458i \(-0.322468\pi\)
0.529263 + 0.848458i \(0.322468\pi\)
\(338\) −1.09829 + 12.9535i −0.0597394 + 0.704579i
\(339\) 7.93440 13.7428i 0.430938 0.746406i
\(340\) −0.617478 −0.0334874
\(341\) 10.1422 17.5668i 0.549231 0.951296i
\(342\) −3.83578 + 6.64376i −0.207415 + 0.359254i
\(343\) 0.496304 18.5136i 0.0267979 0.999641i
\(344\) −1.47532 + 2.55532i −0.0795437 + 0.137774i
\(345\) 0.558548 0.0300712
\(346\) −12.7438 + 22.0729i −0.685110 + 1.18664i
\(347\) −14.8354 25.6956i −0.796404 1.37941i −0.921944 0.387324i \(-0.873400\pi\)
0.125540 0.992089i \(-0.459934\pi\)
\(348\) 3.71142 6.42837i 0.198953 0.344597i
\(349\) −13.3023 23.0403i −0.712058 1.23332i −0.964083 0.265600i \(-0.914430\pi\)
0.252025 0.967721i \(-0.418904\pi\)
\(350\) −0.0814487 + 9.11678i −0.00435362 + 0.487312i
\(351\) 0.785103 + 3.51904i 0.0419057 + 0.187832i
\(352\) −1.24766 2.16101i −0.0665006 0.115182i
\(353\) −13.8188 −0.735499 −0.367750 0.929925i \(-0.619872\pi\)
−0.367750 + 0.929925i \(0.619872\pi\)
\(354\) −1.45531 −0.0773487
\(355\) 11.6903 0.620458
\(356\) −11.4811 −0.608498
\(357\) 0.0117075 1.31045i 0.000619627 0.0693565i
\(358\) 9.10030 15.7622i 0.480966 0.833058i
\(359\) 1.38095 + 2.39188i 0.0728840 + 0.126239i 0.900164 0.435551i \(-0.143446\pi\)
−0.827280 + 0.561790i \(0.810113\pi\)
\(360\) −0.623307 1.07960i −0.0328511 0.0568999i
\(361\) 39.8528 2.09752
\(362\) −6.86524 + 11.8910i −0.360829 + 0.624975i
\(363\) 4.77336 0.250536
\(364\) 9.32868 1.99393i 0.488956 0.104510i
\(365\) −12.6444 −0.661840
\(366\) 2.09967 3.63674i 0.109752 0.190095i
\(367\) −10.9230 −0.570177 −0.285089 0.958501i \(-0.592023\pi\)
−0.285089 + 0.958501i \(0.592023\pi\)
\(368\) −0.224026 0.388024i −0.0116782 0.0202272i
\(369\) −1.87097 3.24061i −0.0973987 0.168700i
\(370\) −1.70907 + 2.96019i −0.0888502 + 0.153893i
\(371\) −17.8138 + 10.0737i −0.924846 + 0.523000i
\(372\) −8.12896 −0.421467
\(373\) 19.6861 1.01931 0.509653 0.860380i \(-0.329774\pi\)
0.509653 + 0.860380i \(0.329774\pi\)
\(374\) 1.23599 0.0639117
\(375\) −10.5288 −0.543707
\(376\) −3.29729 5.71107i −0.170045 0.294526i
\(377\) −19.7078 + 18.1076i −1.01501 + 0.932587i
\(378\) 2.30301 1.30235i 0.118454 0.0669858i
\(379\) −8.31713 14.4057i −0.427222 0.739970i 0.569403 0.822059i \(-0.307174\pi\)
−0.996625 + 0.0820882i \(0.973841\pi\)
\(380\) −4.78173 + 8.28221i −0.245298 + 0.424868i
\(381\) −4.23846 7.34124i −0.217143 0.376103i
\(382\) 2.64294 4.57771i 0.135225 0.234216i
\(383\) 36.3667 1.85825 0.929127 0.369761i \(-0.120560\pi\)
0.929127 + 0.369761i \(0.120560\pi\)
\(384\) −0.500000 + 0.866025i −0.0255155 + 0.0441942i
\(385\) −0.0735247 + 8.22982i −0.00374717 + 0.419431i
\(386\) 2.40599 4.16729i 0.122461 0.212109i
\(387\) 1.47532 2.55532i 0.0749945 0.129894i
\(388\) 1.01966 0.0517655
\(389\) 8.89008 15.3981i 0.450745 0.780713i −0.547687 0.836683i \(-0.684492\pi\)
0.998432 + 0.0559696i \(0.0178250\pi\)
\(390\) 0.978720 + 4.38688i 0.0495594 + 0.222138i
\(391\) 0.221931 0.0112235
