Properties

Label 546.2.k.e.373.3
Level $546$
Weight $2$
Character 546.373
Analytic conductor $4.360$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.k (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Defining polynomial: \(x^{10} - 2 x^{9} + 15 x^{8} + 14 x^{7} + 110 x^{6} + 36 x^{5} + 233 x^{4} + 164 x^{3} + 345 x^{2} + 76 x + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 373.3
Root \(-0.114009 - 0.197470i\) of defining polynomial
Character \(\chi\) \(=\) 546.373
Dual form 546.2.k.e.445.3

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} -1.00000 q^{3} +(-0.500000 + 0.866025i) q^{4} +(0.114009 - 0.197470i) q^{5} +(-0.500000 - 0.866025i) q^{6} +(0.848534 - 2.50599i) q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{2} -1.00000 q^{3} +(-0.500000 + 0.866025i) q^{4} +(0.114009 - 0.197470i) q^{5} +(-0.500000 - 0.866025i) q^{6} +(0.848534 - 2.50599i) q^{7} -1.00000 q^{8} +1.00000 q^{9} +0.228019 q^{10} +3.41122 q^{11} +(0.500000 - 0.866025i) q^{12} +(-1.62906 + 3.21655i) q^{13} +(2.59452 - 0.518144i) q^{14} +(-0.114009 + 0.197470i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(2.70561 - 4.68625i) q^{17} +(0.500000 + 0.866025i) q^{18} +6.34214 q^{19} +(0.114009 + 0.197470i) q^{20} +(-0.848534 + 2.50599i) q^{21} +(1.70561 + 2.95420i) q^{22} +(0.959623 + 1.66212i) q^{23} +1.00000 q^{24} +(2.47400 + 4.28510i) q^{25} +(-3.60014 + 0.197470i) q^{26} -1.00000 q^{27} +(1.74599 + 1.98785i) q^{28} +(0.851453 - 1.47476i) q^{29} -0.228019 q^{30} +(-1.78052 - 3.08395i) q^{31} +(0.500000 - 0.866025i) q^{32} -3.41122 q^{33} +5.41122 q^{34} +(-0.398117 - 0.453266i) q^{35} +(-0.500000 + 0.866025i) q^{36} +(2.09160 + 3.62276i) q^{37} +(3.17107 + 5.49246i) q^{38} +(1.62906 - 3.21655i) q^{39} +(-0.114009 + 0.197470i) q^{40} +(1.59160 - 2.75673i) q^{41} +(-2.59452 + 0.518144i) q^{42} +(5.17961 + 8.97135i) q^{43} +(-1.70561 + 2.95420i) q^{44} +(0.114009 - 0.197470i) q^{45} +(-0.959623 + 1.66212i) q^{46} +(-5.57211 + 9.65117i) q^{47} +(0.500000 + 0.866025i) q^{48} +(-5.55998 - 4.25284i) q^{49} +(-2.47400 + 4.28510i) q^{50} +(-2.70561 + 4.68625i) q^{51} +(-1.97108 - 3.01908i) q^{52} +(-3.31400 - 5.74001i) q^{53} +(-0.500000 - 0.866025i) q^{54} +(0.388911 - 0.673613i) q^{55} +(-0.848534 + 2.50599i) q^{56} -6.34214 q^{57} +1.70291 q^{58} +(7.38522 - 12.7916i) q^{59} +(-0.114009 - 0.197470i) q^{60} -6.71999 q^{61} +(1.78052 - 3.08395i) q^{62} +(0.848534 - 2.50599i) q^{63} +1.00000 q^{64} +(0.449444 + 0.688406i) q^{65} +(-1.70561 - 2.95420i) q^{66} +11.1613 q^{67} +(2.70561 + 4.68625i) q^{68} +(-0.959623 - 1.66212i) q^{69} +(0.193482 - 0.571413i) q^{70} +(-0.0390952 - 0.0677149i) q^{71} -1.00000 q^{72} +(-6.31721 - 10.9417i) q^{73} +(-2.09160 + 3.62276i) q^{74} +(-2.47400 - 4.28510i) q^{75} +(-3.17107 + 5.49246i) q^{76} +(2.89453 - 8.54848i) q^{77} +(3.60014 - 0.197470i) q^{78} +(0.811077 - 1.40483i) q^{79} -0.228019 q^{80} +1.00000 q^{81} +3.18320 q^{82} -1.70291 q^{83} +(-1.74599 - 1.98785i) q^{84} +(-0.616929 - 1.06855i) q^{85} +(-5.17961 + 8.97135i) q^{86} +(-0.851453 + 1.47476i) q^{87} -3.41122 q^{88} +(-8.77285 - 15.1950i) q^{89} +0.228019 q^{90} +(6.67833 + 6.81175i) q^{91} -1.91925 q^{92} +(1.78052 + 3.08395i) q^{93} -11.1442 q^{94} +(0.723063 - 1.25238i) q^{95} +(-0.500000 + 0.866025i) q^{96} +(6.82663 + 11.8241i) q^{97} +(0.903072 - 6.94150i) q^{98} +3.41122 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10q + 5q^{2} - 10q^{3} - 5q^{4} - 2q^{5} - 5q^{6} + 4q^{7} - 10q^{8} + 10q^{9} + O(q^{10}) \) \( 10q + 5q^{2} - 10q^{3} - 5q^{4} - 2q^{5} - 5q^{6} + 4q^{7} - 10q^{8} + 10q^{9} - 4q^{10} - 12q^{11} + 5q^{12} - 4q^{13} + 2q^{14} + 2q^{15} - 5q^{16} + 4q^{17} + 5q^{18} - 6q^{19} - 2q^{20} - 4q^{21} - 6q^{22} + 6q^{23} + 10q^{24} - q^{25} - 2q^{26} - 10q^{27} - 2q^{28} + 4q^{30} - 10q^{31} + 5q^{32} + 12q^{33} + 8q^{34} - 2q^{35} - 5q^{36} + q^{37} - 3q^{38} + 4q^{39} + 2q^{40} - 4q^{41} - 2q^{42} + 3q^{43} + 6q^{44} - 2q^{45} - 6q^{46} - 15q^{47} + 5q^{48} - 20q^{49} + q^{50} - 4q^{51} + 2q^{52} - 17q^{53} - 5q^{54} + 3q^{55} - 4q^{56} + 6q^{57} + 2q^{59} + 2q^{60} - 22q^{61} + 10q^{62} + 4q^{63} + 10q^{64} + 41q^{65} + 6q^{66} + 2q^{67} + 4q^{68} - 6q^{69} - 16q^{70} + 18q^{71} - 10q^{72} + 12q^{73} - q^{74} + q^{75} + 3q^{76} + 18q^{77} + 2q^{78} - 4q^{79} + 4q^{80} + 10q^{81} - 8q^{82} + 2q^{84} + q^{85} - 3q^{86} + 12q^{88} + 7q^{89} - 4q^{90} - 4q^{91} - 12q^{92} + 10q^{93} - 30q^{94} + 24q^{95} - 5q^{96} - 6q^{97} - 16q^{98} - 12q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) −1.00000 −0.577350
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0.114009 0.197470i 0.0509865 0.0883113i −0.839406 0.543505i \(-0.817097\pi\)
0.890392 + 0.455194i \(0.150430\pi\)
\(6\) −0.500000 0.866025i −0.204124 0.353553i
\(7\) 0.848534 2.50599i 0.320716 0.947176i
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 0.228019 0.0721058
\(11\) 3.41122 1.02852 0.514260 0.857634i \(-0.328067\pi\)
0.514260 + 0.857634i \(0.328067\pi\)
\(12\) 0.500000 0.866025i 0.144338 0.250000i
\(13\) −1.62906 + 3.21655i −0.451819 + 0.892110i
\(14\) 2.59452 0.518144i 0.693414 0.138480i
\(15\) −0.114009 + 0.197470i −0.0294371 + 0.0509865i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 2.70561 4.68625i 0.656206 1.13658i −0.325384 0.945582i \(-0.605493\pi\)
0.981590 0.191001i \(-0.0611733\pi\)
\(18\) 0.500000 + 0.866025i 0.117851 + 0.204124i
\(19\) 6.34214 1.45499 0.727494 0.686115i \(-0.240685\pi\)
0.727494 + 0.686115i \(0.240685\pi\)
\(20\) 0.114009 + 0.197470i 0.0254933 + 0.0441556i
\(21\) −0.848534 + 2.50599i −0.185165 + 0.546852i
\(22\) 1.70561 + 2.95420i 0.363637 + 0.629838i
\(23\) 0.959623 + 1.66212i 0.200095 + 0.346575i 0.948559 0.316601i \(-0.102542\pi\)
−0.748464 + 0.663176i \(0.769208\pi\)
\(24\) 1.00000 0.204124
\(25\) 2.47400 + 4.28510i 0.494801 + 0.857020i
\(26\) −3.60014 + 0.197470i −0.706045 + 0.0387270i
\(27\) −1.00000 −0.192450
\(28\) 1.74599 + 1.98785i 0.329960 + 0.375668i
