Properties

Label 546.2.k.e.445.2
Level $546$
Weight $2$
Character 546.445
Analytic conductor $4.360$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.k (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Defining polynomial: \(x^{10} - 2 x^{9} + 15 x^{8} + 14 x^{7} + 110 x^{6} + 36 x^{5} + 233 x^{4} + 164 x^{3} + 345 x^{2} + 76 x + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 445.2
Root \(0.769836 - 1.33339i\) of defining polynomial
Character \(\chi\) \(=\) 546.445
Dual form 546.2.k.e.373.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} -1.00000 q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.769836 - 1.33339i) q^{5} +(-0.500000 + 0.866025i) q^{6} +(-0.131875 + 2.64246i) q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+(0.500000 - 0.866025i) q^{2} -1.00000 q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.769836 - 1.33339i) q^{5} +(-0.500000 + 0.866025i) q^{6} +(-0.131875 + 2.64246i) q^{7} -1.00000 q^{8} +1.00000 q^{9} -1.53967 q^{10} -6.38352 q^{11} +(0.500000 + 0.866025i) q^{12} +(0.520213 + 3.56783i) q^{13} +(2.22250 + 1.43544i) q^{14} +(0.769836 + 1.33339i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-2.19176 - 3.79624i) q^{17} +(0.500000 - 0.866025i) q^{18} +0.101912 q^{19} +(-0.769836 + 1.33339i) q^{20} +(0.131875 - 2.64246i) q^{21} +(-3.19176 + 5.52829i) q^{22} +(-4.54614 + 7.87414i) q^{23} +1.00000 q^{24} +(1.31471 - 2.27714i) q^{25} +(3.34993 + 1.33339i) q^{26} -1.00000 q^{27} +(2.35438 - 1.20702i) q^{28} +(3.51255 + 6.08392i) q^{29} +1.53967 q^{30} +(-0.611662 + 1.05943i) q^{31} +(0.500000 + 0.866025i) q^{32} +6.38352 q^{33} -4.38352 q^{34} +(3.62497 - 1.85842i) q^{35} +(-0.500000 - 0.866025i) q^{36} +(-1.92192 + 3.32887i) q^{37} +(0.0509558 - 0.0882581i) q^{38} +(-0.520213 - 3.56783i) q^{39} +(0.769836 + 1.33339i) q^{40} +(-2.42192 - 4.19490i) q^{41} +(-2.22250 - 1.43544i) q^{42} +(-0.877054 + 1.51910i) q^{43} +(3.19176 + 5.52829i) q^{44} +(-0.769836 - 1.33339i) q^{45} +(4.54614 + 7.87414i) q^{46} +(-2.07041 - 3.58606i) q^{47} +(0.500000 - 0.866025i) q^{48} +(-6.96522 - 0.696949i) q^{49} +(-1.31471 - 2.27714i) q^{50} +(2.19176 + 3.79624i) q^{51} +(2.82972 - 2.23443i) q^{52} +(-4.11084 + 7.12019i) q^{53} +(-0.500000 + 0.866025i) q^{54} +(4.91426 + 8.51175i) q^{55} +(0.131875 - 2.64246i) q^{56} -0.101912 q^{57} +7.02510 q^{58} +(-3.56881 - 6.18137i) q^{59} +(0.769836 - 1.33339i) q^{60} -6.16908 q^{61} +(0.611662 + 1.05943i) q^{62} +(-0.131875 + 2.64246i) q^{63} +1.00000 q^{64} +(4.35684 - 3.44029i) q^{65} +(3.19176 - 5.52829i) q^{66} -1.71519 q^{67} +(-2.19176 + 3.79624i) q^{68} +(4.54614 - 7.87414i) q^{69} +(0.203044 - 4.06852i) q^{70} +(4.57326 - 7.92111i) q^{71} -1.00000 q^{72} +(4.82528 - 8.35763i) q^{73} +(1.92192 + 3.32887i) q^{74} +(-1.31471 + 2.27714i) q^{75} +(-0.0509558 - 0.0882581i) q^{76} +(0.841826 - 16.8682i) q^{77} +(-3.34993 - 1.33339i) q^{78} +(-2.03359 - 3.52227i) q^{79} +1.53967 q^{80} +1.00000 q^{81} -4.84385 q^{82} -7.02510 q^{83} +(-2.35438 + 1.20702i) q^{84} +(-3.37459 + 5.84496i) q^{85} +(0.877054 + 1.51910i) q^{86} +(-3.51255 - 6.08392i) q^{87} +6.38352 q^{88} +(7.77395 - 13.4649i) q^{89} -1.53967 q^{90} +(-9.49645 + 0.904138i) q^{91} +9.09227 q^{92} +(0.611662 - 1.05943i) q^{93} -4.14083 q^{94} +(-0.0784553 - 0.135889i) q^{95} +(-0.500000 - 0.866025i) q^{96} +(0.996781 - 1.72648i) q^{97} +(-4.08618 + 5.68358i) q^{98} -6.38352 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10q + 5q^{2} - 10q^{3} - 5q^{4} - 2q^{5} - 5q^{6} + 4q^{7} - 10q^{8} + 10q^{9} + O(q^{10}) \) \( 10q + 5q^{2} - 10q^{3} - 5q^{4} - 2q^{5} - 5q^{6} + 4q^{7} - 10q^{8} + 10q^{9} - 4q^{10} - 12q^{11} + 5q^{12} - 4q^{13} + 2q^{14} + 2q^{15} - 5q^{16} + 4q^{17} + 5q^{18} - 6q^{19} - 2q^{20} - 4q^{21} - 6q^{22} + 6q^{23} + 10q^{24} - q^{25} - 2q^{26} - 10q^{27} - 2q^{28} + 4q^{30} - 10q^{31} + 5q^{32} + 12q^{33} + 8q^{34} - 2q^{35} - 5q^{36} + q^{37} - 3q^{38} + 4q^{39} + 2q^{40} - 4q^{41} - 2q^{42} + 3q^{43} + 6q^{44} - 2q^{45} - 6q^{46} - 15q^{47} + 5q^{48} - 20q^{49} + q^{50} - 4q^{51} + 2q^{52} - 17q^{53} - 5q^{54} + 3q^{55} - 4q^{56} + 6q^{57} + 2q^{59} + 2q^{60} - 22q^{61} + 10q^{62} + 4q^{63} + 10q^{64} + 41q^{65} + 6q^{66} + 2q^{67} + 4q^{68} - 6q^{69} - 16q^{70} + 18q^{71} - 10q^{72} + 12q^{73} - q^{74} + q^{75} + 3q^{76} + 18q^{77} + 2q^{78} - 4q^{79} + 4q^{80} + 10q^{81} - 8q^{82} + 2q^{84} + q^{85} - 3q^{86} + 12q^{88} + 7q^{89} - 4q^{90} - 4q^{91} - 12q^{92} + 10q^{93} - 30q^{94} + 24q^{95} - 5q^{96} - 6q^{97} - 16q^{98} - 12q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) −1.00000 −0.577350
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −0.769836 1.33339i −0.344281 0.596312i 0.640942 0.767589i \(-0.278544\pi\)
−0.985223 + 0.171277i \(0.945211\pi\)
\(6\) −0.500000 + 0.866025i −0.204124 + 0.353553i
\(7\) −0.131875 + 2.64246i −0.0498440 + 0.998757i
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) −1.53967 −0.486887
\(11\) −6.38352 −1.92470 −0.962352 0.271807i \(-0.912379\pi\)
−0.962352 + 0.271807i \(0.912379\pi\)
\(12\) 0.500000 + 0.866025i 0.144338 + 0.250000i
\(13\) 0.520213 + 3.56783i 0.144281 + 0.989537i
\(14\) 2.22250 + 1.43544i 0.593989 + 0.383637i
\(15\) 0.769836 + 1.33339i 0.198771 + 0.344281i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −2.19176 3.79624i −0.531580 0.920723i −0.999321 0.0368575i \(-0.988265\pi\)
0.467741 0.883866i \(-0.345068\pi\)
\(18\) 0.500000 0.866025i 0.117851 0.204124i
\(19\) 0.101912 0.0233801 0.0116901 0.999932i \(-0.496279\pi\)
0.0116901 + 0.999932i \(0.496279\pi\)
\(20\) −0.769836 + 1.33339i −0.172141 + 0.298156i
\(21\) 0.131875 2.64246i 0.0287775 0.576633i
\(22\) −3.19176 + 5.52829i −0.680485 + 1.17864i
\(23\) −4.54614 + 7.87414i −0.947935 + 1.64187i −0.198170 + 0.980168i \(0.563500\pi\)
−0.749765 + 0.661704i \(0.769834\pi\)
\(24\) 1.00000 0.204124
\(25\) 1.31471 2.27714i 0.262941 0.455427i
\(26\) 3.34993 + 1.33339i 0.656976 + 0.261500i