\(392\) −3.39113 6.12374i −0.171278 0.309296i
\(393\) 8.26678 + 14.3185i 0.417004 + 0.722272i
\(394\) 23.5486 1.18636
\(395\) 6.15260 10.6566i 0.309571 0.536192i
\(396\) 1.24766 + 2.16101i 0.0626974 + 0.108595i
\(397\) 8.87904 0.445626 0.222813 0.974861i \(-0.428476\pi\)
0.222813 + 0.974861i \(0.428476\pi\)
\(398\) −11.2797 −0.565400
\(399\) −17.4864 10.3051i −0.875414 0.515903i
\(400\) 1.72298 + 2.98428i 0.0861489 + 0.149214i
\(401\) 15.0815 26.1219i 0.753134 1.30447i −0.193163 0.981167i \(-0.561874\pi\)
0.946297 0.323300i \(-0.104792\pi\)
\(402\) −0.0138047 + 0.0239105i −0.000688517 + 0.00119255i
\(403\) 27.9647 + 8.77602i 1.39302 + 0.437165i
\(404\) −8.97127 15.5387i −0.446338 0.773079i
\(405\) 0.623307 + 1.07960i 0.0309724 + 0.0536457i
\(406\) 16.9195 + 9.97105i 0.839700 + 0.494855i
\(407\) 3.42101 5.92537i 0.169573 0.293709i
\(408\) −0.247662 0.428963i −0.0122611 0.0212368i
\(409\) −8.38601 14.5250i −0.414662 0.718215i 0.580731 0.814095i \(-0.302767\pi\)
−0.995393 + 0.0958804i \(0.969433\pi\)
\(410\) −2.33237 4.03979i −0.115188 0.199511i
\(411\) −0.428418 0.742042i −0.0211323 0.0366023i
\(412\) 0.524685 0.908780i 0.0258494 0.0447724i
\(413\) 0.0343977 3.85023i 0.00169260 0.189457i
\(414\) 0.224026 + 0.388024i 0.0110103 + 0.0190704i
\(415\) 4.62671 + 8.01370i 0.227116 + 0.393377i
\(416\) 2.65502 2.43944i 0.130173 0.119603i
\(417\) −4.74886 + 8.22528i −0.232553 + 0.402793i
\(418\) 9.57151 16.5783i 0.468158 0.810873i
\(419\) −19.8098 34.3115i −0.967770 1.67623i −0.701982 0.712195i \(-0.747701\pi\)
−0.265788 0.964031i \(-0.585632\pi\)
\(420\) 2.87097 1.62353i 0.140089 0.0792202i
\(421\) −32.2271 −1.57065 −0.785326 0.619083i \(-0.787505\pi\)
−0.785326 + 0.619083i \(0.787505\pi\)
\(422\) −12.4404 −0.605590
\(423\) 3.29729 + 5.71107i 0.160320 + 0.277682i
\(424\) −3.86750 + 6.69870i −0.187822 + 0.325318i
\(425\) −1.70686 −0.0827951
\(426\) 4.68884 + 8.12130i 0.227175 + 0.393478i
\(427\) 9.57189 + 5.64094i 0.463216 + 0.272984i
\(428\) −10.1830 −0.492216
\(429\) −1.95909 8.78114i −0.0945856 0.423957i
\(430\) 1.83915 3.18550i 0.0886916 0.153618i
\(431\) 11.0013 0.529912 0.264956 0.964260i \(-0.414642\pi\)
0.264956 + 0.964260i \(0.414642\pi\)
\(432\) 0.500000 0.866025i 0.0240563 0.0416667i
\(433\) 15.9643 27.6509i 0.767193 1.32882i −0.171886 0.985117i \(-0.554986\pi\)
0.939079 0.343701i \(-0.111681\pi\)
\(434\) 0.192136 21.5064i 0.00922285 1.03234i
\(435\) −4.62671 + 8.01370i −0.221834 + 0.384227i
\(436\) −19.8457 −0.950436
\(437\) 1.71863 2.97675i 0.0822132 0.142397i
\(438\) −5.07151 8.78412i −0.242326 0.419721i
\(439\) 0.717628 1.24297i 0.0342505 0.0593236i −0.848392 0.529368i \(-0.822429\pi\)
0.882643 + 0.470045i \(0.155762\pi\)
\(440\) 1.55535 + 2.69395i 0.0741485 + 0.128429i
\(441\) 3.39113 + 6.12374i 0.161482 + 0.291607i
\(442\) 0.388880 + 1.74306i 0.0184972 + 0.0829091i
\(443\) 5.72758 + 9.92047i 0.272126 + 0.471336i 0.969406 0.245463i \(-0.0789400\pi\)
−0.697280 + 0.716799i \(0.745607\pi\)
\(444\) −2.74194 −0.130127