\(29\) 0.851453 1.47476i 0.158111 0.273856i −0.776077 0.630639i \(-0.782793\pi\)
0.934187 + 0.356783i \(0.116126\pi\)
\(30\) −0.228019 −0.0416303
\(31\) −1.78052 3.08395i −0.319791 0.553895i 0.660653 0.750691i \(-0.270279\pi\)
−0.980444 + 0.196797i \(0.936946\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) −3.41122 −0.593817
\(34\) 5.41122 0.928016
\(35\) −0.398117 0.453266i −0.0672941 0.0766160i
\(36\) −0.500000 + 0.866025i −0.0833333 + 0.144338i
\(37\) 2.09160 + 3.62276i 0.343857 + 0.595577i 0.985145 0.171722i \(-0.0549332\pi\)
−0.641289 + 0.767300i \(0.721600\pi\)
\(38\) 3.17107 + 5.49246i 0.514416 + 0.890994i
\(39\) 1.62906 3.21655i 0.260858 0.515060i
\(40\) −0.114009 + 0.197470i −0.0180265 + 0.0312227i
\(41\) 1.59160 2.75673i 0.248566 0.430529i −0.714562 0.699572i \(-0.753374\pi\)
0.963128 + 0.269043i \(0.0867074\pi\)
\(42\) −2.59452 + 0.518144i −0.400343 + 0.0799513i
\(43\) 5.17961 + 8.97135i 0.789883 + 1.36812i 0.926038 + 0.377431i \(0.123192\pi\)
−0.136154 + 0.990688i \(0.543474\pi\)
\(44\) −1.70561 + 2.95420i −0.257130 + 0.445362i
\(45\) 0.114009 0.197470i 0.0169955 0.0294371i
\(46\) −0.959623 + 1.66212i −0.141489 + 0.245066i
\(47\) −5.57211 + 9.65117i −0.812775 + 1.40777i 0.0981388 + 0.995173i \(0.468711\pi\)
−0.910914 + 0.412596i \(0.864622\pi\)
\(48\) 0.500000 + 0.866025i 0.0721688 + 0.125000i
\(49\) −5.55998 4.25284i −0.794283 0.607548i
\(50\) −2.47400 + 4.28510i −0.349877 + 0.606005i
\(51\) −2.70561 + 4.68625i −0.378861 + 0.656206i
\(52\) −1.97108 3.01908i −0.273340 0.418671i
\(53\) −3.31400 5.74001i −0.455212 0.788451i 0.543488 0.839417i \(-0.317103\pi\)
−0.998700 + 0.0509659i \(0.983770\pi\)
\(54\) −0.500000 0.866025i −0.0680414 0.117851i
\(55\) 0.388911 0.673613i 0.0524407 0.0908299i
\(56\) −0.848534 + 2.50599i −0.113390 + 0.334877i
\(57\) −6.34214 −0.840037
\(58\) 1.70291 0.223603
\(59\) 7.38522 12.7916i 0.961474 1.66532i 0.242669 0.970109i \(-0.421977\pi\)
0.718804 0.695212i \(-0.244690\pi\)
\(60\) −0.114009 0.197470i −0.0147185 0.0254933i
\(61\) −6.71999 −0.860406 −0.430203 0.902732i \(-0.641558\pi\)
−0.430203 + 0.902732i \(0.641558\pi\)
\(62\) 1.78052 3.08395i 0.226127 0.391663i
\(63\) 0.848534 2.50599i 0.106905 0.315725i
\(64\) 1.00000 0.125000
\(65\) 0.449444 + 0.688406i 0.0557467 + 0.0853863i
\(66\) −1.70561 2.95420i −0.209946 0.363637i
\(67\) 11.1613 1.36357 0.681785 0.731553i \(-0.261204\pi\)
0.681785 + 0.731553i \(0.261204\pi\)
\(68\) 2.70561 + 4.68625i 0.328103 + 0.568291i
\(69\) −0.959623 1.66212i −0.115525 0.200095i
\(70\) 0.193482 0.571413i 0.0231255 0.0682969i
\(71\) −0.0390952 0.0677149i −0.00463975 0.00803628i 0.863696 0.504013i \(-0.168144\pi\)
−0.868336 + 0.495976i \(0.834810\pi\)
\(72\) −1.00000 −0.117851
\(73\) −6.31721 10.9417i −0.739373 1.28063i −0.952778 0.303668i \(-0.901789\pi\)
0.213404 0.976964i \(-0.431545\pi\)
\(74\) −2.09160 + 3.62276i −0.243143 + 0.421137i
\(75\) −2.47400 4.28510i −0.285673 0.494801i
\(76\) −3.17107 + 5.49246i −0.363747 + 0.630028i
\(77\) 2.89453 8.54848i 0.329862 0.974189i
\(78\) 3.60014 0.197470i 0.407636 0.0223591i
\(79\) 0.811077 1.40483i 0.0912532 0.158055i −0.816785 0.576941i \(-0.804246\pi\)
0.908039 + 0.418886i \(0.137579\pi\)
\(80\) −0.228019 −0.0254933
\(81\) 1.00000 0.111111
\(82\) 3.18320 0.351525
\(83\) −1.70291 −0.186918 −0.0934592 0.995623i \(-0.529792\pi\)
−0.0934592 + 0.995623i \(0.529792\pi\)
\(84\) −1.74599 1.98785i −0.190503 0.216892i
\(85\) −0.616929 1.06855i −0.0669154 0.115901i
\(86\) −5.17961 + 8.97135i −0.558532 + 0.967406i
\(87\) −0.851453 + 1.47476i −0.0912854 + 0.158111i
\(88\) −3.41122 −0.363637
\(89\) −8.77285 15.1950i −0.929920 1.61067i −0.783451 0.621454i \(-0.786542\pi\)
−0.146469 0.989215i \(-0.546791\pi\)
\(90\) 0.228019 0.0240353
\(91\) 6.67833 + 6.81175i 0.700079 + 0.714065i
\(92\) −1.91925 −0.200095
\(93\) 1.78052 + 3.08395i 0.184632 + 0.319791i
\(94\) −11.1442 −1.14944
\(95\) 0.723063 1.25238i 0.0741847 0.128492i
\(96\) −0.500000 + 0.866025i −0.0510310 + 0.0883883i
\(97\) 6.82663 + 11.8241i 0.693140 + 1.20055i 0.970804 + 0.239875i \(0.0771064\pi\)
−0.277664 + 0.960678i \(0.589560\pi\)
\(98\) 0.903072 6.94150i 0.0912241 0.701198i
\(99\) 3.41122 0.342840
\(100\) −4.94801 −0.494801
\(101\) −16.5165 −1.64345 −0.821724 0.569885i \(-0.806988\pi\)
−0.821724 + 0.569885i \(0.806988\pi\)
\(102\) −5.41122 −0.535790
\(103\) −3.17961 + 5.50725i −0.313296 + 0.542645i −0.979074 0.203505i \(-0.934767\pi\)
0.665777 + 0.746150i \(0.268100\pi\)
\(104\) 1.62906 3.21655i 0.159742 0.315408i
\(105\) 0.398117 + 0.453266i 0.0388523 + 0.0442343i
\(106\) 3.31400 5.74001i 0.321884 0.557519i
\(107\) −3.27362 5.67008i −0.316473 0.548147i 0.663277 0.748374i \(-0.269165\pi\)
−0.979749 + 0.200227i \(0.935832\pi\)
\(108\) 0.500000 0.866025i 0.0481125 0.0833333i
\(109\) 0.797093 + 1.38061i 0.0763477 + 0.132238i 0.901672 0.432422i \(-0.142341\pi\)
−0.825324 + 0.564660i \(0.809007\pi\)
\(110\) 0.777821 0.0741623
\(111\) −2.09160 3.62276i −0.198526 0.343857i
\(112\) −2.59452 + 0.518144i −0.245159 + 0.0489600i
\(113\) −4.12255 7.14047i −0.387817 0.671719i 0.604339 0.796728i \(-0.293437\pi\)
−0.992156 + 0.125009i \(0.960104\pi\)
\(114\) −3.17107 5.49246i −0.296998 0.514416i
\(115\) 0.437624 0.0408086
\(116\) 0.851453 + 1.47476i 0.0790555 + 0.136928i
\(117\) −1.62906 + 3.21655i −0.150606 + 0.297370i
\(118\) 14.7704 1.35973
\(119\) −9.44790 10.7567i −0.866088 0.986062i
\(120\) 0.114009 0.197470i 0.0104076 0.0180265i
\(121\) 0.636396 0.0578542
\(122\) −3.35999 5.81968i −0.304200 0.526889i
\(123\) −1.59160 + 2.75673i −0.143510 + 0.248566i
\(124\) 3.56104 0.319791
\(125\) 2.26833 0.202886
\(126\) 2.59452 0.518144i 0.231138 0.0461599i
\(127\) −6.40560 + 11.0948i −0.568405 + 0.984506i 0.428319 + 0.903627i \(0.359106\pi\)
−0.996724 + 0.0808783i \(0.974227\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) −5.17961 8.97135i −0.456039 0.789883i
\(130\) −0.371455 + 0.733433i −0.0325788 + 0.0643263i