\(27\) −1.00000 −0.192450
\(28\) 2.35438 1.20702i 0.444935 0.228106i
\(29\) 3.51255 + 6.08392i 0.652264 + 1.12976i 0.982572 + 0.185882i \(0.0595142\pi\)
−0.330308 + 0.943873i \(0.607153\pi\)
\(30\) 1.53967 0.281104
\(31\) −0.611662 + 1.05943i −0.109858 + 0.190279i −0.915712 0.401834i \(-0.868373\pi\)
0.805855 + 0.592113i \(0.201706\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 6.38352 1.11123
\(34\) −4.38352 −0.751767
\(35\) 3.62497 1.85842i 0.612731 0.314131i
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) −1.92192 + 3.32887i −0.315962 + 0.547263i −0.979642 0.200754i \(-0.935661\pi\)
0.663679 + 0.748017i \(0.268994\pi\)
\(38\) 0.0509558 0.0882581i 0.00826613 0.0143174i
\(39\) −0.520213 3.56783i −0.0833008 0.571309i
\(40\) 0.769836 + 1.33339i 0.121722 + 0.210828i
\(41\) −2.42192 4.19490i −0.378241 0.655133i 0.612565 0.790420i \(-0.290138\pi\)
−0.990806 + 0.135287i \(0.956804\pi\)
\(42\) −2.22250 1.43544i −0.342940 0.221493i
\(43\) −0.877054 + 1.51910i −0.133750 + 0.231661i −0.925119 0.379677i \(-0.876035\pi\)
0.791370 + 0.611338i \(0.209368\pi\)
\(44\) 3.19176 + 5.52829i 0.481176 + 0.833421i
\(45\) −0.769836 1.33339i −0.114760 0.198771i
\(46\) 4.54614 + 7.87414i 0.670291 + 1.16098i
\(47\) −2.07041 3.58606i −0.302001 0.523081i 0.674588 0.738194i \(-0.264321\pi\)
−0.976589 + 0.215113i \(0.930988\pi\)
\(48\) 0.500000 0.866025i 0.0721688 0.125000i
\(49\) −6.96522 0.696949i −0.995031 0.0995641i
\(50\) −1.31471 2.27714i −0.185927 0.322036i
\(51\) 2.19176 + 3.79624i 0.306908 + 0.531580i
\(52\) 2.82972 2.23443i 0.392412 0.309860i
\(53\) −4.11084 + 7.12019i −0.564667 + 0.978033i 0.432413 + 0.901676i \(0.357662\pi\)
−0.997081 + 0.0763570i \(0.975671\pi\)
\(54\) −0.500000 + 0.866025i −0.0680414 + 0.117851i
\(55\) 4.91426 + 8.51175i 0.662639 + 1.14772i
\(56\) 0.131875 2.64246i 0.0176225 0.353114i
\(57\) −0.101912 −0.0134985
\(58\) 7.02510 0.922441
\(59\) −3.56881 6.18137i −0.464620 0.804745i 0.534564 0.845128i \(-0.320476\pi\)
−0.999184 + 0.0403823i \(0.987142\pi\)
\(60\) 0.769836 1.33339i 0.0993854 0.172141i
\(61\) −6.16908 −0.789870 −0.394935 0.918709i \(-0.629233\pi\)
−0.394935 + 0.918709i \(0.629233\pi\)
\(62\) 0.611662 + 1.05943i 0.0776811 + 0.134548i
\(63\) −0.131875 + 2.64246i −0.0166147 + 0.332919i
\(64\) 1.00000 0.125000
\(65\) 4.35684 3.44029i 0.540400 0.426715i
\(66\) 3.19176 5.52829i 0.392878 0.680485i
\(67\) −1.71519 −0.209544 −0.104772 0.994496i \(-0.533411\pi\)
−0.104772 + 0.994496i \(0.533411\pi\)
\(68\) −2.19176 + 3.79624i −0.265790 + 0.460362i
\(69\) 4.54614 7.87414i 0.547291 0.947935i
\(70\) 0.203044 4.06852i 0.0242684 0.486282i
\(71\) 4.57326 7.92111i 0.542746 0.940063i −0.455999 0.889980i \(-0.650718\pi\)
0.998745 0.0500831i \(-0.0159486\pi\)
\(72\) −1.00000 −0.117851
\(73\) 4.82528 8.35763i 0.564756 0.978186i −0.432316 0.901722i \(-0.642304\pi\)
0.997072 0.0764641i \(-0.0243631\pi\)
\(74\) 1.92192 + 3.32887i 0.223419 + 0.386973i
\(75\) −1.31471 + 2.27714i −0.151809 + 0.262941i
\(76\) −0.0509558 0.0882581i −0.00584504 0.0101239i
\(77\) 0.841826 16.8682i 0.0959349 1.92231i
\(78\) −3.34993 1.33339i −0.379305 0.150977i
\(79\) −2.03359 3.52227i −0.228796 0.396287i 0.728655 0.684881i \(-0.240146\pi\)
−0.957452 + 0.288594i \(0.906812\pi\)
\(80\) 1.53967 0.172141
\(81\) 1.00000 0.111111
\(82\) −4.84385 −0.534914
\(83\) −7.02510 −0.771105 −0.385553 0.922686i \(-0.625989\pi\)
−0.385553 + 0.922686i \(0.625989\pi\)
\(84\) −2.35438 + 1.20702i −0.256884 + 0.131697i
\(85\) −3.37459 + 5.84496i −0.366026 + 0.633975i
\(86\) 0.877054 + 1.51910i 0.0945752 + 0.163809i
\(87\) −3.51255 6.08392i −0.376585 0.652264i
\(88\) 6.38352 0.680485
\(89\) 7.77395 13.4649i 0.824037 1.42727i −0.0786167 0.996905i \(-0.525050\pi\)
0.902653 0.430368i \(-0.141616\pi\)
\(90\) −1.53967 −0.162296
\(91\) −9.49645 + 0.904138i −0.995498 + 0.0947794i
\(92\) 9.09227 0.947935
\(93\) 0.611662 1.05943i 0.0634264 0.109858i
\(94\) −4.14083 −0.427094
\(95\) −0.0784553 0.135889i −0.00804934 0.0139419i
\(96\) −0.500000 0.866025i −0.0510310 0.0883883i
\(97\) 0.996781 1.72648i 0.101208 0.175297i −0.810975 0.585081i \(-0.801063\pi\)
0.912183 + 0.409784i \(0.134396\pi\)
\(98\) −4.08618 + 5.68358i −0.412767 + 0.574128i
\(99\) −6.38352 −0.641568
\(100\) −2.62941 −0.262941
\(101\) −0.741985 −0.0738303 −0.0369151 0.999318i \(-0.511753\pi\)
−0.0369151 + 0.999318i \(0.511753\pi\)
\(102\) 4.38352 0.434033
\(103\) 2.87705 + 4.98320i 0.283485 + 0.491010i 0.972241 0.233984i \(-0.0751762\pi\)
−0.688756 + 0.724993i \(0.741843\pi\)
\(104\) −0.520213 3.56783i −0.0510111 0.349854i
\(105\) −3.62497 + 1.85842i −0.353761 + 0.181363i
\(106\) 4.11084 + 7.12019i 0.399280 + 0.691574i
\(107\) 1.43530 2.48601i 0.138755 0.240331i −0.788270 0.615329i \(-0.789023\pi\)
0.927026 + 0.374998i \(0.122357\pi\)
\(108\) 0.500000 + 0.866025i 0.0481125 + 0.0833333i
\(109\) −4.52510 + 7.83771i −0.433426 + 0.750716i −0.997166 0.0752364i \(-0.976029\pi\)
0.563739 + 0.825953i \(0.309362\pi\)
\(110\) 9.82852 0.937113
\(111\) 1.92192 3.32887i 0.182421 0.315962i
\(112\) −2.22250 1.43544i −0.210007 0.135636i
\(113\) −0.302154 + 0.523346i −0.0284243 + 0.0492323i −0.879888 0.475182i \(-0.842382\pi\)
0.851463 + 0.524414i \(0.175716\pi\)
\(114\) −0.0509558 + 0.0882581i −0.00477245 + 0.00826613i
\(115\) 13.9991 1.30542
\(116\) 3.51255 6.08392i 0.326132 0.564878i
\(117\) 0.520213 + 3.56783i 0.0480937 + 0.329846i
\(118\) −7.13763 −0.657072
\(119\) 10.3205 5.29102i 0.946075 0.485027i
\(120\) −0.769836 1.33339i −0.0702761 0.121722i
\(121\) 29.7493 2.70448
\(122\) −3.08454 + 5.34258i −0.279261 + 0.483695i
\(123\) 2.42192 + 4.19490i 0.218378 + 0.378241i
\(124\) 1.22332 0.109858
\(125\) −11.7468 −1.05066
\(126\) 2.22250 + 1.43544i 0.197996 + 0.127879i
\(127\) −3.18892 5.52337i −0.282971 0.490119i 0.689144 0.724624i \(-0.257987\pi\)
−0.972115 + 0.234505i \(0.924653\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 0.877054 1.51910i 0.0772203 0.133750i