\(445\) 14.3125 0.678479
\(446\) −20.9301 −0.991071
\(447\) 4.73744 0.224073
\(448\) −2.27938 1.34329i −0.107691 0.0634646i
\(449\) −17.3713 + 30.0880i −0.819803 + 1.41994i 0.0860243 + 0.996293i \(0.472584\pi\)
−0.905827 + 0.423647i \(0.860750\pi\)
\(450\) −1.72298 2.98428i −0.0812219 0.140681i
\(451\) 4.66867 + 8.08638i 0.219839 + 0.380773i
\(452\) 15.8688 0.746406
\(453\) 3.56085 6.16758i 0.167304 0.289778i
\(454\) −17.5810 −0.825119
\(455\) −11.6293 + 2.48566i −0.545188 + 0.116529i
\(456\) −7.67156 −0.359254
\(457\) −18.4024 + 31.8739i −0.860829 + 1.49100i 0.0103007 + 0.999947i \(0.496721\pi\)
−0.871130 + 0.491053i \(0.836612\pi\)
\(458\) 14.4924 0.677185
\(459\) 0.247662 + 0.428963i 0.0115599 + 0.0200223i
\(460\) 0.279274 + 0.483717i 0.0130212 + 0.0225534i
\(461\) −3.99129 + 6.91311i −0.185893 + 0.321976i −0.943877 0.330297i \(-0.892851\pi\)
0.757984 + 0.652273i \(0.226184\pi\)
\(462\) −5.74677 + 3.24979i −0.267364 + 0.151194i
\(463\) 26.4799 1.23063 0.615314 0.788282i \(-0.289029\pi\)
0.615314 + 0.788282i \(0.289029\pi\)
\(464\) 7.42285 0.344597
\(465\) 10.1337 0.469938
\(466\) −14.4979 −0.671604
\(467\) −3.12210 5.40764i −0.144474 0.250236i 0.784703 0.619872i \(-0.212816\pi\)
−0.929176 + 0.369636i \(0.879482\pi\)
\(468\) −2.65502 + 2.43944i −0.122728 + 0.112763i
\(469\) −0.0629324 0.0370876i −0.00290595 0.00171254i
\(470\) 4.11045 + 7.11950i 0.189601 + 0.328398i
\(471\) 7.52147 13.0276i 0.346571 0.600279i
\(472\) −0.727653 1.26033i −0.0334930 0.0580115i
\(473\) −3.68139 + 6.37635i −0.169270 + 0.293185i
\(474\) 9.87090 0.453385
\(475\) −13.2179 + 22.8941i −0.606480 + 1.05045i
\(476\) 1.14074 0.645087i 0.0522857 0.0295675i
\(477\) 3.86750 6.69870i 0.177080 0.306712i
\(478\) 1.57547 2.72879i 0.0720601 0.124812i
\(479\) 21.5725 0.985671 0.492836 0.870122i \(-0.335960\pi\)
0.492836 + 0.870122i \(0.335960\pi\)
\(480\) 0.623307 1.07960i 0.0284499 0.0492767i
\(481\) 9.43261 + 2.96019i 0.430090 + 0.134973i
\(482\) 24.8446 1.13164
\(483\) −1.03187 + 0.583522i −0.0469517 + 0.0265512i
\(484\) 2.38668 + 4.13385i 0.108485 + 0.187902i
\(485\) −1.27113 −0.0577188
\(486\) −0.500000 + 0.866025i −0.0226805 + 0.0392837i
\(487\) −6.80757 11.7911i −0.308481 0.534304i 0.669550 0.742767i \(-0.266487\pi\)
−0.978030 + 0.208463i \(0.933154\pi\)
\(488\) 4.19934 0.190095
\(489\) 9.02971 0.408337
\(490\) 4.22743 + 7.63394i 0.190976 + 0.344866i
\(491\) 6.14512 + 10.6437i 0.277326 + 0.480342i 0.970719 0.240217i \(-0.0772186\pi\)
−0.693394 + 0.720559i \(0.743885\pi\)
\(492\) 1.87097 3.24061i 0.0843498 0.146098i
\(493\) −1.83836 + 3.18413i −0.0827955 + 0.143406i
\(494\) 26.3911 + 8.28221i 1.18739 + 0.372634i
\(495\) −1.55535 2.69395i −0.0699079 0.121084i
\(496\) −4.06448 7.03989i −0.182501 0.316100i
\(497\) −21.5969 + 12.2130i −0.968754 + 0.547830i
\(498\) −3.71142 + 6.42837i −0.166313 + 0.288062i
\(499\) −7.11789 12.3285i −0.318640 0.551901i 0.661564 0.749889i \(-0.269893\pi\)
−0.980205 + 0.197987i \(0.936560\pi\)