\(131\) −1.75964 + 3.04778i −0.153740 + 0.266286i −0.932600 0.360913i \(-0.882465\pi\)
0.778859 + 0.627199i \(0.215799\pi\)
\(132\) 1.70561 2.95420i 0.148454 0.257130i
\(133\) 5.38152 15.8934i 0.466637 1.37813i
\(134\) 5.58065 + 9.66597i 0.482095 + 0.835012i
\(135\) −0.114009 + 0.197470i −0.00981236 + 0.0169955i
\(136\) −2.70561 + 4.68625i −0.232004 + 0.401843i
\(137\) −8.84776 + 15.3248i −0.755915 + 1.30928i 0.189003 + 0.981977i \(0.439475\pi\)
−0.944918 + 0.327307i \(0.893859\pi\)
\(138\) 0.959623 1.66212i 0.0816885 0.141489i
\(139\) 3.98321 + 6.89912i 0.337851 + 0.585176i 0.984028 0.178012i \(-0.0569665\pi\)
−0.646177 + 0.763188i \(0.723633\pi\)
\(140\) 0.591599 0.118146i 0.0499992 0.00998520i
\(141\) 5.57211 9.65117i 0.469256 0.812775i
\(142\) 0.0390952 0.0677149i 0.00328080 0.00568251i
\(143\) −5.55706 + 10.9723i −0.464705 + 0.917553i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) −0.194147 0.336273i −0.0161231 0.0279260i
\(146\) 6.31721 10.9417i 0.522816 0.905544i
\(147\) 5.55998 + 4.25284i 0.458580 + 0.350768i
\(148\) −4.18320 −0.343857
\(149\) 2.69358 0.220667 0.110333 0.993895i \(-0.464808\pi\)
0.110333 + 0.993895i \(0.464808\pi\)
\(150\) 2.47400 4.28510i 0.202002 0.349877i
\(151\) 6.56432 + 11.3697i 0.534197 + 0.925256i 0.999202 + 0.0399480i \(0.0127192\pi\)
−0.465005 + 0.885308i \(0.653947\pi\)
\(152\) −6.34214 −0.514416
\(153\) 2.70561 4.68625i 0.218735 0.378861i
\(154\) 8.85046 1.76750i 0.713191 0.142429i
\(155\) −0.811985 −0.0652202
\(156\) 1.97108 + 3.01908i 0.157813 + 0.241720i
\(157\) −1.59071 2.75520i −0.126953 0.219889i 0.795542 0.605899i \(-0.207186\pi\)
−0.922495 + 0.386010i \(0.873853\pi\)
\(158\) 1.62215 0.129052
\(159\) 3.31400 + 5.74001i 0.262817 + 0.455212i
\(160\) −0.114009 0.197470i −0.00901323 0.0156114i
\(161\) 4.97952 0.994446i 0.392441 0.0783733i
\(162\) 0.500000 + 0.866025i 0.0392837 + 0.0680414i
\(163\) −16.2940 −1.27625 −0.638124 0.769934i \(-0.720289\pi\)
−0.638124 + 0.769934i \(0.720289\pi\)
\(164\) 1.59160 + 2.75673i 0.124283 + 0.215264i
\(165\) −0.388911 + 0.673613i −0.0302766 + 0.0524407i
\(166\) −0.851453 1.47476i −0.0660856 0.114464i
\(167\) 0.826739 1.43195i 0.0639750 0.110808i −0.832264 0.554380i \(-0.812956\pi\)
0.896239 + 0.443572i \(0.146289\pi\)
\(168\) 0.848534 2.50599i 0.0654658 0.193341i
\(169\) −7.69235 10.4799i −0.591720 0.806144i
\(170\) 0.616929 1.06855i 0.0473163 0.0819543i
\(171\) 6.34214 0.484996
\(172\) −10.3592 −0.789883
\(173\) 14.0420 1.06759 0.533797 0.845613i \(-0.320765\pi\)
0.533797 + 0.845613i \(0.320765\pi\)
\(174\) −1.70291 −0.129097
\(175\) 12.8377 2.56378i 0.970439 0.193804i
\(176\) −1.70561 2.95420i −0.128565 0.222681i
\(177\) −7.38522 + 12.7916i −0.555107 + 0.961474i
\(178\) 8.77285 15.1950i 0.657553 1.13891i
\(179\) −9.33325 −0.697600 −0.348800 0.937197i \(-0.613411\pi\)
−0.348800 + 0.937197i \(0.613411\pi\)
\(180\) 0.114009 + 0.197470i 0.00849776 + 0.0147185i
\(181\) 1.13838 0.0846148 0.0423074 0.999105i \(-0.486529\pi\)
0.0423074 + 0.999105i \(0.486529\pi\)
\(182\) −2.55998 + 9.18948i −0.189758 + 0.681169i
\(183\) 6.71999 0.496756
\(184\) −0.959623 1.66212i −0.0707444 0.122533i
\(185\) 0.953847 0.0701282
\(186\) −1.78052 + 3.08395i −0.130554 + 0.226127i
\(187\) 9.22941 15.9858i 0.674922 1.16900i
\(188\) −5.57211 9.65117i −0.406388 0.703884i
\(189\) −0.848534 + 2.50599i −0.0617217 + 0.182284i
\(190\) 1.44613 0.104913
\(191\) 18.0851 1.30859 0.654294 0.756240i \(-0.272966\pi\)
0.654294 + 0.756240i \(0.272966\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −5.82592 −0.419359 −0.209679 0.977770i \(-0.567242\pi\)
−0.209679 + 0.977770i \(0.567242\pi\)
\(194\) −6.82663 + 11.8241i −0.490124 + 0.848919i
\(195\) −0.449444 0.688406i −0.0321854 0.0492978i
\(196\) 6.46305 2.68867i 0.461647 0.192048i
\(197\) −10.3527 + 17.9315i −0.737602 + 1.27756i 0.215970 + 0.976400i \(0.430709\pi\)
−0.953572 + 0.301165i \(0.902625\pi\)
\(198\) 1.70561 + 2.95420i 0.121212 + 0.209946i
\(199\) 8.19922 14.2015i 0.581227 1.00671i −0.414107 0.910228i \(-0.635906\pi\)
0.995334 0.0964867i \(-0.0307605\pi\)
\(200\) −2.47400 4.28510i −0.174938 0.303002i
\(201\) −11.1613 −0.787257
\(202\) −8.25823 14.3037i −0.581047 1.00640i
\(203\) −2.97325 3.38512i −0.208681 0.237589i
\(204\) −2.70561 4.68625i −0.189430 0.328103i
\(205\) −0.362914 0.628586i −0.0253470 0.0439023i
\(206\) −6.35922 −0.443068
\(207\) 0.959623 + 1.66212i 0.0666984 + 0.115525i
\(208\) 3.60014 0.197470i 0.249625 0.0136921i
\(209\) 21.6344 1.49648
\(210\) −0.193482 + 0.571413i −0.0133515 + 0.0394312i
\(211\) 3.74446 6.48560i 0.257779 0.446487i −0.707867 0.706345i \(-0.750343\pi\)
0.965647 + 0.259858i \(0.0836759\pi\)
\(212\) 6.62799 0.455212
\(213\) 0.0390952 + 0.0677149i 0.00267876 + 0.00463975i
\(214\) 3.27362 5.67008i 0.223780 0.387598i
\(215\) 2.36210 0.161094
\(216\) 1.00000 0.0680414
\(217\) −9.23920 + 1.84513i −0.627198 + 0.125256i
\(218\) −0.797093 + 1.38061i −0.0539860 + 0.0935064i
\(219\) 6.31721 + 10.9417i 0.426877 + 0.739373i
\(220\) 0.388911 + 0.673613i 0.0262203 + 0.0454150i
\(221\) 10.6660 + 16.3369i 0.717470 + 1.09894i
\(222\) 2.09160 3.62276i 0.140379 0.243143i
\(223\) −8.41325 + 14.5722i −0.563393 + 0.975825i 0.433804 + 0.901007i \(0.357171\pi\)
−0.997197 + 0.0748181i \(0.976162\pi\)
\(224\) −1.74599 1.98785i −0.116659 0.132819i
\(225\) 2.47400 + 4.28510i 0.164934 + 0.285673i
\(226\) 4.12255 7.14047i 0.274228 0.474977i
\(227\) 2.11607 3.66514i 0.140449 0.243264i −0.787217 0.616676i \(-0.788479\pi\)
0.927666 + 0.373412i \(0.121812\pi\)
\(228\) 3.17107 5.49246i 0.210009 0.363747i
\(229\) −6.86498 + 11.8905i −0.453650 + 0.785745i −0.998609 0.0527171i \(-0.983212\pi\)
0.544959 + 0.838463i \(0.316545\pi\)
\(230\) 0.218812 + 0.378993i 0.0144280 + 0.0249901i
\(231\) −2.89453 + 8.54848i −0.190446 + 0.562448i
\(232\) −0.851453 + 1.47476i −0.0559007 + 0.0968228i
\(233\) −3.85349 + 6.67444i −0.252450 + 0.437257i −0.964200 0.265176i \(-0.914570\pi\)