\(130\) −0.800958 5.49328i −0.0702486 0.481793i
\(131\) 5.42681 + 9.39952i 0.474143 + 0.821240i 0.999562 0.0296041i \(-0.00942467\pi\)
−0.525419 + 0.850844i \(0.676091\pi\)
\(132\) −3.19176 5.52829i −0.277807 0.481176i
\(133\) −0.0134396 + 0.269298i −0.00116536 + 0.0233511i
\(134\) −0.857596 + 1.48540i −0.0740850 + 0.128319i
\(135\) 0.769836 + 1.33339i 0.0662569 + 0.114760i
\(136\) 2.19176 + 3.79624i 0.187942 + 0.325525i
\(137\) 3.97052 + 6.87715i 0.339225 + 0.587555i 0.984287 0.176575i \(-0.0565019\pi\)
−0.645062 + 0.764130i \(0.723169\pi\)
\(138\) −4.54614 7.87414i −0.386993 0.670291i
\(139\) −5.72452 + 9.91517i −0.485548 + 0.840994i −0.999862 0.0166083i \(-0.994713\pi\)
0.514314 + 0.857602i \(0.328047\pi\)
\(140\) −3.42192 2.21010i −0.289205 0.186788i
\(141\) 2.07041 + 3.58606i 0.174360 + 0.302001i
\(142\) −4.57326 7.92111i −0.383779 0.664725i
\(143\) −3.32079 22.7753i −0.277699 1.90456i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) 5.40818 9.36724i 0.449125 0.777907i
\(146\) −4.82528 8.35763i −0.399343 0.691682i
\(147\) 6.96522 + 0.696949i 0.574482 + 0.0574834i
\(148\) 3.84385 0.315962
\(149\) −21.2136 −1.73788 −0.868941 0.494916i \(-0.835199\pi\)
−0.868941 + 0.494916i \(0.835199\pi\)
\(150\) 1.31471 + 2.27714i 0.107345 + 0.185927i
\(151\) −8.72661 + 15.1149i −0.710162 + 1.23004i 0.254635 + 0.967037i \(0.418045\pi\)
−0.964796 + 0.262999i \(0.915288\pi\)
\(152\) −0.101912 −0.00826613
\(153\) −2.19176 3.79624i −0.177193 0.306908i
\(154\) −14.1874 9.16315i −1.14325 0.738388i
\(155\) 1.88352 0.151288
\(156\) −2.82972 + 2.23443i −0.226559 + 0.178898i
\(157\) 10.6720 18.4844i 0.851718 1.47522i −0.0279391 0.999610i \(-0.508894\pi\)
0.879657 0.475609i \(-0.157772\pi\)
\(158\) −4.06717 −0.323567
\(159\) 4.11084 7.12019i 0.326011 0.564667i
\(160\) 0.769836 1.33339i 0.0608609 0.105414i
\(161\) −20.2076 13.0514i −1.59258 1.02859i
\(162\) 0.500000 0.866025i 0.0392837 0.0680414i
\(163\) −16.7477 −1.31178 −0.655889 0.754857i \(-0.727706\pi\)
−0.655889 + 0.754857i \(0.727706\pi\)
\(164\) −2.42192 + 4.19490i −0.189120 + 0.327566i
\(165\) −4.91426 8.51175i −0.382575 0.662639i
\(166\) −3.51255 + 6.08392i −0.272627 + 0.472204i
\(167\) 12.4467 + 21.5582i 0.963151 + 1.66823i 0.714503 + 0.699632i \(0.246653\pi\)
0.248648 + 0.968594i \(0.420014\pi\)
\(168\) −0.131875 + 2.64246i −0.0101744 + 0.203870i
\(169\) −12.4588 + 3.71206i −0.958366 + 0.285543i
\(170\) 3.37459 + 5.84496i 0.258819 + 0.448288i
\(171\) 0.101912 0.00779338
\(172\) 1.75411 0.133750
\(173\) 18.8998 1.43692 0.718462 0.695566i \(-0.244846\pi\)
0.718462 + 0.695566i \(0.244846\pi\)
\(174\) −7.02510 −0.532572
\(175\) 5.84387 + 3.77436i 0.441755 + 0.285315i
\(176\) 3.19176 5.52829i 0.240588 0.416711i
\(177\) 3.56881 + 6.18137i 0.268248 + 0.464620i
\(178\) −7.77395 13.4649i −0.582682 1.00923i
\(179\) −1.58583 −0.118531 −0.0592654 0.998242i \(-0.518876\pi\)
−0.0592654 + 0.998242i \(0.518876\pi\)
\(180\) −0.769836 + 1.33339i −0.0573802 + 0.0993854i
\(181\) −13.1480 −0.977285 −0.488642 0.872484i \(-0.662508\pi\)
−0.488642 + 0.872484i \(0.662508\pi\)
\(182\) −3.96522 + 8.67623i −0.293922 + 0.643125i
\(183\) 6.16908 0.456032
\(184\) 4.54614 7.87414i 0.335146 0.580489i
\(185\) 5.91826 0.435119
\(186\) −0.611662 1.05943i −0.0448492 0.0776811i
\(187\) 13.9911 + 24.2334i 1.02313 + 1.77212i
\(188\) −2.07041 + 3.58606i −0.151000 + 0.261541i
\(189\) 0.131875 2.64246i 0.00959248 0.192211i
\(190\) −0.156911 −0.0113835
\(191\) 12.7038 0.919217 0.459608 0.888122i \(-0.347990\pi\)
0.459608 + 0.888122i \(0.347990\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −8.18276 −0.589008 −0.294504 0.955650i \(-0.595154\pi\)
−0.294504 + 0.955650i \(0.595154\pi\)
\(194\) −0.996781 1.72648i −0.0715647 0.123954i
\(195\) −4.35684 + 3.44029i −0.312000 + 0.246364i
\(196\) 2.87903 + 6.38053i 0.205645 + 0.455752i
\(197\) −2.09350 3.62604i −0.149155 0.258345i 0.781760 0.623579i \(-0.214322\pi\)
−0.930916 + 0.365235i \(0.880989\pi\)
\(198\) −3.19176 + 5.52829i −0.226828 + 0.392878i
\(199\) −1.95797 3.39131i −0.138797 0.240404i 0.788244 0.615362i \(-0.210990\pi\)
−0.927042 + 0.374959i \(0.877657\pi\)
\(200\) −1.31471 + 2.27714i −0.0929637 + 0.161018i
\(201\) 1.71519 0.120980
\(202\) −0.370993 + 0.642578i −0.0261030 + 0.0452116i
\(203\) −16.5397 + 8.47947i −1.16086 + 0.595142i
\(204\) 2.19176 3.79624i 0.153454 0.265790i
\(205\) −3.72897 + 6.45876i −0.260442 + 0.451099i
\(206\) 5.75411 0.400908
\(207\) −4.54614 + 7.87414i −0.315978 + 0.547291i
\(208\) −3.34993 1.33339i −0.232276 0.0924543i
\(209\) −0.650555 −0.0449998
\(210\) −0.203044 + 4.06852i −0.0140114 + 0.280755i
\(211\) 7.24076 + 12.5414i 0.498475 + 0.863384i 0.999998 0.00176028i \(-0.000560315\pi\)
−0.501524 + 0.865144i \(0.667227\pi\)
\(212\) 8.22168 0.564667
\(213\) −4.57326 + 7.92111i −0.313354 + 0.542746i
\(214\) −1.43530 2.48601i −0.0981148 0.169940i
\(215\) 2.70075 0.184190
\(216\) 1.00000 0.0680414
\(217\) −2.71884 1.75600i −0.184567 0.119205i
\(218\) 4.52510 + 7.83771i 0.306479 + 0.530837i
\(219\) −4.82528 + 8.35763i −0.326062 + 0.564756i
\(220\) 4.91426 8.51175i 0.331319 0.573862i
\(221\) 12.4041 9.79467i 0.834393 0.658861i
\(222\) −1.92192 3.32887i −0.128991 0.223419i
\(223\) 5.98916 + 10.3735i 0.401064 + 0.694663i 0.993855 0.110693i \(-0.0353072\pi\)
−0.592791 + 0.805357i \(0.701974\pi\)
\(224\) −2.35438 + 1.20702i −0.157308 + 0.0806477i
\(225\) 1.31471 2.27714i 0.0876470 0.151809i
\(226\) 0.302154 + 0.523346i 0.0200990 + 0.0348125i
\(227\) 2.14976 + 3.72349i 0.142684 + 0.247137i 0.928507 0.371316i \(-0.121093\pi\)
−0.785822 + 0.618452i \(0.787760\pi\)
\(228\) 0.0509558 + 0.0882581i 0.00337463 + 0.00584504i
\(229\) −11.1486 19.3099i −0.736718 1.27603i −0.953966 0.299916i \(-0.903041\pi\)
0.217248 0.976116i \(-0.430292\pi\)
\(230\) 6.99956 12.1236i 0.461537 0.799406i
\(231\) −0.841826 + 16.8682i −0.0553881 + 1.10985i
\(232\) −3.51255 6.08392i −0.230610 0.399429i