\(500\) −5.26442 9.11824i −0.235432 0.407780i
\(501\) −1.42442 2.46716i −0.0636382 0.110225i
\(502\) 3.69421 + 6.39857i 0.164881 + 0.285582i
\(503\) 10.4692 18.1332i 0.466798 0.808518i −0.532482 0.846441i \(-0.678741\pi\)
0.999281 + 0.0379227i \(0.0120741\pi\)
\(504\) 2.27938 + 1.34329i 0.101532 + 0.0598350i
\(505\) 11.1837 + 19.3708i 0.497669 + 0.861987i
\(506\) −0.559018 0.968247i −0.0248514 0.0430438i
\(507\) 11.7672 5.52561i 0.522601 0.245401i
\(508\) 4.23846 7.34124i 0.188051 0.325715i
\(509\) −6.96485 + 12.0635i −0.308711 + 0.534704i −0.978081 0.208226i \(-0.933231\pi\)
0.669369 + 0.742930i \(0.266564\pi\)
\(510\) 0.308739 + 0.534751i 0.0136712 + 0.0236792i
\(511\) 23.3595 13.2098i 1.03336 0.584367i
\(512\) −1.00000 −0.0441942
\(513\) 7.67156 0.338708
\(514\) 13.4446 + 23.2867i 0.593015 + 1.02713i
\(515\) −0.654079 + 1.13290i −0.0288222 + 0.0499214i
\(516\) 2.95063 0.129894
\(517\) −8.22781 14.2510i −0.361859 0.626757i
\(518\) 0.0648086 7.25420i 0.00284752 0.318731i
\(519\) 25.4875 1.11878
\(520\) −3.30979 + 3.04103i −0.145144 + 0.133358i
\(521\) 11.1502 19.3128i 0.488501 0.846109i −0.511412 0.859336i \(-0.670877\pi\)
0.999913 + 0.0132274i \(0.00421053\pi\)
\(522\) −7.42285 −0.324889
\(523\) 13.8516 23.9917i 0.605689 1.04908i −0.386254 0.922393i \(-0.626231\pi\)
0.991942 0.126691i \(-0.0404357\pi\)
\(524\) −8.26678 + 14.3185i −0.361136 + 0.625506i
\(525\) 7.93608 4.48785i 0.346359 0.195866i
\(526\) −1.46562 + 2.53852i −0.0639040 + 0.110685i
\(527\) 4.02647 0.175396
\(528\) −1.24766 + 2.16101i −0.0542975 + 0.0940461i
\(529\) 11.3996 + 19.7447i 0.495636 + 0.858466i
\(530\) 4.82127 8.35069i 0.209423 0.362731i
\(531\) 0.727653 + 1.26033i 0.0315775 + 0.0546938i
\(532\) 0.181325 20.2962i 0.00786145 0.879953i
\(533\) −9.93493 + 9.12822i −0.430330 + 0.395387i
\(534\) 5.74056 + 9.94294i 0.248418 + 0.430273i
\(535\) 12.6943 0.548823
\(536\) −0.0276094 −0.00119255
\(537\) −18.2006 −0.785414
\(538\) −2.14443 −0.0924530
\(539\) −8.46197 15.2807i −0.364483 0.658187i
\(540\) −0.623307 + 1.07960i −0.0268229 + 0.0464585i
\(541\) 7.32108 + 12.6805i 0.314758 + 0.545177i 0.979386 0.201998i \(-0.0647434\pi\)
−0.664628 + 0.747174i \(0.731410\pi\)
\(542\) 8.64220 + 14.9687i 0.371214 + 0.642962i
\(543\) 13.7305 0.589232
\(544\) 0.247662 0.428963i 0.0106184 0.0183916i
\(545\) 24.7399 1.05974
\(546\) −6.39113 7.08191i −0.273515 0.303078i
\(547\) 21.7401 0.929542 0.464771 0.885431i \(-0.346137\pi\)
0.464771 + 0.885431i \(0.346137\pi\)
\(548\) 0.428418 0.742042i 0.0183011 0.0316985i
\(549\) −4.19934 −0.179224
\(550\) 4.29939 + 7.44676i 0.183326 + 0.317531i
\(551\) 28.4724 + 49.3157i 1.21297 + 2.10092i
\(552\) −0.224026 + 0.388024i −0.00953518 + 0.0165154i
\(553\) −0.233309 + 26.1149i −0.00992131 + 1.11052i
\(554\) 2.83381 0.120397
\(555\) 3.41814 0.145092
\(556\) −9.49773 −0.402793
\(557\) 4.47177 0.189475 0.0947375 0.995502i \(-0.469799\pi\)
0.0947375 + 0.995502i \(0.469799\pi\)
\(558\) 4.06448 + 7.03989i 0.172063 + 0.298022i