0.711749 + 0.702433i \(0.247903\pi\)
\(234\) −3.60014 + 0.197470i −0.235348 + 0.0129090i
\(235\) 1.27054 + 2.20065i 0.0828812 + 0.143554i
\(236\) 7.38522 + 12.7916i 0.480737 + 0.832661i
\(237\) −0.811077 + 1.40483i −0.0526851 + 0.0912532i
\(238\) 4.59160 13.5605i 0.297629 0.878994i
\(239\) −25.2189 −1.63128 −0.815638 0.578562i \(-0.803614\pi\)
−0.815638 + 0.578562i \(0.803614\pi\)
\(240\) 0.228019 0.0147185
\(241\) −13.9183 + 24.1073i −0.896560 + 1.55289i −0.0646969 + 0.997905i \(0.520608\pi\)
−0.831863 + 0.554982i \(0.812725\pi\)
\(242\) 0.318198 + 0.551135i 0.0204545 + 0.0354283i
\(243\) −1.00000 −0.0641500
\(244\) 3.35999 5.81968i 0.215102 0.372567i
\(245\) −1.47370 + 0.613066i −0.0941511 + 0.0391674i
\(246\) −3.18320 −0.202953
\(247\) −10.3317 + 20.3998i −0.657391 + 1.29801i
\(248\) 1.78052 + 3.08395i 0.113063 + 0.195831i
\(249\) 1.70291 0.107917
\(250\) 1.13417 + 1.96443i 0.0717309 + 0.124242i
\(251\) 2.12395 + 3.67878i 0.134062 + 0.232203i 0.925239 0.379385i \(-0.123864\pi\)
−0.791177 + 0.611588i \(0.790531\pi\)
\(252\) 1.74599 + 1.98785i 0.109987 + 0.125223i
\(253\) 3.27348 + 5.66984i 0.205802 + 0.356460i
\(254\) −12.8112 −0.803846
\(255\) 0.616929 + 1.06855i 0.0386336 + 0.0669154i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −7.35836 12.7450i −0.459002 0.795014i 0.539907 0.841725i \(-0.318459\pi\)
−0.998908 + 0.0467106i \(0.985126\pi\)
\(258\) 5.17961 8.97135i 0.322469 0.558532i
\(259\) 10.8534 2.16750i 0.674396 0.134682i
\(260\) −0.820899 + 0.0450268i −0.0509100 + 0.00279245i
\(261\) 0.851453 1.47476i 0.0527036 0.0912854i
\(262\) −3.51927 −0.217421
\(263\) 23.4105 1.44355 0.721777 0.692125i \(-0.243325\pi\)
0.721777 + 0.692125i \(0.243325\pi\)
\(264\) 3.41122 0.209946
\(265\) −1.51131 −0.0928388
\(266\) 16.4548 3.28614i 1.00891 0.201486i
\(267\) 8.77285 + 15.1950i 0.536890 + 0.929920i
\(268\) −5.58065 + 9.66597i −0.340892 + 0.590443i
\(269\) 4.67886 8.10402i 0.285275 0.494111i −0.687401 0.726278i \(-0.741248\pi\)
0.972676 + 0.232167i \(0.0745817\pi\)
\(270\) −0.228019 −0.0138768
\(271\) 7.57375 + 13.1181i 0.460072 + 0.796869i 0.998964 0.0455064i \(-0.0144901\pi\)
−0.538892 + 0.842375i \(0.681157\pi\)
\(272\) −5.41122 −0.328103
\(273\) −6.67833 6.81175i −0.404191 0.412266i
\(274\) −17.6955 −1.06903
\(275\) 8.43936 + 14.6174i 0.508913 + 0.881463i
\(276\) 1.91925 0.115525
\(277\) 16.4391 28.4734i 0.987731 1.71080i 0.358622 0.933483i \(-0.383247\pi\)
0.629109 0.777317i \(-0.283420\pi\)
\(278\) −3.98321 + 6.89912i −0.238897 + 0.413782i
\(279\) −1.78052 3.08395i −0.106597 0.184632i
\(280\) 0.398117 + 0.453266i 0.0237921 + 0.0270878i
\(281\) −16.8072 −1.00263 −0.501316 0.865264i \(-0.667150\pi\)
−0.501316 + 0.865264i \(0.667150\pi\)
\(282\) 11.1442 0.663628
\(283\) −12.1600 −0.722835 −0.361417 0.932404i \(-0.617707\pi\)
−0.361417 + 0.932404i \(0.617707\pi\)
\(284\) 0.0781905 0.00463975
\(285\) −0.723063 + 1.25238i −0.0428306 + 0.0741847i
\(286\) −12.2809 + 0.673613i −0.726182 + 0.0398316i
\(287\) −5.55782 6.32771i −0.328067 0.373513i
\(288\) 0.500000 0.866025i 0.0294628 0.0510310i
\(289\) −6.14063 10.6359i −0.361214 0.625640i
\(290\) 0.194147 0.336273i 0.0114007 0.0197466i
\(291\) −6.82663 11.8241i −0.400184 0.693140i
\(292\) 12.6344 0.739373
\(293\) 13.8954 + 24.0675i 0.811778 + 1.40604i 0.911619 + 0.411037i \(0.134833\pi\)
−0.0998407 + 0.995003i \(0.531833\pi\)
\(294\) −0.903072 + 6.94150i −0.0526683 + 0.404837i
\(295\) −1.68397 2.91672i −0.0980444 0.169818i
\(296\) −2.09160 3.62276i −0.121572 0.210568i
\(297\) −3.41122 −0.197939
\(298\) 1.34679 + 2.33271i 0.0780175 + 0.135130i
\(299\) −6.90955 + 0.378993i −0.399590 + 0.0219178i
\(300\) 4.94801 0.285673
\(301\) 26.8772 5.36757i 1.54918 0.309381i
\(302\) −6.56432 + 11.3697i −0.377734 + 0.654255i
\(303\) 16.5165 0.948845
\(304\) −3.17107 5.49246i −0.181873 0.315014i
\(305\) −0.766142 + 1.32700i −0.0438691 + 0.0759836i
\(306\) 5.41122 0.309339
\(307\) −14.6849 −0.838110 −0.419055 0.907961i \(-0.637639\pi\)
−0.419055 + 0.907961i \(0.637639\pi\)
\(308\) 5.95593 + 6.78098i 0.339371 + 0.386382i
\(309\) 3.17961 5.50725i 0.180882 0.313296i
\(310\) −0.405992 0.703199i −0.0230588 0.0399390i
\(311\) 3.86348 + 6.69174i 0.219078 + 0.379453i 0.954526 0.298127i \(-0.0963619\pi\)
−0.735449 + 0.677580i \(0.763029\pi\)
\(312\) −1.62906 + 3.21655i −0.0922271 + 0.182101i
\(313\) −10.0982 + 17.4906i −0.570784 + 0.988626i 0.425702 + 0.904863i \(0.360027\pi\)
−0.996486 + 0.0837628i \(0.973306\pi\)
\(314\) 1.59071 2.75520i 0.0897692 0.155485i
\(315\) −0.398117 0.453266i −0.0224314 0.0255387i
\(316\) 0.811077 + 1.40483i 0.0456266 + 0.0790276i
\(317\) 7.36088 12.7494i 0.413428 0.716079i −0.581834 0.813308i \(-0.697665\pi\)
0.995262 + 0.0972291i \(0.0309980\pi\)
\(318\) −3.31400 + 5.74001i −0.185840 + 0.321884i
\(319\) 2.90449 5.03073i 0.162620 0.281667i
\(320\) 0.114009 0.197470i 0.00637332 0.0110389i
\(321\) 3.27362 + 5.67008i 0.182716 + 0.316473i
\(322\) 3.35098 + 3.81517i 0.186743 + 0.212611i
\(323\) 17.1594 29.7209i 0.954772 1.65371i
\(324\) −0.500000 + 0.866025i −0.0277778 + 0.0481125i
\(325\) −17.8135 + 0.977083i −0.988116 + 0.0541988i
\(326\) −8.14702 14.1111i −0.451222 0.781539i
\(327\) −0.797093 1.38061i −0.0440793 0.0763477i
\(328\) −1.59160 + 2.75673i −0.0878813 + 0.152215i
\(329\) 19.4576 + 22.1530i 1.07273 + 1.22133i
\(330\) −0.777821 −0.0428176
\(331\) 4.10872 0.225836 0.112918 0.993604i \(-0.463980\pi\)
0.112918 + 0.993604i \(0.463980\pi\)
\(332\) 0.851453 1.47476i 0.0467296 0.0809380i
\(333\) 2.09160 + 3.62276i 0.114619 + 0.198526i
\(334\) 1.65348 0.0904743
\(335\) 1.27249 2.20402i 0.0695237 0.120419i
\(336\) 2.59452 0.518144i 0.141543 0.0282671i
\(337\) −7.44592 −0.405605 −0.202802 0.979220i \(-0.565005\pi\)
−0.202802 + 0.979220i \(0.565005\pi\)
\(338\) 5.22966 11.9017i 0.284456 0.647368i
\(339\) 4.12255 + 7.14047i 0.223906 + 0.387817i
\(340\) 1.23386 0.0669154
\(341\) −6.07375 10.5200i −0.328912 0.569692i