\(233\) −1.90691 3.30286i −0.124926 0.216378i 0.796778 0.604272i \(-0.206536\pi\)
−0.921704 + 0.387894i \(0.873203\pi\)
\(234\) 3.34993 + 1.33339i 0.218992 + 0.0871667i
\(235\) −3.18776 + 5.52136i −0.207946 + 0.360174i
\(236\) −3.56881 + 6.18137i −0.232310 + 0.402373i
\(237\) 2.03359 + 3.52227i 0.132096 + 0.228796i
\(238\) 0.578076 11.5833i 0.0374711 0.750833i
\(239\) 12.9555 0.838021 0.419010 0.907981i \(-0.362377\pi\)
0.419010 + 0.907981i \(0.362377\pi\)
\(240\) −1.53967 −0.0993854
\(241\) −0.486277 0.842256i −0.0313238 0.0542545i 0.849939 0.526882i \(-0.176639\pi\)
−0.881262 + 0.472627i \(0.843306\pi\)
\(242\) 14.8747 25.7637i 0.956179 1.65615i
\(243\) −1.00000 −0.0641500
\(244\) 3.08454 + 5.34258i 0.197468 + 0.342024i
\(245\) 4.43277 + 9.82392i 0.283199 + 0.627627i
\(246\) 4.84385 0.308832
\(247\) 0.0530158 + 0.363603i 0.00337332 + 0.0231355i
\(248\) 0.611662 1.05943i 0.0388405 0.0672738i
\(249\) 7.02510 0.445198
\(250\) −5.87339 + 10.1730i −0.371466 + 0.643398i
\(251\) 4.83297 8.37095i 0.305054 0.528369i −0.672219 0.740352i \(-0.734659\pi\)
0.977273 + 0.211983i \(0.0679921\pi\)
\(252\) 2.35438 1.20702i 0.148312 0.0760354i
\(253\) 29.0204 50.2647i 1.82449 3.16012i
\(254\) −6.37783 −0.400181
\(255\) 3.37459 5.84496i 0.211325 0.366026i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −13.5595 + 23.4858i −0.845819 + 1.46500i 0.0390891 + 0.999236i \(0.487554\pi\)
−0.884908 + 0.465766i \(0.845779\pi\)
\(258\) −0.877054 1.51910i −0.0546030 0.0945752i
\(259\) −8.54296 5.51761i −0.530834 0.342847i
\(260\) −5.15780 2.05299i −0.319873 0.127321i
\(261\) 3.51255 + 6.08392i 0.217421 + 0.376585i
\(262\) 10.8536 0.670539
\(263\) 4.72830 0.291560 0.145780 0.989317i \(-0.453431\pi\)
0.145780 + 0.989317i \(0.453431\pi\)
\(264\) −6.38352 −0.392878
\(265\) 12.6587 0.777617
\(266\) 0.226499 + 0.146288i 0.0138875 + 0.00896949i
\(267\) −7.77395 + 13.4649i −0.475758 + 0.824037i
\(268\) 0.857596 + 1.48540i 0.0523860 + 0.0907352i
\(269\) 13.3480 + 23.1194i 0.813841 + 1.40961i 0.910157 + 0.414263i \(0.135961\pi\)
−0.0963164 + 0.995351i \(0.530706\pi\)
\(270\) 1.53967 0.0937014
\(271\) −2.40455 + 4.16481i −0.146066 + 0.252994i −0.929770 0.368140i \(-0.879995\pi\)
0.783704 + 0.621134i \(0.213328\pi\)
\(272\) 4.38352 0.265790
\(273\) 9.49645 0.904138i 0.574751 0.0547209i
\(274\) 7.94105 0.479736
\(275\) −8.39245 + 14.5361i −0.506084 + 0.876563i
\(276\) −9.09227 −0.547291
\(277\) 12.6133 + 21.8469i 0.757862 + 1.31265i 0.943939 + 0.330120i \(0.107089\pi\)
−0.186077 + 0.982535i \(0.559577\pi\)
\(278\) 5.72452 + 9.91517i 0.343334 + 0.594672i
\(279\) −0.611662 + 1.05943i −0.0366192 + 0.0634264i
\(280\) −3.62497 + 1.85842i −0.216633 + 0.111062i
\(281\) −3.38912 −0.202178 −0.101089 0.994877i \(-0.532233\pi\)
−0.101089 + 0.994877i \(0.532233\pi\)
\(282\) 4.14083 0.246583
\(283\) −10.5072 −0.624591 −0.312296 0.949985i \(-0.601098\pi\)
−0.312296 + 0.949985i \(0.601098\pi\)
\(284\) −9.14651 −0.542746
\(285\) 0.0784553 + 0.135889i 0.00464729 + 0.00804934i
\(286\) −21.3844 8.51175i −1.26448 0.503310i
\(287\) 11.4042 5.84664i 0.673171 0.345116i
\(288\) 0.500000 + 0.866025i 0.0294628 + 0.0510310i
\(289\) −1.10762 + 1.91846i −0.0651542 + 0.112850i
\(290\) −5.40818 9.36724i −0.317579 0.550063i
\(291\) −0.996781 + 1.72648i −0.0584324 + 0.101208i
\(292\) −9.65056 −0.564756
\(293\) −6.47179 + 11.2095i −0.378086 + 0.654864i −0.990784 0.135453i \(-0.956751\pi\)
0.612698 + 0.790317i \(0.290084\pi\)
\(294\) 4.08618 5.68358i 0.238311 0.331473i
\(295\) −5.49480 + 9.51728i −0.319920 + 0.554117i
\(296\) 1.92192 3.32887i 0.111710 0.193487i
\(297\) 6.38352 0.370409
\(298\) −10.6068 + 18.3715i −0.614434 + 1.06423i
\(299\) −30.4585 12.1236i −1.76146 0.701125i
\(300\) 2.62941 0.151809
\(301\) −3.89851 2.51791i −0.224706 0.145130i
\(302\) 8.72661 + 15.1149i 0.502160 + 0.869767i
\(303\) 0.741985 0.0426259
\(304\) −0.0509558 + 0.0882581i −0.00292252 + 0.00506195i
\(305\) 4.74918 + 8.22582i 0.271937 + 0.471009i
\(306\) −4.38352 −0.250589
\(307\) 28.9573 1.65268 0.826339 0.563173i \(-0.190419\pi\)
0.826339 + 0.563173i \(0.190419\pi\)
\(308\) −15.0292 + 7.70506i −0.856369 + 0.439037i
\(309\) −2.87705 4.98320i −0.163670 0.283485i
\(310\) 0.941758 1.63117i 0.0534883 0.0926444i
\(311\) −15.8321 + 27.4220i −0.897757 + 1.55496i −0.0674027 + 0.997726i \(0.521471\pi\)
−0.830355 + 0.557235i \(0.811862\pi\)
\(312\) 0.520213 + 3.56783i 0.0294513 + 0.201988i
\(313\) 1.35811 + 2.35231i 0.0767648 + 0.132961i 0.901852 0.432044i \(-0.142208\pi\)
−0.825088 + 0.565005i \(0.808874\pi\)
\(314\) −10.6720 18.4844i −0.602255 1.04314i
\(315\) 3.62497 1.85842i 0.204244 0.104710i
\(316\) −2.03359 + 3.52227i −0.114398 + 0.198143i
\(317\) 15.3346 + 26.5603i 0.861278 + 1.49178i 0.870696 + 0.491821i \(0.163668\pi\)
−0.00941891 + 0.999956i \(0.502998\pi\)
\(318\) −4.11084 7.12019i −0.230525 0.399280i
\(319\) −22.4224 38.8368i −1.25542 2.17444i
\(320\) −0.769836 1.33339i −0.0430351 0.0745390i
\(321\) −1.43530 + 2.48601i −0.0801104 + 0.138755i
\(322\) −21.4066 + 10.9746i −1.19295 + 0.611590i
\(323\) −0.223366 0.386881i −0.0124284 0.0215266i
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) 8.80835 + 3.50604i 0.488600 + 0.194480i
\(326\) −8.37384 + 14.5039i −0.463784 + 0.803297i
\(327\) 4.52510 7.83771i 0.250239 0.433426i
\(328\) 2.42192 + 4.19490i 0.133728 + 0.231624i
\(329\) 9.74907 4.99808i 0.537484 0.275553i
\(330\) −9.82852 −0.541042
\(331\) 20.0753 1.10344 0.551719 0.834030i \(-0.313972\pi\)
0.551719 + 0.834030i \(0.313972\pi\)
\(332\) 3.51255 + 6.08392i 0.192776 + 0.333898i
\(333\) −1.92192 + 3.32887i −0.105321 + 0.182421i
\(334\) 24.8933 1.36210
\(335\) 1.32042 + 2.28703i 0.0721420 + 0.124954i
\(336\) 2.22250 + 1.43544i 0.121247 + 0.0783096i
\(337\) 29.0567 1.58282 0.791408 0.611288i \(-0.209348\pi\)
0.791408 + 0.611288i \(0.209348\pi\)
\(338\) −3.01464 + 12.6456i −0.163975 + 0.687832i
\(339\) 0.302154 0.523346i 0.0164108 0.0284243i