\(559\) −10.1505 3.18550i −0.429322 0.134732i
\(560\) 2.84150 + 1.67457i 0.120075 + 0.0707633i
\(561\) −0.617997 1.07040i −0.0260919 0.0451924i
\(562\) −14.2627 + 24.7037i −0.601636 + 1.04206i
\(563\) 5.57899 + 9.66309i 0.235126 + 0.407251i 0.959309 0.282357i \(-0.0911163\pi\)
−0.724183 + 0.689608i \(0.757783\pi\)
\(564\) −3.29729 + 5.71107i −0.138841 + 0.240480i
\(565\) −19.7823 −0.832246
\(566\) −2.29901 + 3.98201i −0.0966347 + 0.167376i
\(567\) −2.27938 1.34329i −0.0957249 0.0564130i
\(568\) −4.68884 + 8.12130i −0.196739 + 0.340762i
\(569\) 18.4409 31.9406i 0.773083 1.33902i −0.162782 0.986662i \(-0.552047\pi\)
0.935865 0.352358i \(-0.114620\pi\)
\(570\) 9.56347 0.400570
\(571\) 0.101526 0.175849i 0.00424874 0.00735904i −0.863893 0.503675i \(-0.831981\pi\)
0.868142 + 0.496316i \(0.165314\pi\)
\(572\) 6.62514 6.08719i 0.277011 0.254518i
\(573\) −5.28588 −0.220821
\(574\) 8.52929 + 5.02652i 0.356006 + 0.209803i
\(575\) 0.771984 + 1.33711i 0.0321939 + 0.0557615i
\(576\) 1.00000 0.0416667
\(577\) 10.4151 18.0396i 0.433588 0.750997i −0.563591 0.826054i \(-0.690581\pi\)
0.997179 + 0.0750570i \(0.0239139\pi\)
\(578\) −8.37733 14.5100i −0.348451 0.603535i
\(579\) −4.81197 −0.199979
\(580\) −9.25342 −0.384227
\(581\) −16.9195 9.97105i −0.701938 0.413669i
\(582\) −0.509831 0.883054i −0.0211332 0.0366038i
\(583\) −9.65066 + 16.7154i −0.399689 + 0.692282i
\(584\) 5.07151 8.78412i 0.209861 0.363489i
\(585\) 3.30979 3.04103i 0.136843 0.125731i
\(586\) −3.19384 5.53189i −0.131936 0.228520i
\(587\) −8.25511 14.2983i −0.340725 0.590153i 0.643843 0.765158i \(-0.277339\pi\)
−0.984568 + 0.175005i \(0.944006\pi\)
\(588\) −3.60775 + 5.99868i −0.148781 + 0.247381i
\(589\) 31.1809 54.0069i 1.28479 2.22532i
\(590\) 0.907102 + 1.57115i 0.0373448 + 0.0646831i
\(591\) −11.7743 20.3937i −0.484329 0.838883i
\(592\) −1.37097 2.37459i −0.0563465 0.0975950i
\(593\) 5.86959 + 10.1664i 0.241035 + 0.417485i 0.961009 0.276515i \(-0.0891797\pi\)
−0.719974 + 0.694001i \(0.755846\pi\)
\(594\) 1.24766 2.16101i 0.0511922 0.0886675i
\(595\) −1.42206 + 0.804174i −0.0582988 + 0.0329679i
\(596\) 2.36872 + 4.10274i 0.0970264 + 0.168055i
\(597\) 5.63984 + 9.76849i 0.230823 + 0.399798i
\(598\) 1.18959 1.09299i 0.0486459 0.0446959i
\(599\) −21.8486 + 37.8430i −0.892711 + 1.54622i −0.0560993 + 0.998425i \(0.517866\pi\)
−0.836612 + 0.547796i \(0.815467\pi\)
\(600\) 1.72298 2.98428i 0.0703403 0.121833i
\(601\) 2.84613 + 4.92964i 0.116096 + 0.201084i 0.918217 0.396077i \(-0.129629\pi\)
−0.802121 + 0.597161i \(0.796295\pi\)
\(602\) −0.0697412 + 7.80632i −0.00284244 + 0.318162i
\(603\) 0.0276094 0.00112434
\(604\) 7.12171 0.289778
\(605\) −2.97527 5.15331i −0.120962 0.209512i
\(606\) −8.97127 + 15.5387i −0.364433 + 0.631217i
\(607\) −25.0986 −1.01872 −0.509360 0.860553i \(-0.670118\pi\)
−0.509360 + 0.860553i \(0.670118\pi\)
\(608\) −3.83578 6.64376i −0.155561 0.269440i
\(609\) 0.175447 19.6382i 0.00710946 0.795781i
\(610\) −5.23496 −0.211957