\(342\) 3.17107 + 5.49246i 0.171472 + 0.296998i
\(343\) −15.3754 + 10.3246i −0.830193 + 0.557475i
\(344\) −5.17961 8.97135i −0.279266 0.483703i
\(345\) −0.437624 −0.0235609
\(346\) 7.02100 + 12.1607i 0.377451 + 0.653765i
\(347\) 5.26407 9.11763i 0.282590 0.489460i −0.689432 0.724350i \(-0.742140\pi\)
0.972022 + 0.234890i \(0.0754731\pi\)
\(348\) −0.851453 1.47476i −0.0456427 0.0790555i
\(349\) −4.74127 + 8.21212i −0.253794 + 0.439585i −0.964567 0.263837i \(-0.915012\pi\)
0.710773 + 0.703422i \(0.248345\pi\)
\(350\) 8.63915 + 9.83588i 0.461782 + 0.525750i
\(351\) 1.62906 3.21655i 0.0869526 0.171687i
\(352\) 1.70561 2.95420i 0.0909092 0.157459i
\(353\) 5.44223 0.289661 0.144830 0.989456i \(-0.453736\pi\)
0.144830 + 0.989456i \(0.453736\pi\)
\(354\) −14.7704 −0.785040
\(355\) −0.0178289 −0.000946259
\(356\) 17.5457 0.929920
\(357\) 9.44790 + 10.7567i 0.500036 + 0.569303i
\(358\) −4.66663 8.08283i −0.246639 0.427191i
\(359\) −5.29579 + 9.17257i −0.279501 + 0.484110i −0.971261 0.238018i \(-0.923502\pi\)
0.691760 + 0.722128i \(0.256836\pi\)
\(360\) −0.114009 + 0.197470i −0.00600882 + 0.0104076i
\(361\) 21.2228 1.11699
\(362\) 0.569188 + 0.985863i 0.0299159 + 0.0518158i
\(363\) −0.636396 −0.0334021
\(364\) −9.23831 + 2.37773i −0.484219 + 0.124627i
\(365\) −2.88088 −0.150792
\(366\) 3.35999 + 5.81968i 0.175630 + 0.304200i
\(367\) −7.19793 −0.375729 −0.187864 0.982195i \(-0.560157\pi\)
−0.187864 + 0.982195i \(0.560157\pi\)
\(368\) 0.959623 1.66212i 0.0500238 0.0866438i
\(369\) 1.59160 2.75673i 0.0828553 0.143510i
\(370\) 0.476924 + 0.826056i 0.0247941 + 0.0429446i
\(371\) −17.1965 + 3.43425i −0.892795 + 0.178298i
\(372\) −3.56104 −0.184632
\(373\) −28.5523 −1.47838 −0.739192 0.673494i \(-0.764793\pi\)
−0.739192 + 0.673494i \(0.764793\pi\)
\(374\) 18.4588 0.954483
\(375\) −2.26833 −0.117136
\(376\) 5.57211 9.65117i 0.287360 0.497721i
\(377\) 3.35657 + 5.14121i 0.172872 + 0.264786i
\(378\) −2.59452 + 0.518144i −0.133448 + 0.0266504i
\(379\) 15.5638 26.9572i 0.799457 1.38470i −0.120513 0.992712i \(-0.538454\pi\)
0.919970 0.391989i \(-0.128213\pi\)
\(380\) 0.723063 + 1.25238i 0.0370924 + 0.0642459i
\(381\) 6.40560 11.0948i 0.328169 0.568405i
\(382\) 9.04253 + 15.6621i 0.462656 + 0.801343i
\(383\) 21.9521 1.12170 0.560849 0.827918i \(-0.310475\pi\)
0.560849 + 0.827918i \(0.310475\pi\)
\(384\) −0.500000 0.866025i −0.0255155 0.0441942i
\(385\) −1.35806 1.54619i −0.0692133 0.0788011i
\(386\) −2.91296 5.04539i −0.148266 0.256804i
\(387\) 5.17961 + 8.97135i 0.263294 + 0.456039i
\(388\) −13.6533 −0.693140
\(389\) 1.87365 + 3.24525i 0.0949976 + 0.164541i 0.909608 0.415468i \(-0.136382\pi\)
−0.814610 + 0.580009i \(0.803049\pi\)
\(390\) 0.371455 0.733433i 0.0188094 0.0371388i
\(391\) 10.3855 0.525215
\(392\) 5.55998 + 4.25284i 0.280821 + 0.214801i
\(393\) 1.75964 3.04778i 0.0887619 0.153740i
\(394\) −20.7055 −1.04313
\(395\) −0.184941 0.320327i −0.00930537 0.0161174i
\(396\) −1.70561 + 2.95420i −0.0857100 + 0.148454i
\(397\) −3.91005 −0.196240 −0.0981198 0.995175i \(-0.531283\pi\)
−0.0981198 + 0.995175i \(0.531283\pi\)
\(398\) 16.3984 0.821979
\(399\) −5.38152 + 15.8934i −0.269413 + 0.795663i
\(400\) 2.47400 4.28510i 0.123700 0.214255i
\(401\) 13.1130 + 22.7124i 0.654833 + 1.13420i 0.981936 + 0.189215i \(0.0605944\pi\)
−0.327103 + 0.944989i \(0.606072\pi\)
\(402\) −5.58065 9.66597i −0.278337 0.482095i
\(403\) 12.8203 0.703199i 0.638623 0.0350289i
\(404\) 8.25823 14.3037i 0.410862 0.711634i
\(405\) 0.114009 0.197470i 0.00566517 0.00981236i
\(406\) 1.44497 4.26747i 0.0717128 0.211791i
\(407\) 7.13490 + 12.3580i 0.353664 + 0.612563i
\(408\) 2.70561 4.68625i 0.133948 0.232004i
\(409\) −2.01759 + 3.49457i −0.0997635 + 0.172796i −0.911587 0.411108i \(-0.865142\pi\)
0.811823 + 0.583903i \(0.198475\pi\)
\(410\) 0.362914 0.628586i 0.0179231 0.0310436i
\(411\) 8.84776 15.3248i 0.436428 0.755915i
\(412\) −3.17961 5.50725i −0.156648 0.271323i
\(413\) −25.7890 29.3614i −1.26899 1.44478i
\(414\) −0.959623 + 1.66212i −0.0471629 + 0.0816885i
\(415\) −0.194147 + 0.336273i −0.00953032 + 0.0165070i
\(416\) 1.97108 + 3.01908i 0.0966403 + 0.148022i
\(417\) −3.98321 6.89912i −0.195059 0.337851i
\(418\) 10.8172 + 18.7360i 0.529087 + 0.916406i
\(419\) 1.74139 3.01617i 0.0850723 0.147350i −0.820350 0.571862i \(-0.806221\pi\)
0.905422 + 0.424513i \(0.139555\pi\)
\(420\) −0.591599 + 0.118146i −0.0288671 + 0.00576496i
\(421\) 18.6028 0.906647 0.453323 0.891346i \(-0.350238\pi\)
0.453323 + 0.891346i \(0.350238\pi\)
\(422\) 7.48892 0.364555
\(423\) −5.57211 + 9.65117i −0.270925 + 0.469256i
\(424\) 3.31400 + 5.74001i 0.160942 + 0.278760i
\(425\) 26.7747 1.29877
\(426\) −0.0390952 + 0.0677149i −0.00189417 + 0.00328080i
\(427\) −5.70214 + 16.8402i −0.275946 + 0.814956i
\(428\) 6.54724 0.316473
\(429\) 5.55706 10.9723i 0.268297 0.529750i
\(430\) 1.18105 + 2.04564i 0.0569552 + 0.0986493i
\(431\) −19.0532 −0.917762 −0.458881 0.888498i \(-0.651750\pi\)
−0.458881 + 0.888498i \(0.651750\pi\)
\(432\) 0.500000 + 0.866025i 0.0240563 + 0.0416667i
\(433\) −16.7336 28.9834i −0.804164 1.39285i −0.916854 0.399223i \(-0.869280\pi\)
0.112689 0.993630i \(-0.464053\pi\)
\(434\) −6.21753 7.07881i −0.298451 0.339794i
\(435\) 0.194147 + 0.336273i 0.00930865 + 0.0161231i
\(436\) −1.59419 −0.0763477
\(437\) 6.08607 + 10.5414i 0.291136 + 0.504262i
\(438\) −6.31721 + 10.9417i −0.301848 + 0.522816i
\(439\) −19.0229 32.9487i −0.907915 1.57255i −0.816956 0.576700i \(-0.804340\pi\)
−0.0909591 0.995855i \(-0.528993\pi\)
\(440\) −0.388911 + 0.673613i −0.0185406 + 0.0321132i
\(441\) −5.55998 4.25284i −0.264761 0.202516i
\(442\) −8.81517 + 17.4054i −0.419295 + 0.827892i
\(443\) 4.35467 7.54250i 0.206896 0.358355i −0.743839 0.668359i \(-0.766997\pi\)
0.950735 + 0.310004i \(0.100330\pi\)
\(444\) 4.18320 0.198526
\(445\) −4.00075 −0.189654
\(446\) −16.8265 −0.796758
\(447\) −2.69358 −0.127402
\(448\) 0.848534 2.50599i 0.0400894 0.118397i