\(340\) 6.74918 0.366026
\(341\) 3.90455 6.76289i 0.211443 0.366231i
\(342\) 0.0509558 0.0882581i 0.00275538 0.00477245i
\(343\) 2.76020 18.3134i 0.149037 0.988832i
\(344\) 0.877054 1.51910i 0.0472876 0.0819045i
\(345\) −13.9991 −0.753687
\(346\) 9.44989 16.3677i 0.508029 0.879933i
\(347\) 4.65985 + 8.07109i 0.250154 + 0.433279i 0.963568 0.267464i \(-0.0861855\pi\)
−0.713414 + 0.700742i \(0.752852\pi\)
\(348\) −3.51255 + 6.08392i −0.188293 + 0.326132i
\(349\) −12.0769 20.9178i −0.646461 1.11970i −0.983962 0.178378i \(-0.942915\pi\)
0.337501 0.941325i \(-0.390418\pi\)
\(350\) 6.19063 3.17376i 0.330903 0.169645i
\(351\) −0.520213 3.56783i −0.0277669 0.190436i
\(352\) −3.19176 5.52829i −0.170121 0.294659i
\(353\) −5.17326 −0.275345 −0.137672 0.990478i \(-0.543962\pi\)
−0.137672 + 0.990478i \(0.543962\pi\)
\(354\) 7.13763 0.379361
\(355\) −14.0826 −0.747428
\(356\) −15.5479 −0.824037
\(357\) −10.3205 + 5.29102i −0.546217 + 0.280030i
\(358\) −0.792917 + 1.37337i −0.0419069 + 0.0725850i
\(359\) −16.7226 28.9643i −0.882584 1.52868i −0.848458 0.529262i \(-0.822469\pi\)
−0.0341253 0.999418i \(-0.510865\pi\)
\(360\) 0.769836 + 1.33339i 0.0405739 + 0.0702761i
\(361\) −18.9896 −0.999453
\(362\) −6.57401 + 11.3865i −0.345522 + 0.598462i
\(363\) −29.7493 −1.56143
\(364\) 5.53123 + 7.77210i 0.289915 + 0.407369i
\(365\) −14.8587 −0.777739
\(366\) 3.08454 5.34258i 0.161232 0.279261i
\(367\) −7.96108 −0.415565 −0.207783 0.978175i \(-0.566625\pi\)
−0.207783 + 0.978175i \(0.566625\pi\)
\(368\) −4.54614 7.87414i −0.236984 0.410468i
\(369\) −2.42192 4.19490i −0.126080 0.218378i
\(370\) 2.95913 5.12537i 0.153838 0.266455i
\(371\) −18.2727 11.8017i −0.948672 0.612715i
\(372\) −1.22332 −0.0634264
\(373\) 35.5973 1.84316 0.921579 0.388191i \(-0.126900\pi\)
0.921579 + 0.388191i \(0.126900\pi\)
\(374\) 27.9823 1.44693
\(375\) 11.7468 0.606602
\(376\) 2.07041 + 3.58606i 0.106773 + 0.184937i
\(377\) −19.8791 + 15.6971i −1.02382 + 0.808442i
\(378\) −2.22250 1.43544i −0.114313 0.0738310i
\(379\) 2.29603 + 3.97683i 0.117939 + 0.204276i 0.918951 0.394372i \(-0.129038\pi\)
−0.801012 + 0.598649i \(0.795705\pi\)
\(380\) −0.0784553 + 0.135889i −0.00402467 + 0.00697093i
\(381\) 3.18892 + 5.52337i 0.163373 + 0.282971i
\(382\) 6.35191 11.0018i 0.324992 0.562903i
\(383\) 10.4181 0.532341 0.266171 0.963926i \(-0.414242\pi\)
0.266171 + 0.963926i \(0.414242\pi\)
\(384\) −0.500000 + 0.866025i −0.0255155 + 0.0441942i
\(385\) −23.1401 + 11.8633i −1.17933 + 0.604608i
\(386\) −4.09138 + 7.08648i −0.208246 + 0.360692i
\(387\) −0.877054 + 1.51910i −0.0445832 + 0.0772203i
\(388\) −1.99356 −0.101208
\(389\) −6.19665 + 10.7329i −0.314183 + 0.544180i −0.979263 0.202591i \(-0.935064\pi\)
0.665081 + 0.746771i \(0.268397\pi\)
\(390\) 0.800958 + 5.49328i 0.0405581 + 0.278163i
\(391\) 39.8562 2.01561
\(392\) 6.96522 + 0.696949i 0.351797 + 0.0352012i
\(393\) −5.42681 9.39952i −0.273747 0.474143i
\(394\) −4.18699 −0.210938
\(395\) −3.13105 + 5.42314i −0.157540 + 0.272868i
\(396\) 3.19176 + 5.52829i 0.160392 + 0.277807i
\(397\) 0.824424 0.0413766 0.0206883 0.999786i \(-0.493414\pi\)
0.0206883 + 0.999786i \(0.493414\pi\)
\(398\) −3.91595 −0.196289
\(399\) 0.0134396 0.269298i 0.000672821 0.0134818i
\(400\) 1.31471 + 2.27714i 0.0657353 + 0.113857i
\(401\) −13.4698 + 23.3303i −0.672648 + 1.16506i 0.304502 + 0.952512i \(0.401510\pi\)
−0.977150 + 0.212550i \(0.931823\pi\)
\(402\) 0.857596 1.48540i 0.0427730 0.0740850i
\(403\) −4.09805 1.63117i −0.204139 0.0812545i
\(404\) 0.370993 + 0.642578i 0.0184576 + 0.0319695i
\(405\) −0.769836 1.33339i −0.0382535 0.0662569i
\(406\) −0.926434 + 18.5636i −0.0459782 + 0.921295i
\(407\) 12.2686 21.2499i 0.608134 1.05332i
\(408\) −2.19176 3.79624i −0.108508 0.187942i
\(409\) 5.57528 + 9.65666i 0.275680 + 0.477491i 0.970306 0.241879i \(-0.0777638\pi\)
−0.694627 + 0.719370i \(0.744430\pi\)
\(410\) 3.72897 + 6.45876i 0.184161 + 0.318976i
\(411\) −3.97052 6.87715i −0.195852 0.339225i
\(412\) 2.87705 4.98320i 0.141742 0.245505i
\(413\) 16.8047 8.61529i 0.826904 0.423931i
\(414\) 4.54614 + 7.87414i 0.223430 + 0.386993i
\(415\) 5.40818 + 9.36724i 0.265477 + 0.459820i
\(416\) −2.82972 + 2.23443i −0.138738 + 0.109552i
\(417\) 5.72452 9.91517i 0.280331 0.485548i
\(418\) −0.325278 + 0.563397i −0.0159098 + 0.0275567i
\(419\) −13.2788 22.9995i −0.648710 1.12360i −0.983431 0.181282i \(-0.941975\pi\)
0.334721 0.942317i \(-0.391358\pi\)
\(420\) 3.42192 + 2.21010i 0.166973 + 0.107842i
\(421\) −13.7766 −0.671432 −0.335716 0.941963i \(-0.608978\pi\)
−0.335716 + 0.941963i \(0.608978\pi\)
\(422\) 14.4815 0.704950
\(423\) −2.07041 3.58606i −0.100667 0.174360i
\(424\) 4.11084 7.12019i 0.199640 0.345787i
\(425\) −11.5261 −0.559097
\(426\) 4.57326 + 7.92111i 0.221575 + 0.383779i
\(427\) 0.813547 16.3016i 0.0393703 0.788888i
\(428\) −2.87059 −0.138755
\(429\) 3.32079 + 22.7753i 0.160329 + 1.09960i
\(430\) 1.35038 2.33892i 0.0651209 0.112793i
\(431\) −10.7549 −0.518046 −0.259023 0.965871i \(-0.583401\pi\)
−0.259023 + 0.965871i \(0.583401\pi\)
\(432\) 0.500000 0.866025i 0.0240563 0.0416667i
\(433\) −16.7913 + 29.0833i −0.806937 + 1.39766i 0.108038 + 0.994147i \(0.465543\pi\)
−0.914975 + 0.403509i \(0.867790\pi\)
\(434\) −2.88016 + 1.47658i −0.138252 + 0.0708781i
\(435\) −5.40818 + 9.36724i −0.259302 + 0.449125i
\(436\) 9.05021 0.433426
\(437\) −0.463305 + 0.802467i −0.0221629 + 0.0383872i
\(438\) 4.82528 + 8.35763i 0.230561 + 0.399343i
\(439\) 0.605618 1.04896i 0.0289046 0.0500642i −0.851211 0.524823i \(-0.824131\pi\)
0.880116 + 0.474759i \(0.157465\pi\)
\(440\) −4.91426 8.51175i −0.234278 0.405782i
\(441\) −6.96522 0.696949i −0.331677 0.0331880i
\(442\) −2.28037 15.6396i −0.108466 0.743901i
\(443\) −4.92357 8.52787i −0.233926 0.405171i 0.725034 0.688713i \(-0.241824\pi\)
−0.958960 + 0.283542i \(0.908491\pi\)
\(444\) −3.84385 −0.182421
\(445\) −23.9386 −1.13480
\(446\) 11.9783 0.567190