\(611\) 17.5088 16.0871i 0.708329 0.650813i
\(612\) −0.247662 + 0.428963i −0.0100111 + 0.0173398i
\(613\) 2.59331 0.104743 0.0523715 0.998628i \(-0.483322\pi\)
0.0523715 + 0.998628i \(0.483322\pi\)
\(614\) −0.699495 + 1.21156i −0.0282293 + 0.0488947i
\(615\) −2.33237 + 4.03979i −0.0940504 + 0.162900i
\(616\) −5.68779 3.35195i −0.229168 0.135054i
\(617\) 8.83438 15.3016i 0.355659 0.616019i −0.631572 0.775318i \(-0.717590\pi\)
0.987231 + 0.159298i \(0.0509231\pi\)
\(618\) −1.04937 −0.0422118
\(619\) 20.4642 35.4450i 0.822525 1.42465i −0.0812719 0.996692i \(-0.525898\pi\)
0.903797 0.427962i \(-0.140768\pi\)
\(620\) 5.06684 + 8.77602i 0.203489 + 0.352453i
\(621\) 0.224026 0.388024i 0.00898986 0.0155709i
\(622\) 8.55183 + 14.8122i 0.342897 + 0.593915i
\(623\) −26.4412 + 14.9525i −1.05934 + 0.599058i
\(624\) −3.44013 1.07960i −0.137715 0.0432185i
\(625\) −2.05219 3.55450i −0.0820876 0.142180i
\(626\) −11.6249 −0.464626
\(627\) −19.1430 −0.764499
\(628\) 15.0429 0.600279
\(629\) 1.35815 0.0541529
\(630\) −2.84150 1.67457i −0.113208 0.0667163i
\(631\) 3.58097 6.20242i 0.142556 0.246914i −0.785902 0.618351i \(-0.787801\pi\)
0.928459 + 0.371436i \(0.121135\pi\)
\(632\) 4.93545 + 8.54845i 0.196322 + 0.340039i
\(633\) 6.22021 + 10.7737i 0.247231 + 0.428217i
\(634\) −6.58554 −0.261545
\(635\) −5.28373 + 9.15168i −0.209678 + 0.363173i
\(636\) 7.73499 0.306712
\(637\) 18.8873 16.7413i 0.748341 0.663314i
\(638\) 18.5224 0.733309
\(639\) 4.68884 8.12130i 0.185488 0.321274i
\(640\) 1.24661 0.0492767
\(641\) −1.62960 2.82254i −0.0643652 0.111484i 0.832047 0.554705i \(-0.187169\pi\)
−0.896412 + 0.443221i \(0.853836\pi\)
\(642\) 5.09152 + 8.81877i 0.200946 + 0.348049i
\(643\) −9.17027 + 15.8834i −0.361640 + 0.626379i −0.988231 0.152969i \(-0.951116\pi\)
0.626591 + 0.779348i \(0.284450\pi\)
\(644\) −1.02128 0.601865i −0.0402441 0.0237168i
\(645\) −3.67830 −0.144833
\(646\) 3.79991 0.149505
\(647\) 43.8685 1.72465 0.862325 0.506355i \(-0.169008\pi\)
0.862325 + 0.506355i \(0.169008\pi\)
\(648\) −1.00000 −0.0392837
\(649\) −1.81573 3.14494i −0.0712737 0.123450i
\(650\) −9.14909 + 8.40619i −0.358857 + 0.329718i
\(651\) −18.7211 + 10.5868i −0.733738 + 0.414929i
\(652\) 4.51485 + 7.81996i 0.176815 + 0.306253i
\(653\) −6.64022 + 11.5012i −0.259852 + 0.450077i −0.966202 0.257786i \(-0.917007\pi\)
0.706350 + 0.707863i \(0.250340\pi\)
\(654\) 9.92285 + 17.1869i 0.388014 + 0.672060i
\(655\) 10.3055 17.8496i 0.402668 0.697442i
\(656\) 3.74194 0.146098
\(657\) −5.07151 + 8.78412i −0.197859 + 0.342701i
\(658\) −15.0315 8.85845i −0.585991 0.345338i
\(659\) 1.53479 2.65834i 0.0597871 0.103554i −0.834583 0.550883i \(-0.814291\pi\)
0.894370 + 0.447328i \(0.147624\pi\)
\(660\) 1.55535 2.69395i 0.0605420 0.104862i
\(661\) −29.6068 −1.15157 −0.575785 0.817601i \(-0.695304\pi\)
−0.575785 + 0.817601i \(0.695304\pi\)
\(662\) −11.6343 + 20.1512i −0.452179 + 0.783197i
\(663\) 1.31510 1.20831i 0.0510741 0.0469270i
\(664\) −7.42285 −0.288062