\(449\) −11.4930 19.9065i −0.542389 0.939445i −0.998766 0.0496589i \(-0.984187\pi\)
0.456377 0.889786i \(-0.349147\pi\)
\(450\) −2.47400 + 4.28510i −0.116626 + 0.202002i
\(451\) 5.42929 9.40380i 0.255655 0.442808i
\(452\) 8.24510 0.387817
\(453\) −6.56432 11.3697i −0.308419 0.534197i
\(454\) 4.23214 0.198624
\(455\) 2.10651 0.542167i 0.0987546 0.0254172i
\(456\) 6.34214 0.296998
\(457\) −5.79493 10.0371i −0.271075 0.469516i 0.698062 0.716037i \(-0.254046\pi\)
−0.969137 + 0.246521i \(0.920713\pi\)
\(458\) −13.7300 −0.641558
\(459\) −2.70561 + 4.68625i −0.126287 + 0.218735i
\(460\) −0.218812 + 0.378993i −0.0102022 + 0.0176707i
\(461\) −17.4236 30.1785i −0.811496 1.40555i −0.911817 0.410597i \(-0.865320\pi\)
0.100321 0.994955i \(-0.468013\pi\)
\(462\) −8.85046 + 1.76750i −0.411761 + 0.0822316i
\(463\) −39.5334 −1.83727 −0.918635 0.395106i \(-0.870708\pi\)
−0.918635 + 0.395106i \(0.870708\pi\)
\(464\) −1.70291 −0.0790555
\(465\) 0.811985 0.0376549
\(466\) −7.70698 −0.357019
\(467\) −0.425191 + 0.736452i −0.0196755 + 0.0340789i −0.875695 0.482864i \(-0.839597\pi\)
0.856020 + 0.516943i \(0.172930\pi\)
\(468\) −1.97108 3.01908i −0.0911134 0.139557i
\(469\) 9.47074 27.9701i 0.437318 1.29154i
\(470\) −1.27054 + 2.20065i −0.0586059 + 0.101508i
\(471\) 1.59071 + 2.75520i 0.0732962 + 0.126953i
\(472\) −7.38522 + 12.7916i −0.339932 + 0.588780i
\(473\) 17.6688 + 30.6032i 0.812411 + 1.40714i
\(474\) −1.62215 −0.0745080
\(475\) 15.6905 + 27.1767i 0.719929 + 1.24695i
\(476\) 14.0395 2.80379i 0.643499 0.128511i
\(477\) −3.31400 5.74001i −0.151737 0.262817i
\(478\) −12.6095 21.8402i −0.576743 0.998949i
\(479\) 11.5746 0.528859 0.264429 0.964405i \(-0.414816\pi\)
0.264429 + 0.964405i \(0.414816\pi\)
\(480\) 0.114009 + 0.197470i 0.00520379 + 0.00901323i
\(481\) −15.0601 + 0.826056i −0.686681 + 0.0376649i
\(482\) −27.8367 −1.26793
\(483\) −4.97952 + 0.994446i −0.226576 + 0.0452488i
\(484\) −0.318198 + 0.551135i −0.0144635 + 0.0250516i
\(485\) 3.11320 0.141363
\(486\) −0.500000 0.866025i −0.0226805 0.0392837i
\(487\) 6.96602 12.0655i 0.315661 0.546740i −0.663917 0.747806i \(-0.731107\pi\)
0.979578 + 0.201066i \(0.0644405\pi\)
\(488\) 6.71999 0.304200
\(489\) 16.2940 0.736842
\(490\) −1.26778 0.969726i −0.0572724 0.0438078i
\(491\) 4.76716 8.25697i 0.215139 0.372632i −0.738177 0.674608i \(-0.764313\pi\)
0.953316 + 0.301976i \(0.0976462\pi\)
\(492\) −1.59160 2.75673i −0.0717548 0.124283i
\(493\) −4.60740 7.98025i −0.207507 0.359412i
\(494\) −22.8326 + 1.25238i −1.02729 + 0.0563474i
\(495\) 0.388911 0.673613i 0.0174802 0.0302766i
\(496\) −1.78052 + 3.08395i −0.0799478 + 0.138474i
\(497\) −0.202867 + 0.0405139i −0.00909981 + 0.00181730i
\(498\) 0.851453 + 1.47476i 0.0381545 + 0.0660856i
\(499\) 21.9135 37.9553i 0.980982 1.69911i 0.322397 0.946605i \(-0.395511\pi\)
0.658585 0.752506i \(-0.271155\pi\)
\(500\) −1.13417 + 1.96443i −0.0507214 + 0.0878521i
\(501\) −0.826739 + 1.43195i −0.0369360 + 0.0639750i
\(502\) −2.12395 + 3.67878i −0.0947963 + 0.164192i
\(503\) −7.35181 12.7337i −0.327801 0.567768i 0.654274 0.756257i \(-0.272974\pi\)
−0.982075 + 0.188489i \(0.939641\pi\)
\(504\) −0.848534 + 2.50599i −0.0377967 + 0.111626i
\(505\) −1.88303 + 3.26150i −0.0837937 + 0.145135i
\(506\) −3.27348 + 5.66984i −0.145524 + 0.252055i
\(507\) 7.69235 + 10.4799i 0.341629 + 0.465427i
\(508\) −6.40560 11.0948i −0.284202 0.492253i
\(509\) 7.23975 + 12.5396i 0.320896 + 0.555809i 0.980673 0.195653i \(-0.0626826\pi\)
−0.659777 + 0.751461i \(0.729349\pi\)
\(510\) −0.616929 + 1.06855i −0.0273181 + 0.0473163i
\(511\) −32.7802 + 6.54645i −1.45011 + 0.289598i
\(512\) −1.00000 −0.0441942
\(513\) −6.34214 −0.280012
\(514\) 7.35836 12.7450i 0.324563 0.562160i
\(515\) 0.725011 + 1.25576i 0.0319478 + 0.0553352i
\(516\) 10.3592 0.456039
\(517\) −19.0077 + 32.9222i −0.835956 + 1.44792i
\(518\) 7.30380 + 8.31556i 0.320911 + 0.365365i
\(519\) −14.0420 −0.616375
\(520\) −0.449444 0.688406i −0.0197094 0.0301886i
\(521\) 7.18959 + 12.4527i 0.314982 + 0.545564i 0.979434 0.201767i \(-0.0646683\pi\)
−0.664452 + 0.747331i \(0.731335\pi\)
\(522\) 1.70291 0.0745342
\(523\) 0.511770 + 0.886412i 0.0223781 + 0.0387601i 0.876998 0.480495i \(-0.159543\pi\)
−0.854619 + 0.519255i \(0.826210\pi\)
\(524\) −1.75964 3.04778i −0.0768701 0.133143i
\(525\) −12.8377 + 2.56378i −0.560283 + 0.111893i
\(526\) 11.7053 + 20.2741i 0.510374 + 0.883993i
\(527\) −19.2696 −0.839396
\(528\) 1.70561 + 2.95420i 0.0742271 + 0.128565i
\(529\) 9.65825 16.7286i 0.419924 0.727329i
\(530\) −0.755653 1.30883i −0.0328235 0.0568519i
\(531\) 7.38522 12.7916i 0.320491 0.555107i
\(532\) 11.0733 + 12.6072i 0.480088 + 0.546592i
\(533\) 6.27435 + 9.61032i 0.271772 + 0.416269i
\(534\) −8.77285 + 15.1950i −0.379638 + 0.657553i
\(535\) −1.49289 −0.0645434
\(536\) −11.1613 −0.482095
\(537\) 9.33325 0.402760
\(538\) 9.35772 0.403440
\(539\) −18.9663 14.5073i −0.816936 0.624875i
\(540\) −0.114009 0.197470i −0.00490618 0.00849776i
\(541\) 0.804352 1.39318i 0.0345818 0.0598974i −0.848217 0.529650i \(-0.822323\pi\)
0.882798 + 0.469752i \(0.155657\pi\)
\(542\) −7.57375 + 13.1181i −0.325320 + 0.563471i
\(543\) −1.13838 −0.0488524
\(544\) −2.70561 4.68625i −0.116002 0.200921i
\(545\) 0.363504 0.0155708
\(546\) 2.55998 9.18948i 0.109557 0.393273i
\(547\) 26.9289 1.15140 0.575699 0.817661i \(-0.304730\pi\)
0.575699 + 0.817661i \(0.304730\pi\)
\(548\) −8.84776 15.3248i −0.377958 0.654642i
\(549\) −6.71999 −0.286802
\(550\) −8.43936 + 14.6174i −0.359856 + 0.623288i
\(551\) 5.40004 9.35314i 0.230049 0.398457i
\(552\) 0.959623 + 1.66212i 0.0408443 + 0.0707444i
\(553\) −2.83226 3.22459i −0.120440 0.137124i
\(554\) 32.8782 1.39686
\(555\) −0.953847 −0.0404886
\(556\) −7.96642 −0.337851
\(557\) −36.3681 −1.54097 −0.770484 0.637460i \(-0.779985\pi\)
−0.770484 + 0.637460i \(0.779985\pi\)
\(558\) 1.78052 3.08395i 0.0753755 0.130554i
\(559\) −37.2947 + 2.04564i −1.57740 + 0.0865212i