\(447\) 21.2136 1.00337
\(448\) −0.131875 + 2.64246i −0.00623050 + 0.124845i
\(449\) 17.5968 30.4786i 0.830446 1.43837i −0.0672397 0.997737i \(-0.521419\pi\)
0.897685 0.440637i \(-0.145247\pi\)
\(450\) −1.31471 2.27714i −0.0619758 0.107345i
\(451\) 15.4604 + 26.7782i 0.728002 + 1.26094i
\(452\) 0.604308 0.0284243
\(453\) 8.72661 15.1149i 0.410012 0.710162i
\(454\) 4.29952 0.201786
\(455\) 8.51628 + 11.9665i 0.399249 + 0.560997i
\(456\) 0.101912 0.00477245
\(457\) 17.8946 30.9943i 0.837073 1.44985i −0.0552593 0.998472i \(-0.517599\pi\)
0.892332 0.451380i \(-0.149068\pi\)
\(458\) −22.2971 −1.04188
\(459\) 2.19176 + 3.79624i 0.102303 + 0.177193i
\(460\) −6.99956 12.1236i −0.326356 0.565265i
\(461\) −16.5830 + 28.7225i −0.772346 + 1.33774i 0.163929 + 0.986472i \(0.447583\pi\)
−0.936274 + 0.351270i \(0.885750\pi\)
\(462\) 14.1874 + 9.16315i 0.660057 + 0.426308i
\(463\) −23.6423 −1.09875 −0.549374 0.835576i \(-0.685134\pi\)
−0.549374 + 0.835576i \(0.685134\pi\)
\(464\) −7.02510 −0.326132
\(465\) −1.88352 −0.0873460
\(466\) −3.81382 −0.176672
\(467\) −14.1464 24.5024i −0.654620 1.13383i −0.981989 0.188938i \(-0.939495\pi\)
0.327369 0.944896i \(-0.393838\pi\)
\(468\) 2.82972 2.23443i 0.130804 0.103287i
\(469\) 0.226191 4.53233i 0.0104445 0.209284i
\(470\) 3.18776 + 5.52136i 0.147040 + 0.254681i
\(471\) −10.6720 + 18.4844i −0.491739 + 0.851718i
\(472\) 3.56881 + 6.18137i 0.164268 + 0.284520i
\(473\) 5.59869 9.69722i 0.257428 0.445879i
\(474\) 4.06717 0.186811
\(475\) 0.133984 0.232067i 0.00614760 0.0106480i
\(476\) −9.74238 6.29227i −0.446541 0.288406i
\(477\) −4.11084 + 7.12019i −0.188222 + 0.326011i
\(478\) 6.47775 11.2198i 0.296285 0.513181i
\(479\) −18.5825 −0.849056 −0.424528 0.905415i \(-0.639560\pi\)
−0.424528 + 0.905415i \(0.639560\pi\)
\(480\) −0.769836 + 1.33339i −0.0351380 + 0.0608609i
\(481\) −12.8766 5.12537i −0.587124 0.233697i
\(482\) −0.972553 −0.0442986
\(483\) 20.2076 + 13.0514i 0.919478 + 0.593859i
\(484\) −14.8747 25.7637i −0.676121 1.17108i
\(485\) −3.06943 −0.139376
\(486\) −0.500000 + 0.866025i −0.0226805 + 0.0392837i
\(487\) −14.3184 24.8002i −0.648827 1.12380i −0.983403 0.181433i \(-0.941926\pi\)
0.334576 0.942369i \(-0.391407\pi\)
\(488\) 6.16908 0.279261
\(489\) 16.7477 0.757356
\(490\) 10.7241 + 1.07307i 0.484468 + 0.0484765i
\(491\) −4.18769 7.25330i −0.188988 0.327337i 0.755925 0.654658i \(-0.227187\pi\)
−0.944913 + 0.327321i \(0.893854\pi\)
\(492\) 2.42192 4.19490i 0.109189 0.189120i
\(493\) 15.3973 26.6690i 0.693461 1.20111i
\(494\) 0.341397 + 0.135889i 0.0153602 + 0.00611391i
\(495\) 4.91426 + 8.51175i 0.220880 + 0.382575i
\(496\) −0.611662 1.05943i −0.0274644 0.0475698i
\(497\) 20.3282 + 13.1293i 0.911842 + 0.588928i
\(498\) 3.51255 6.08392i 0.157401 0.272627i
\(499\) 0.333676 + 0.577944i 0.0149374 + 0.0258723i 0.873397 0.487008i \(-0.161912\pi\)
−0.858460 + 0.512880i \(0.828578\pi\)
\(500\) 5.87339 + 10.1730i 0.262666 + 0.454951i
\(501\) −12.4467 21.5582i −0.556075 0.963151i
\(502\) −4.83297 8.37095i −0.215706 0.373614i
\(503\) 6.58181 11.4000i 0.293468 0.508302i −0.681159 0.732136i \(-0.738524\pi\)
0.974627 + 0.223833i \(0.0718571\pi\)
\(504\) 0.131875 2.64246i 0.00587417 0.117705i
\(505\) 0.571207 + 0.989359i 0.0254184 + 0.0440259i
\(506\) −29.0204 50.2647i −1.29011 2.23454i
\(507\) 12.4588 3.71206i 0.553313 0.164858i
\(508\) −3.18892 + 5.52337i −0.141485 + 0.245060i
\(509\) −1.30380 + 2.25825i −0.0577899 + 0.100095i −0.893473 0.449117i \(-0.851739\pi\)
0.835683 + 0.549212i \(0.185072\pi\)
\(510\) −3.37459 5.84496i −0.149429 0.258819i
\(511\) 21.4484 + 13.8528i 0.948821 + 0.612811i
\(512\) −1.00000 −0.0441942
\(513\) −0.101912 −0.00449951
\(514\) 13.5595 + 23.4858i 0.598084 + 1.03591i
\(515\) 4.42972 7.67250i 0.195197 0.338091i
\(516\) −1.75411 −0.0772203
\(517\) 13.2165 + 22.8917i 0.581262 + 1.00678i
\(518\) −9.04987 + 4.63962i −0.397628 + 0.203853i
\(519\) −18.8998 −0.829609
\(520\) −4.35684 + 3.44029i −0.191060 + 0.150867i
\(521\) 4.42237 7.65976i 0.193747 0.335580i −0.752742 0.658316i \(-0.771269\pi\)
0.946489 + 0.322736i \(0.104602\pi\)
\(522\) 7.02510 0.307480
\(523\) 12.1996 21.1303i 0.533449 0.923962i −0.465787 0.884897i \(-0.654229\pi\)
0.999237 0.0390648i \(-0.0124379\pi\)
\(524\) 5.42681 9.39952i 0.237071 0.410620i
\(525\) −5.84387 3.77436i −0.255048 0.164726i
\(526\) 2.36415 4.09483i 0.103082 0.178543i
\(527\) 5.36246 0.233592
\(528\) −3.19176 + 5.52829i −0.138904 + 0.240588i
\(529\) −29.8347 51.6753i −1.29716 2.24675i
\(530\) 6.32935 10.9627i 0.274929 0.476191i
\(531\) −3.56881 6.18137i −0.154873 0.268248i
\(532\) 0.239939 0.123010i 0.0104027 0.00533316i
\(533\) 13.7067 10.8232i 0.593705 0.468807i
\(534\) 7.77395 + 13.4649i 0.336412 + 0.582682i
\(535\) −4.41977 −0.191083
\(536\) 1.71519 0.0740850
\(537\) 1.58583 0.0684338
\(538\) 26.6960 1.15094
\(539\) 44.4626 + 4.44899i 1.91514 + 0.191631i
\(540\) 0.769836 1.33339i 0.0331285 0.0573802i
\(541\) −17.5725 30.4365i −0.755501 1.30857i −0.945125 0.326709i \(-0.894060\pi\)
0.189624 0.981857i \(-0.439273\pi\)
\(542\) 2.40455 + 4.16481i 0.103284 + 0.178894i
\(543\) 13.1480 0.564236
\(544\) 2.19176 3.79624i 0.0939709 0.162762i
\(545\) 13.9343 0.596882
\(546\) 3.96522 8.67623i 0.169696 0.371309i
\(547\) −20.9144 −0.894237 −0.447119 0.894475i \(-0.647550\pi\)
−0.447119 + 0.894475i \(0.647550\pi\)
\(548\) 3.97052 6.87715i 0.169612 0.293777i
\(549\) −6.16908 −0.263290
\(550\) 8.39245 + 14.5361i 0.357855 + 0.619823i
\(551\) 0.357970 + 0.620022i 0.0152500 + 0.0264138i
\(552\) −4.54614 + 7.87414i −0.193496 + 0.335146i
\(553\) 9.57566 4.90917i 0.407198 0.208759i
\(554\) 25.2267 1.07178
\(555\) −5.91826 −0.251216
\(556\) 11.4490 0.485548
\(557\) 16.3149 0.691286 0.345643 0.938366i \(-0.387661\pi\)
0.345643 + 0.938366i \(0.387661\pi\)
\(558\) 0.611662 + 1.05943i 0.0258937 + 0.0448492i
\(559\) −5.87615 2.33892i −0.248535 0.0989257i
\(560\) −0.203044 + 4.06852i −0.00858017 + 0.171927i