\(665\) −0.226043 + 25.3015i −0.00876555 + 0.981152i
\(666\) 1.37097 + 2.37459i 0.0531240 + 0.0920134i
\(667\) 3.32582 0.128776
\(668\) 1.42442 2.46716i 0.0551123 0.0954573i
\(669\) 10.4651 + 18.1260i 0.404603 + 0.700793i
\(670\) 0.0344183 0.00132970
\(671\) 10.4787 0.404526
\(672\) −0.0236360 + 2.64565i −0.000911780 + 0.102058i
\(673\) −4.54511 7.87235i −0.175201 0.303457i 0.765030 0.643995i \(-0.222724\pi\)
−0.940231 + 0.340538i \(0.889391\pi\)
\(674\) 9.71598 16.8286i 0.374246 0.648212i
\(675\) −1.72298 + 2.98428i −0.0663174 + 0.114865i
\(676\) 10.6689 + 7.42791i 0.410344 + 0.285689i
\(677\) 8.92163 + 15.4527i 0.342886 + 0.593896i 0.984967 0.172741i \(-0.0552622\pi\)
−0.642081 + 0.766636i \(0.721929\pi\)
\(678\) −7.93440 13.7428i −0.304719 0.527789i
\(679\) 2.34830 1.32796i 0.0901194 0.0509625i
\(680\) −0.308739 + 0.534751i −0.0118396 + 0.0205068i
\(681\) 8.79052 + 15.2256i 0.336853 + 0.583447i
\(682\) −10.1422 17.5668i −0.388365 0.672668i
\(683\) 6.15898 + 10.6677i 0.235667 + 0.408187i 0.959466 0.281824i \(-0.0909393\pi\)
−0.723800 + 0.690010i \(0.757606\pi\)
\(684\) 3.83578 + 6.64376i 0.146665 + 0.254031i
\(685\) −0.534072 + 0.925040i −0.0204058 + 0.0353440i
\(686\) −15.7851 9.68662i −0.602678 0.369837i
\(687\) −7.24620 12.5508i −0.276460 0.478842i
\(688\) 1.47532 + 2.55532i 0.0562459 + 0.0974207i
\(689\) −26.6093 8.35069i −1.01374 0.318136i
\(690\) 0.279274 0.483717i 0.0106318 0.0184148i
\(691\) 13.5881 23.5353i 0.516916 0.895325i −0.482891 0.875681i \(-0.660413\pi\)
0.999807 0.0196447i \(-0.00625351\pi\)
\(692\) 12.7438 + 22.0729i 0.484446 + 0.839084i
\(693\) 5.68779 + 3.35195i 0.216061 + 0.127330i
\(694\) −29.6707 −1.12629
\(695\) 11.8400 0.449117
\(696\) −3.71142 6.42837i −0.140681 0.243667i
\(697\) −0.926736 + 1.60515i −0.0351026 + 0.0607995i
\(698\) −26.6047 −1.00700
\(699\) 7.24897 + 12.5556i 0.274181 + 0.474896i
\(700\) 7.85464 + 4.62892i 0.296877 + 0.174957i
\(701\) 38.0704 1.43790 0.718950 0.695062i \(-0.244623\pi\)
0.718950 + 0.695062i \(0.244623\pi\)
\(702\) 3.44013 + 1.07960i 0.129839 + 0.0407468i
\(703\) 10.5175 18.2168i 0.396674 0.687059i
\(704\) −2.49532 −0.0940461
\(705\) 4.11045 7.11950i 0.154808 0.268136i
\(706\) −6.90939 + 11.9674i −0.260038 + 0.450400i
\(707\) −40.8979 24.1021i −1.53812 0.906452i
\(708\) −0.727653 + 1.26033i −0.0273469 + 0.0473662i
\(709\) −41.5249 −1.55950 −0.779750 0.626091i \(-0.784654\pi\)
−0.779750 + 0.626091i \(0.784654\pi\)
\(710\) 5.84517 10.1241i 0.219365 0.379952i
\(711\) −4.93545 8.54845i −0.185094 0.320592i
\(712\) −5.74056 + 9.94294i −0.215137 + 0.372628i
\(713\) −1.82110 3.15424i −0.0682007 0.118127i
\(714\) −1.12903 0.665365i −0.0422529 0.0249007i
\(715\) −8.25899 + 7.58837i −0.308869 + 0.283789i
\(716\) −9.10030 15.7622i −0.340094 0.589061i
\(717\) −3.15093 −0.117674
\(718\) 2.76191 0.103074
\(719\) 16.6093 0.619421 0.309710 0.950831i \(-0.399768\pi\)
0.309710 + 0.950831i \(0.399768\pi\)
\(720\) −1.24661 −0.0464585