\(560\) −0.193482 + 0.571413i −0.00817609 + 0.0241466i
\(561\) −9.22941 + 15.9858i −0.389666 + 0.674922i
\(562\) −8.40358 14.5554i −0.354484 0.613984i
\(563\) 1.86510 3.23046i 0.0786048 0.136147i −0.824043 0.566527i \(-0.808287\pi\)
0.902648 + 0.430379i \(0.141620\pi\)
\(564\) 5.57211 + 9.65117i 0.234628 + 0.406388i
\(565\) −1.88004 −0.0790938
\(566\) −6.07998 10.5308i −0.255561 0.442644i
\(567\) 0.848534 2.50599i 0.0356351 0.105242i
\(568\) 0.0390952 + 0.0677149i 0.00164040 + 0.00284126i
\(569\) 7.69596 + 13.3298i 0.322632 + 0.558814i 0.981030 0.193855i \(-0.0620992\pi\)
−0.658399 + 0.752669i \(0.728766\pi\)
\(570\) −1.44613 −0.0605716
\(571\) −10.1994 17.6659i −0.426832 0.739296i 0.569757 0.821813i \(-0.307037\pi\)
−0.996590 + 0.0825176i \(0.973704\pi\)
\(572\) −6.72379 10.2987i −0.281136 0.430611i
\(573\) −18.0851 −0.755514
\(574\) 2.70105 7.97706i 0.112740 0.332956i
\(575\) −4.74822 + 8.22416i −0.198015 + 0.342971i
\(576\) 1.00000 0.0416667
\(577\) −5.90380 10.2257i −0.245779 0.425701i 0.716572 0.697513i \(-0.245710\pi\)
−0.962350 + 0.271813i \(0.912377\pi\)
\(578\) 6.14063 10.6359i 0.255417 0.442394i
\(579\) 5.82592 0.242117
\(580\) 0.388295 0.0161231
\(581\) −1.44497 + 4.26747i −0.0599476 + 0.177044i
\(582\) 6.82663 11.8241i 0.282973 0.490124i
\(583\) −11.3048 19.5804i −0.468195 0.810938i
\(584\) 6.31721 + 10.9417i 0.261408 + 0.452772i
\(585\) 0.449444 + 0.688406i 0.0185822 + 0.0284621i
\(586\) −13.8954 + 24.0675i −0.574014 + 0.994221i
\(587\) −21.9241 + 37.9736i −0.904903 + 1.56734i −0.0838564 + 0.996478i \(0.526724\pi\)
−0.821047 + 0.570861i \(0.806610\pi\)
\(588\) −6.46305 + 2.68867i −0.266532 + 0.110879i
\(589\) −11.2923 19.5589i −0.465292 0.805910i
\(590\) 1.68397 2.91672i 0.0693279 0.120079i
\(591\) 10.3527 17.9315i 0.425855 0.737602i
\(592\) 2.09160 3.62276i 0.0859642 0.148894i
\(593\) −5.18125 + 8.97419i −0.212768 + 0.368526i −0.952580 0.304288i \(-0.901581\pi\)
0.739812 + 0.672814i \(0.234915\pi\)
\(594\) −1.70561 2.95420i −0.0699819 0.121212i
\(595\) −3.20127 + 0.639316i −0.131239 + 0.0262094i
\(596\) −1.34679 + 2.33271i −0.0551667 + 0.0955515i
\(597\) −8.19922 + 14.2015i −0.335572 + 0.581227i
\(598\) −3.78300 5.79435i −0.154698 0.236949i
\(599\) −19.7135 34.1448i −0.805471 1.39512i −0.915973 0.401241i \(-0.868579\pi\)
0.110501 0.993876i \(-0.464754\pi\)
\(600\) 2.47400 + 4.28510i 0.101001 + 0.174938i
\(601\) −1.03443 + 1.79169i −0.0421954 + 0.0730845i −0.886352 0.463012i \(-0.846769\pi\)
0.844156 + 0.536097i \(0.180102\pi\)
\(602\) 18.0870 + 20.5926i 0.737173 + 0.839290i
\(603\) 11.1613 0.454523
\(604\) −13.1286 −0.534197
\(605\) 0.0725551 0.125669i 0.00294978 0.00510918i
\(606\) 8.25823 + 14.3037i 0.335467 + 0.581047i
\(607\) 5.77956 0.234585 0.117292 0.993097i \(-0.462579\pi\)
0.117292 + 0.993097i \(0.462579\pi\)
\(608\) 3.17107 5.49246i 0.128604 0.222749i
\(609\) 2.97325 + 3.38512i 0.120482 + 0.137172i
\(610\) −1.53228 −0.0620403
\(611\) −21.9662 33.6453i −0.888657 1.36114i
\(612\) 2.70561 + 4.68625i 0.109368 + 0.189430i
\(613\) 14.9090 0.602170 0.301085 0.953597i \(-0.402651\pi\)
0.301085 + 0.953597i \(0.402651\pi\)
\(614\) −7.34243 12.7175i −0.296317 0.513235i
\(615\) 0.362914 + 0.628586i 0.0146341 + 0.0253470i
\(616\) −2.89453 + 8.54848i −0.116624 + 0.344428i
\(617\) −1.29988 2.25147i −0.0523314 0.0906406i 0.838673 0.544635i \(-0.183332\pi\)
−0.891004 + 0.453995i \(0.849999\pi\)
\(618\) 6.35922 0.255805
\(619\) 24.4693 + 42.3821i 0.983505 + 1.70348i 0.648399 + 0.761300i \(0.275439\pi\)
0.335106 + 0.942180i \(0.391228\pi\)
\(620\) 0.405992 0.703199i 0.0163050 0.0282412i
\(621\) −0.959623 1.66212i −0.0385083 0.0666984i
\(622\) −3.86348 + 6.69174i −0.154911 + 0.268314i
\(623\) −45.5226 + 9.09119i −1.82383 + 0.364231i
\(624\) −3.60014 + 0.197470i −0.144121 + 0.00790513i
\(625\) −12.1114 + 20.9776i −0.484456 + 0.839103i
\(626\) −20.1964 −0.807210
\(627\) −21.6344 −0.863995
\(628\) 3.18143 0.126953
\(629\) 22.6362 0.902564
\(630\) 0.193482 0.571413i 0.00770849 0.0227656i
\(631\) 14.0099 + 24.2659i 0.557726 + 0.966010i 0.997686 + 0.0679924i \(0.0216594\pi\)
−0.439960 + 0.898017i \(0.645007\pi\)
\(632\) −0.811077 + 1.40483i −0.0322629 + 0.0558810i
\(633\) −3.74446 + 6.48560i −0.148829 + 0.257779i
\(634\) 14.7218 0.584676
\(635\) 1.46060 + 2.52983i 0.0579620 + 0.100393i
\(636\) −6.62799 −0.262817
\(637\) 22.7370 10.9558i 0.900871 0.434086i
\(638\) 5.80898 0.229980
\(639\) −0.0390952 0.0677149i −0.00154658 0.00267876i
\(640\) 0.228019 0.00901323
\(641\) 17.9656 31.1173i 0.709598 1.22906i −0.255409 0.966833i \(-0.582210\pi\)
0.965006 0.262226i \(-0.0844566\pi\)
\(642\) −3.27362 + 5.67008i −0.129199 + 0.223780i
\(643\) 10.6007 + 18.3609i 0.418050 + 0.724084i 0.995743 0.0921702i \(-0.0293804\pi\)
−0.577693 + 0.816254i \(0.696047\pi\)
\(644\) −1.62854 + 4.80961i −0.0641737 + 0.189525i
\(645\) −2.36210 −0.0930075
\(646\) 34.3187 1.35025
\(647\) 4.12288 0.162087 0.0810436 0.996711i \(-0.474175\pi\)
0.0810436 + 0.996711i \(0.474175\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 25.1926 43.6348i 0.988895 1.71282i
\(650\) −9.75294 14.9384i −0.382542 0.585933i
\(651\) 9.23920 1.84513i 0.362113 0.0723165i
\(652\) 8.14702 14.1111i 0.319062 0.552632i
\(653\) 23.7186 + 41.0818i 0.928179 + 1.60765i 0.786367 + 0.617760i \(0.211960\pi\)
0.141812 + 0.989894i \(0.454707\pi\)
\(654\) 0.797093 1.38061i 0.0311688 0.0539860i
\(655\) 0.401230 + 0.694951i 0.0156773 + 0.0271540i
\(656\) −3.18320 −0.124283
\(657\) −6.31721 10.9417i −0.246458 0.426877i
\(658\) −9.45624 + 27.9273i −0.368643 + 1.08872i
\(659\) −12.4744 21.6062i −0.485932 0.841659i 0.513937 0.857828i \(-0.328186\pi\)
−0.999869 + 0.0161688i \(0.994853\pi\)
\(660\) −0.388911 0.673613i −0.0151383 0.0262203i
\(661\) −8.61529 −0.335096 −0.167548 0.985864i \(-0.553585\pi\)
−0.167548 + 0.985864i \(0.553585\pi\)
\(662\) 2.05436 + 3.55826i 0.0798450 + 0.138296i
\(663\) −10.6660 16.3369i −0.414232 0.634472i
\(664\) 1.70291 0.0660856