\(561\) −13.9911 24.2334i −0.590706 1.02313i
\(562\) −1.69456 + 2.93506i −0.0714807 + 0.123808i
\(563\) −3.26864 5.66145i −0.137757 0.238602i 0.788890 0.614534i \(-0.210656\pi\)
−0.926647 + 0.375932i \(0.877323\pi\)
\(564\) 2.07041 3.58606i 0.0871802 0.151000i
\(565\) 0.930436 0.0391437
\(566\) −5.25362 + 9.09954i −0.220826 + 0.382482i
\(567\) −0.131875 + 2.64246i −0.00553822 + 0.110973i
\(568\) −4.57326 + 7.92111i −0.191890 + 0.332363i
\(569\) −16.3751 + 28.3625i −0.686480 + 1.18902i 0.286489 + 0.958084i \(0.407512\pi\)
−0.972969 + 0.230935i \(0.925821\pi\)
\(570\) 0.156911 0.00657226
\(571\) 6.42470 11.1279i 0.268865 0.465688i −0.699704 0.714433i \(-0.746685\pi\)
0.968569 + 0.248745i \(0.0800180\pi\)
\(572\) −18.0636 + 14.2635i −0.755276 + 0.596388i
\(573\) −12.7038 −0.530710
\(574\) 0.638782 12.7997i 0.0266622 0.534249i
\(575\) 11.9537 + 20.7044i 0.498502 + 0.863431i
\(576\) 1.00000 0.0416667
\(577\) 5.71122 9.89213i 0.237761 0.411815i −0.722310 0.691569i \(-0.756920\pi\)
0.960072 + 0.279755i \(0.0902531\pi\)
\(578\) 1.10762 + 1.91846i 0.0460710 + 0.0797973i
\(579\) 8.18276 0.340064
\(580\) −10.8164 −0.449125
\(581\) 0.926434 18.5636i 0.0384350 0.770147i
\(582\) 0.996781 + 1.72648i 0.0413179 + 0.0715647i
\(583\) 26.2416 45.4518i 1.08682 1.88242i
\(584\) −4.82528 + 8.35763i −0.199671 + 0.345841i
\(585\) 4.35684 3.44029i 0.180133 0.142238i
\(586\) 6.47179 + 11.2095i 0.267347 + 0.463059i
\(587\) −19.3637 33.5389i −0.799226 1.38430i −0.920121 0.391634i \(-0.871910\pi\)
0.120895 0.992665i \(-0.461424\pi\)
\(588\) −2.87903 6.38053i −0.118729 0.263129i
\(589\) −0.0623355 + 0.107968i −0.00256849 + 0.00444875i
\(590\) 5.49480 + 9.51728i 0.226217 + 0.391820i
\(591\) 2.09350 + 3.62604i 0.0861149 + 0.149155i
\(592\) −1.92192 3.32887i −0.0789906 0.136816i
\(593\) 7.35202 + 12.7341i 0.301911 + 0.522926i 0.976569 0.215205i \(-0.0690420\pi\)
−0.674658 + 0.738131i \(0.735709\pi\)
\(594\) 3.19176 5.52829i 0.130959 0.226828i
\(595\) −15.0001 9.68803i −0.614943 0.397171i
\(596\) 10.6068 + 18.3715i 0.434471 + 0.752525i
\(597\) 1.95797 + 3.39131i 0.0801345 + 0.138797i
\(598\) −25.7286 + 20.3161i −1.05212 + 0.830785i
\(599\) −17.4915 + 30.2961i −0.714681 + 1.23786i 0.248401 + 0.968657i \(0.420095\pi\)
−0.963082 + 0.269207i \(0.913238\pi\)
\(600\) 1.31471 2.27714i 0.0536726 0.0929637i
\(601\) 18.1926 + 31.5105i 0.742091 + 1.28534i 0.951542 + 0.307520i \(0.0994991\pi\)
−0.209451 + 0.977819i \(0.567168\pi\)
\(602\) −4.12983 + 2.11725i −0.168319 + 0.0862927i
\(603\) −1.71519 −0.0698480
\(604\) 17.4532 0.710162
\(605\) −22.9021 39.6676i −0.931103 1.61272i
\(606\) 0.370993 0.642578i 0.0150705 0.0261030i
\(607\) −21.7987 −0.884782 −0.442391 0.896822i \(-0.645870\pi\)
−0.442391 + 0.896822i \(0.645870\pi\)
\(608\) 0.0509558 + 0.0882581i 0.00206653 + 0.00357934i
\(609\) 16.5397 8.47947i 0.670224 0.343605i
\(610\) 9.49836 0.384577
\(611\) 11.7174 9.25239i 0.474035 0.374312i
\(612\) −2.19176 + 3.79624i −0.0885966 + 0.153454i
\(613\) 13.6141 0.549868 0.274934 0.961463i \(-0.411344\pi\)
0.274934 + 0.961463i \(0.411344\pi\)
\(614\) 14.4786 25.0777i 0.584310 1.01205i
\(615\) 3.72897 6.45876i 0.150366 0.260442i
\(616\) −0.841826 + 16.8682i −0.0339181 + 0.679640i
\(617\) −9.03652 + 15.6517i −0.363797 + 0.630114i −0.988582 0.150682i \(-0.951853\pi\)
0.624786 + 0.780796i \(0.285186\pi\)
\(618\) −5.75411 −0.231464
\(619\) −17.8683 + 30.9488i −0.718188 + 1.24394i 0.243529 + 0.969894i \(0.421695\pi\)
−0.961717 + 0.274045i \(0.911638\pi\)
\(620\) −0.941758 1.63117i −0.0378219 0.0655095i
\(621\) 4.54614 7.87414i 0.182430 0.315978i
\(622\) 15.8321 + 27.4220i 0.634810 + 1.09952i
\(623\) 34.5552 + 22.3180i 1.38443 + 0.894153i
\(624\) 3.34993 + 1.33339i 0.134105 + 0.0533785i
\(625\) 2.46957 + 4.27742i 0.0987828 + 0.171097i
\(626\) 2.71622 0.108562
\(627\) 0.650555 0.0259807
\(628\) −21.3440 −0.851718
\(629\) 16.8496 0.671837
\(630\) 0.203044 4.06852i 0.00808947 0.162094i
\(631\) −8.96088 + 15.5207i −0.356727 + 0.617870i −0.987412 0.158170i \(-0.949441\pi\)
0.630685 + 0.776039i \(0.282774\pi\)
\(632\) 2.03359 + 3.52227i 0.0808917 + 0.140109i
\(633\) −7.24076 12.5414i −0.287795 0.498475i
\(634\) 30.6692 1.21803
\(635\) −4.90988 + 8.50417i −0.194843 + 0.337478i
\(636\) −8.22168 −0.326011
\(637\) −1.13681 25.2132i −0.0450419 0.998985i
\(638\) −44.8449 −1.77543
\(639\) 4.57326 7.92111i 0.180915 0.313354i
\(640\) −1.53967 −0.0608609
\(641\) 16.1541 + 27.9798i 0.638050 + 1.10513i 0.985860 + 0.167570i \(0.0535920\pi\)
−0.347810 + 0.937565i \(0.613075\pi\)
\(642\) 1.43530 + 2.48601i 0.0566466 + 0.0981148i
\(643\) 7.45605 12.9143i 0.294038 0.509288i −0.680723 0.732541i \(-0.738334\pi\)
0.974761 + 0.223253i \(0.0716675\pi\)
\(644\) −1.19904 + 24.0260i −0.0472489 + 0.946757i
\(645\) −2.70075 −0.106342
\(646\) −0.446732 −0.0175764
\(647\) 3.18530 0.125227 0.0626135 0.998038i \(-0.480056\pi\)
0.0626135 + 0.998038i \(0.480056\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 22.7816 + 39.4589i 0.894256 + 1.54890i
\(650\) 7.44050 5.87524i 0.291840 0.230446i
\(651\) 2.71884 + 1.75600i 0.106560 + 0.0688233i
\(652\) 8.37384 + 14.5039i 0.327945 + 0.568017i
\(653\) −4.09680 + 7.09586i −0.160320 + 0.277683i −0.934983 0.354691i \(-0.884586\pi\)
0.774663 + 0.632374i \(0.217919\pi\)
\(654\) −4.52510 7.83771i −0.176946 0.306479i
\(655\) 8.35551 14.4722i 0.326477 0.565474i
\(656\) 4.84385 0.189120
\(657\) 4.82528 8.35763i 0.188252 0.326062i
\(658\) 0.546071 10.9420i 0.0212881 0.426563i
\(659\) 5.27966 9.14463i 0.205666 0.356224i −0.744679 0.667423i \(-0.767397\pi\)
0.950345 + 0.311199i \(0.100731\pi\)
\(660\) −4.91426 + 8.51175i −0.191287 + 0.331319i
\(661\) −36.6166 −1.42422 −0.712111 0.702067i \(-0.752261\pi\)
−0.712111 + 0.702067i \(0.752261\pi\)
\(662\) 10.0377 17.3857i 0.390125 0.675715i
\(663\) −12.4041 + 9.79467i −0.481737 + 0.380393i
\(664\) 7.02510 0.272627
\(665\) 0.369427 0.189395i 0.0143257 0.00734442i