\(721\) 0.0248029 2.77626i 0.000923710 0.103393i
\(722\) 19.9264 34.5135i 0.741584 1.28446i
\(723\) −12.4223 21.5160i −0.461990 0.800189i
\(724\) 6.86524 + 11.8910i 0.255145 + 0.441924i
\(725\) −25.5788 −0.949973
\(726\) 2.38668 4.13385i 0.0885780 0.153422i
\(727\) −20.2421 −0.750737 −0.375368 0.926876i \(-0.622484\pi\)
−0.375368 + 0.926876i \(0.622484\pi\)
\(728\) 2.93755 9.07584i 0.108873 0.336373i
\(729\) 1.00000 0.0370370
\(730\) −6.32222 + 10.9504i −0.233996 + 0.405292i
\(731\) −1.46152 −0.0540562
\(732\) −2.09967 3.63674i −0.0776061 0.134418i
\(733\) −8.42173 14.5869i −0.311064 0.538778i 0.667529 0.744584i \(-0.267352\pi\)
−0.978593 + 0.205805i \(0.934019\pi\)
\(734\) −5.46151 + 9.45961i −0.201588 + 0.349161i
\(735\) 4.49747 7.47803i 0.165892 0.275831i
\(736\) −0.448052 −0.0165154
\(737\) −0.0688945 −0.00253776
\(738\) −3.74194 −0.137743
\(739\) −48.1193 −1.77010 −0.885049 0.465498i \(-0.845875\pi\)
−0.885049 + 0.465498i \(0.845875\pi\)
\(740\) 1.70907 + 2.96019i 0.0628266 + 0.108819i
\(741\) −6.02296 26.9965i −0.221259 0.991741i
\(742\) −0.182825 + 20.4640i −0.00671170 + 0.751259i
\(743\) 2.98460 + 5.16948i 0.109494 + 0.189650i 0.915566 0.402169i \(-0.131744\pi\)
−0.806071 + 0.591819i \(0.798410\pi\)
\(744\) −4.06448 + 7.03989i −0.149011 + 0.258095i
\(745\) −2.95288 5.11453i −0.108185 0.187382i
\(746\) 9.84303 17.0486i 0.360379 0.624195i
\(747\) 7.42285 0.271588
\(748\) 0.617997 1.07040i 0.0225962 0.0391378i
\(749\) −23.4517 + 13.2619i −0.856906 + 0.484580i
\(750\) −5.26442 + 9.11824i −0.192229 + 0.332951i
\(751\) −18.1527 + 31.4414i −0.662401 + 1.14731i 0.317582 + 0.948231i \(0.397129\pi\)
−0.979983 + 0.199081i \(0.936204\pi\)
\(752\) −6.59458 −0.240480
\(753\) 3.69421 6.39857i 0.134625 0.233177i
\(754\) 5.82770 + 26.1213i 0.212232 + 0.951280i
\(755\) −8.87802 −0.323104
\(756\) 0.0236360 2.64565i 0.000859635 0.0962212i
\(757\) −3.48399 6.03445i −0.126628 0.219326i 0.795740 0.605638i \(-0.207082\pi\)
−0.922368 + 0.386312i \(0.873749\pi\)
\(758\) −16.6343 −0.604183
\(759\) −0.559018 + 0.968247i −0.0202911 + 0.0351451i
\(760\) 4.78173 + 8.28221i 0.173452 + 0.300427i
\(761\) −2.95124 −0.106982 −0.0534912 0.998568i \(-0.517035\pi\)
−0.0534912 + 0.998568i \(0.517035\pi\)
\(762\) −8.47693 −0.307087
\(763\) −45.7049 + 25.8461i −1.65463 + 0.935692i
\(764\) −2.64294 4.57771i −0.0956182 0.165616i
\(765\) 0.308739 0.534751i 0.0111625 0.0193340i
\(766\) 18.1834 31.4945i 0.656992 1.13794i
\(767\) 3.86387 3.55013i 0.139516 0.128188i
\(768\) 0.500000 + 0.866025i 0.0180422 + 0.0312500i
\(769\) −21.0168 36.4022i −0.757885 1.31270i −0.943927 0.330154i \(-0.892899\pi\)
0.186042 0.982542i \(-0.440434\pi\)
\(770\) 7.09047 + 4.17859i 0.255523 + 0.150586i
\(771\) 13.4446 23.2867i 0.484195 0.838650i
\(772\) −2.40599 4.16729i −0.0865933 0.149984i
\(773\) 21.8155 + 37.7856i 0.784650 + 1.35905i 0.929208 + 0.369557i \(0.120490\pi\)
−0.144559 + 0.989496i \(0.546176\pi\)
\(774\) −1.47532 2.55532i −0.0530291 0.0918491i
\(775\) 14.0060 +