\(665\) −2.52492 2.87468i −0.0979120 0.111475i
\(666\) −2.09160 + 3.62276i −0.0810478 + 0.140379i
\(667\) 3.26830 0.126549
\(668\) 0.826739 + 1.43195i 0.0319875 + 0.0554040i
\(669\) 8.41325 14.5722i 0.325275 0.563393i
\(670\) 2.54498 0.0983213
\(671\) −22.9233 −0.884946
\(672\) 1.74599 + 1.98785i 0.0673528 + 0.0766829i
\(673\) 3.15527 5.46509i 0.121627 0.210664i −0.798783 0.601620i \(-0.794522\pi\)
0.920409 + 0.390956i \(0.127856\pi\)
\(674\) −3.72296 6.44835i −0.143403 0.248381i
\(675\) −2.47400 4.28510i −0.0952244 0.164934i
\(676\) 12.9220 1.42184i 0.497000 0.0546861i
\(677\) −3.67011 + 6.35682i −0.141054 + 0.244313i −0.927894 0.372845i \(-0.878382\pi\)
0.786840 + 0.617157i \(0.211716\pi\)
\(678\) −4.12255 + 7.14047i −0.158326 + 0.274228i
\(679\) 35.4237 7.07436i 1.35944 0.271489i
\(680\) 0.616929 + 1.06855i 0.0236582 + 0.0409771i
\(681\) −2.11607 + 3.66514i −0.0810880 + 0.140449i
\(682\) 6.07375 10.5200i 0.232576 0.402833i
\(683\) −9.95558 + 17.2436i −0.380940 + 0.659807i −0.991197 0.132396i \(-0.957733\pi\)
0.610257 + 0.792204i \(0.291066\pi\)
\(684\) −3.17107 + 5.49246i −0.121249 + 0.210009i
\(685\) 2.01746 + 3.49434i 0.0770830 + 0.133512i
\(686\) −16.6291 8.15319i −0.634900 0.311290i
\(687\) 6.86498 11.8905i 0.261915 0.453650i
\(688\) 5.17961 8.97135i 0.197471 0.342030i
\(689\) 23.8617 1.30883i 0.909058 0.0498624i
\(690\) −0.218812 0.378993i −0.00833003 0.0144280i
\(691\) 9.53454 + 16.5143i 0.362711 + 0.628234i 0.988406 0.151834i \(-0.0485179\pi\)
−0.625695 + 0.780068i \(0.715185\pi\)
\(692\) −7.02100 + 12.1607i −0.266898 + 0.462282i
\(693\) 2.89453 8.54848i 0.109954 0.324730i
\(694\) 10.5281 0.399642
\(695\) 1.81649 0.0689035
\(696\) 0.851453 1.47476i 0.0322743 0.0559007i
\(697\) −8.61248 14.9173i −0.326221 0.565032i
\(698\) −9.48254 −0.358920
\(699\) 3.85349 6.67444i 0.145752 0.252450i
\(700\) −4.19855 + 12.3997i −0.158690 + 0.468663i
\(701\) 21.2816 0.803796 0.401898 0.915685i \(-0.368351\pi\)
0.401898 + 0.915685i \(0.368351\pi\)
\(702\) 3.60014 0.197470i 0.135879 0.00745302i
\(703\) 13.2652 + 22.9760i 0.500307 + 0.866557i
\(704\) 3.41122 0.128565
\(705\) −1.27054 2.20065i −0.0478515 0.0828812i
\(706\) 2.72112 + 4.71311i 0.102411 + 0.177380i
\(707\) −14.0148 + 41.3901i −0.527079 + 1.55663i
\(708\) −7.38522 12.7916i −0.277554 0.480737i
\(709\) −26.8217 −1.00731 −0.503655 0.863905i \(-0.668012\pi\)
−0.503655 + 0.863905i \(0.668012\pi\)
\(710\) −0.00891445 0.0154403i −0.000334553 0.000579463i
\(711\) 0.811077 1.40483i 0.0304177 0.0526851i
\(712\) 8.77285 + 15.1950i 0.328776 + 0.569457i
\(713\) 3.41726 5.91887i 0.127977 0.221663i
\(714\) −4.59160 + 13.5605i −0.171836 + 0.507487i
\(715\) 1.53315 + 2.34830i 0.0573366 + 0.0878215i
\(716\) 4.66663 8.08283i 0.174400 0.302070i
\(717\) 25.2189 0.941818
\(718\) −10.5916 −0.395274
\(719\) −43.1706 −1.60999 −0.804997 0.593279i \(-0.797833\pi\)
−0.804997 + 0.593279i \(0.797833\pi\)
\(720\) −0.228019 −0.00849776
\(721\) 11.1031 + 12.6412i 0.413501 + 0.470782i
\(722\) 10.6114 + 18.3795i 0.394915 + 0.684012i
\(723\) 13.9183 24.1073i 0.517629 0.896560i
\(724\) −0.569188 + 0.985863i −0.0211537 + 0.0366393i
\(725\) 8.42600 0.312934
\(726\) −0.318198 0.551135i −0.0118094 0.0204545i
\(727\) −16.1609 −0.599373 −0.299687 0.954038i \(-0.596882\pi\)
−0.299687 + 0.954038i \(0.596882\pi\)
\(728\) −6.67833 6.81175i −0.247515 0.252460i
\(729\) 1.00000 0.0370370
\(730\) −1.44044 2.49492i −0.0533131 0.0923411i
\(731\) 56.0560 2.07331
\(732\) −3.35999 + 5.81968i −0.124189 + 0.215102i
\(733\) 6.79983 11.7777i 0.251158 0.435018i −0.712687 0.701482i \(-0.752522\pi\)
0.963845 + 0.266464i \(0.0858554\pi\)
\(734\) −3.59896 6.23359i −0.132840 0.230086i
\(735\) 1.47370 0.613066i 0.0543581 0.0226133i
\(736\) 1.91925 0.0707444
\(737\) 38.0736 1.40246
\(738\) 3.18320 0.117175
\(739\) 0.383605 0.0141111 0.00705557 0.999975i \(-0.497754\pi\)
0.00705557 + 0.999975i \(0.497754\pi\)
\(740\) −0.476924 + 0.826056i −0.0175321 + 0.0303664i
\(741\) 10.3317 20.3998i 0.379545 0.749405i
\(742\) −11.5724 13.1754i −0.424835 0.483685i
\(743\) 10.4715 18.1372i 0.384162 0.665388i −0.607491 0.794327i \(-0.707824\pi\)
0.991653 + 0.128939i \(0.0411572\pi\)
\(744\) −1.78052 3.08395i −0.0652771 0.113063i
\(745\) 0.307093 0.531901i 0.0112510 0.0194874i
\(746\) −14.2762 24.7271i −0.522688 0.905322i
\(747\) −1.70291 −0.0623061
\(748\) 9.22941 + 15.9858i 0.337461 + 0.584499i
\(749\) −16.9869 + 3.39241i −0.620689 + 0.123956i
\(750\) −1.13417 1.96443i −0.0414139 0.0717309i
\(751\) −7.90695 13.6952i −0.288529 0.499746i 0.684930 0.728609i \(-0.259833\pi\)
−0.973459 + 0.228862i \(0.926499\pi\)
\(752\) 11.1442 0.406388
\(753\) −2.12395 3.67878i −0.0774009 0.134062i
\(754\) −2.77413 + 5.47748i −0.101028 + 0.199478i
\(755\) 2.99358 0.108947
\(756\) −1.74599 1.98785i −0.0635009 0.0722973i
\(757\) −4.41633 + 7.64930i −0.160514 + 0.278019i −0.935053 0.354507i \(-0.884649\pi\)
0.774539 + 0.632526i \(0.217982\pi\)
\(758\) 31.1275 1.13060
\(759\) −3.27348 5.66984i −0.118820 0.205802i
\(760\) −0.723063 + 1.25238i −0.0262283 + 0.0454287i
\(761\) 38.7406 1.40434 0.702172 0.712007i \(-0.252214\pi\)
0.702172 + 0.712007i \(0.252214\pi\)
\(762\) 12.8112 0.464100
\(763\) 4.13615 0.826018i 0.149739 0.0299038i
\(764\) −9.04253 + 15.6621i −0.327147 + 0.566635i
\(765\) −0.616929 1.06855i −0.0223051 0.0386336i
\(766\) 10.9760 + 19.0111i 0.396580 + 0.686897i
\(767\) 29.1138 + 44.5931i 1.05124 + 1.61016i
\(768\) 0.500000 0.866025i 0.0180422 0.0312500i
\(769\) −9.17950 + 15.8994i −0.331021 + 0.573345i −0.982712 0.185139i \(-0.940726\pi\)
0.651691 + 0.758484i \(0.274060\pi\)
\(770\) 0.660007 1.94921i 0.0237850 0.0702447i
\(771\) 7.35836 + 12.7450i 0.265005 + 0.459002i
\(772\) 2.91296 5.04539i 0.104840 0.181588i
\(773\) −6.42407 + 11.1268i −0.231058 + 0.400204i −0.958120 0.286368i \(-0.907552\pi\)
0.727062 + 0.686572i \(0.240885\pi\)
\(774\) −5.17961 + 8.97135i −0.186177 + 0.322469i
\(775\) 8.81004