\(666\) 1.92192 + 3.32887i 0.0744730 + 0.128991i
\(667\) −63.8742 −2.47322
\(668\) 12.4467 21.5582i 0.481575 0.834113i
\(669\) −5.98916 10.3735i −0.231554 0.401064i
\(670\) 2.64083 0.102024
\(671\) 39.3805 1.52027
\(672\) 2.35438 1.20702i 0.0908221 0.0465620i
\(673\) 16.0264 + 27.7585i 0.617771 + 1.07001i 0.989892 + 0.141827i \(0.0452975\pi\)
−0.372120 + 0.928184i \(0.621369\pi\)
\(674\) 14.5283 25.1638i 0.559610 0.969273i
\(675\) −1.31471 + 2.27714i −0.0506030 + 0.0876470i
\(676\) 9.44412 + 8.93357i 0.363235 + 0.343599i
\(677\) −21.7427 37.6595i −0.835641 1.44737i −0.893508 0.449048i \(-0.851763\pi\)
0.0578671 0.998324i \(-0.481570\pi\)
\(678\) −0.302154 0.523346i −0.0116042 0.0200990i
\(679\) 4.43070 + 2.86164i 0.170035 + 0.109820i
\(680\) 3.37459 5.84496i 0.129410 0.224144i
\(681\) −2.14976 3.72349i −0.0823789 0.142684i
\(682\) −3.90455 6.76289i −0.149513 0.258964i
\(683\) 15.4733 + 26.8005i 0.592069 + 1.02549i 0.993953 + 0.109804i \(0.0350222\pi\)
−0.401884 + 0.915691i \(0.631644\pi\)
\(684\) −0.0509558 0.0882581i −0.00194835 0.00337463i
\(685\) 6.11330 10.5886i 0.233577 0.404568i
\(686\) −14.4798 11.5471i −0.552841 0.440871i
\(687\) 11.1486 + 19.3099i 0.425344 + 0.736718i
\(688\) −0.877054 1.51910i −0.0334374 0.0579152i
\(689\) −27.5421 10.9627i −1.04927 0.417647i
\(690\) −6.99956 + 12.1236i −0.266469 + 0.461537i
\(691\) 7.75728 13.4360i 0.295101 0.511130i −0.679907 0.733298i \(-0.737980\pi\)
0.975008 + 0.222168i \(0.0713134\pi\)
\(692\) −9.44989 16.3677i −0.359231 0.622206i
\(693\) 0.841826 16.8682i 0.0319783 0.640770i
\(694\) 9.31969 0.353771
\(695\) 17.6278 0.668660
\(696\) 3.51255 + 6.08392i 0.133143 + 0.230610i
\(697\) −10.6166 + 18.3884i −0.402131 + 0.696511i
\(698\) −24.1538 −0.914234
\(699\) 1.90691 + 3.30286i 0.0721259 + 0.124926i
\(700\) 0.346753 6.94812i 0.0131060 0.262614i
\(701\) −12.7687 −0.482267 −0.241133 0.970492i \(-0.577519\pi\)
−0.241133 + 0.970492i \(0.577519\pi\)
\(702\) −3.34993 1.33339i −0.126435 0.0503257i
\(703\) −0.195867 + 0.339251i −0.00738725 + 0.0127951i
\(704\) −6.38352 −0.240588
\(705\) 3.18776 5.52136i 0.120058 0.207946i
\(706\) −2.58663 + 4.48017i −0.0973491 + 0.168614i
\(707\) 0.0978492 1.96067i 0.00368000 0.0737385i
\(708\) 3.56881 6.18137i 0.134124 0.232310i
\(709\) −40.4217 −1.51807 −0.759034 0.651051i \(-0.774328\pi\)
−0.759034 + 0.651051i \(0.774328\pi\)
\(710\) −7.04131 + 12.1959i −0.264256 + 0.457705i
\(711\) −2.03359 3.52227i −0.0762654 0.132096i
\(712\) −7.77395 + 13.4649i −0.291341 + 0.504617i
\(713\) −5.56139 9.63262i −0.208276 0.360744i
\(714\) −0.578076 + 11.5833i −0.0216340 + 0.433494i
\(715\) −27.8120 + 21.9612i −1.04011 + 0.821301i
\(716\) 0.792917 + 1.37337i 0.0296327 + 0.0513253i
\(717\) −12.9555 −0.483832
\(718\) −33.4451 −1.24816
\(719\) −17.4466 −0.650647 −0.325324 0.945603i \(-0.605473\pi\)
−0.325324 + 0.945603i \(0.605473\pi\)
\(720\) 1.53967 0.0573802
\(721\) −13.5473 + 6.94535i −0.504529 + 0.258658i
\(722\) −9.49481 + 16.4455i −0.353360 + 0.612038i
\(723\) 0.486277 + 0.842256i 0.0180848 + 0.0313238i
\(724\) 6.57401 + 11.3865i 0.244321 + 0.423177i
\(725\) 18.4719 0.686029
\(726\) −14.8747 + 25.7637i −0.552050 + 0.956179i
\(727\) 24.4378 0.906347 0.453173 0.891422i \(-0.350292\pi\)
0.453173 + 0.891422i \(0.350292\pi\)
\(728\) 9.49645 0.904138i 0.351962 0.0335096i
\(729\) 1.00000 0.0370370
\(730\) −7.42934 + 12.8680i −0.274972 + 0.476266i
\(731\) 7.68917 0.284394
\(732\) −3.08454 5.34258i −0.114008 0.197468i
\(733\) 17.1113 + 29.6376i 0.632020 + 1.09469i 0.987138 + 0.159869i \(0.0511072\pi\)
−0.355118 + 0.934821i \(0.615559\pi\)
\(734\) −3.98054 + 6.89450i −0.146924 + 0.254481i
\(735\) −4.43277 9.82392i −0.163505 0.362361i
\(736\) −9.09227 −0.335146
\(737\) 10.9490 0.403310
\(738\) −4.84385 −0.178305
\(739\) −23.5714 −0.867086 −0.433543 0.901133i \(-0.642737\pi\)
−0.433543 + 0.901133i \(0.642737\pi\)
\(740\) −2.95913 5.12537i −0.108780 0.188412i
\(741\) −0.0530158 0.363603i −0.00194758 0.0133573i
\(742\) −19.3569 + 9.92377i −0.710616 + 0.364313i
\(743\) −13.4988 23.3807i −0.495225 0.857754i 0.504760 0.863260i \(-0.331581\pi\)
−0.999985 + 0.00550536i \(0.998248\pi\)
\(744\) −0.611662 + 1.05943i −0.0224246 + 0.0388405i
\(745\) 16.3310 + 28.2860i 0.598320 + 1.03632i
\(746\) 17.7986 30.8282i 0.651655 1.12870i
\(747\) −7.02510 −0.257035
\(748\) 13.9911 24.2334i 0.511567 0.886060i
\(749\) 6.37990 + 4.12056i 0.233116 + 0.150562i
\(750\) 5.87339 10.1730i 0.214466 0.371466i
\(751\) 14.6335 25.3460i 0.533985 0.924889i −0.465227 0.885191i \(-0.654027\pi\)
0.999212 0.0396974i \(-0.0126394\pi\)
\(752\) 4.14083 0.151000
\(753\) −4.83297 + 8.37095i −0.176123 + 0.305054i
\(754\) 3.65455 + 25.0643i 0.133091 + 0.912789i
\(755\) 26.8722 0.977981
\(756\) −2.35438 + 1.20702i −0.0856279 + 0.0438991i
\(757\) 10.2367 + 17.7305i 0.372059 + 0.644425i 0.989882 0.141892i \(-0.0453185\pi\)
−0.617823 + 0.786317i \(0.711985\pi\)
\(758\) 4.59205 0.166791
\(759\) −29.0204 + 50.2647i −1.05337 + 1.82449i
\(760\) 0.0784553 + 0.135889i 0.00284587 + 0.00492919i
\(761\) 12.1860 0.441741 0.220870 0.975303i \(-0.429110\pi\)
0.220870 + 0.975303i \(0.429110\pi\)
\(762\) 6.37783 0.231045
\(763\) −20.1141 12.9910i −0.728179 0.470306i
\(764\) −6.35191 11.0018i −0.229804 0.398032i
\(765\) −3.37459 + 5.84496i −0.122009 + 0.211325i
\(766\) 5.20906 9.02236i 0.188211 0.325991i
\(767\) 20.1975 15.9485i 0.729289 0.575868i
\(768\) 0.500000 + 0.866025i 0.0180422 + 0.0312500i
\(769\) −6.71153 11.6247i −0.242024 0.419198i 0.719267 0.694734i \(-0.244478\pi\)
−0.961291 + 0.275536i \(0.911145\pi\)
\(770\) −1.29614 + 25.9715i −0.0467095 + 0.935948i
\(771\) 13.5595 23.4858i 0.488334 0.845819i
\(772\) 4.09138 + 7.08648i 0.147252 + 0.255048i
\(773\) 14.9034 + 25.8134i 0.536037 + 0.928443i 0.999112 + 0.0421240i \(0.0134124\pi\)
−0.463076 + 0.886319i \(0.653254\pi\)
\(774\) 0.877054 + 1.51910i 0.0315251 + 0.0546030i
\(775\) 1.60831 + 2.78567i 0.0577722 +