Properties

Label 546.2.k.e.373.2
Level $546$
Weight $2$
Character 546.373
Analytic conductor $4.360$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.k (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Defining polynomial: \(x^{10} - 2 x^{9} + 15 x^{8} + 14 x^{7} + 110 x^{6} + 36 x^{5} + 233 x^{4} + 164 x^{3} + 345 x^{2} + 76 x + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 373.2
Root \(0.769836 + 1.33339i\) of defining polynomial
Character \(\chi\) \(=\) 546.373
Dual form 546.2.k.e.445.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} -1.00000 q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.769836 + 1.33339i) q^{5} +(-0.500000 - 0.866025i) q^{6} +(-0.131875 - 2.64246i) q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{2} -1.00000 q^{3} +(-0.500000 + 0.866025i) q^{4} +(-0.769836 + 1.33339i) q^{5} +(-0.500000 - 0.866025i) q^{6} +(-0.131875 - 2.64246i) q^{7} -1.00000 q^{8} +1.00000 q^{9} -1.53967 q^{10} -6.38352 q^{11} +(0.500000 - 0.866025i) q^{12} +(0.520213 - 3.56783i) q^{13} +(2.22250 - 1.43544i) q^{14} +(0.769836 - 1.33339i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-2.19176 + 3.79624i) q^{17} +(0.500000 + 0.866025i) q^{18} +0.101912 q^{19} +(-0.769836 - 1.33339i) q^{20} +(0.131875 + 2.64246i) q^{21} +(-3.19176 - 5.52829i) q^{22} +(-4.54614 - 7.87414i) q^{23} +1.00000 q^{24} +(1.31471 + 2.27714i) q^{25} +(3.34993 - 1.33339i) q^{26} -1.00000 q^{27} +(2.35438 + 1.20702i) q^{28} +(3.51255 - 6.08392i) q^{29} +1.53967 q^{30} +(-0.611662 - 1.05943i) q^{31} +(0.500000 - 0.866025i) q^{32} +6.38352 q^{33} -4.38352 q^{34} +(3.62497 + 1.85842i) q^{35} +(-0.500000 + 0.866025i) q^{36} +(-1.92192 - 3.32887i) q^{37} +(0.0509558 + 0.0882581i) q^{38} +(-0.520213 + 3.56783i) q^{39} +(0.769836 - 1.33339i) q^{40} +(-2.42192 + 4.19490i) q^{41} +(-2.22250 + 1.43544i) q^{42} +(-0.877054 - 1.51910i) q^{43} +(3.19176 - 5.52829i) q^{44} +(-0.769836 + 1.33339i) q^{45} +(4.54614 - 7.87414i) q^{46} +(-2.07041 + 3.58606i) q^{47} +(0.500000 + 0.866025i) q^{48} +(-6.96522 + 0.696949i) q^{49} +(-1.31471 + 2.27714i) q^{50} +(2.19176 - 3.79624i) q^{51} +(2.82972 + 2.23443i) q^{52} +(-4.11084 - 7.12019i) q^{53} +(-0.500000 - 0.866025i) q^{54} +(4.91426 - 8.51175i) q^{55} +(0.131875 + 2.64246i) q^{56} -0.101912 q^{57} +7.02510 q^{58} +(-3.56881 + 6.18137i) q^{59} +(0.769836 + 1.33339i) q^{60} -6.16908 q^{61} +(0.611662 - 1.05943i) q^{62} +(-0.131875 - 2.64246i) q^{63} +1.00000 q^{64} +(4.35684 + 3.44029i) q^{65} +(3.19176 + 5.52829i) q^{66} -1.71519 q^{67} +(-2.19176 - 3.79624i) q^{68} +(4.54614 + 7.87414i) q^{69} +(0.203044 + 4.06852i) q^{70} +(4.57326 + 7.92111i) q^{71} -1.00000 q^{72} +(4.82528 + 8.35763i) q^{73} +(1.92192 - 3.32887i) q^{74} +(-1.31471 - 2.27714i) q^{75} +(-0.0509558 + 0.0882581i) q^{76} +(0.841826 + 16.8682i) q^{77} +(-3.34993 + 1.33339i) q^{78} +(-2.03359 + 3.52227i) q^{79} +1.53967 q^{80} +1.00000 q^{81} -4.84385 q^{82} -7.02510 q^{83} +(-2.35438 - 1.20702i) q^{84} +(-3.37459 - 5.84496i) q^{85} +(0.877054 - 1.51910i) q^{86} +(-3.51255 + 6.08392i) q^{87} +6.38352 q^{88} +(7.77395 + 13.4649i) q^{89} -1.53967 q^{90} +(-9.49645 - 0.904138i) q^{91} +9.09227 q^{92} +(0.611662 + 1.05943i) q^{93} -4.14083 q^{94} +(-0.0784553 + 0.135889i) q^{95} +(-0.500000 + 0.866025i) q^{96} +(0.996781 + 1.72648i) q^{97} +(-4.08618 - 5.68358i) q^{98} -6.38352 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10q + 5q^{2} - 10q^{3} - 5q^{4} - 2q^{5} - 5q^{6} + 4q^{7} - 10q^{8} + 10q^{9} + O(q^{10}) \) \( 10q + 5q^{2} - 10q^{3} - 5q^{4} - 2q^{5} - 5q^{6} + 4q^{7} - 10q^{8} + 10q^{9} - 4q^{10} - 12q^{11} + 5q^{12} - 4q^{13} + 2q^{14} + 2q^{15} - 5q^{16} + 4q^{17} + 5q^{18} - 6q^{19} - 2q^{20} - 4q^{21} - 6q^{22} + 6q^{23} + 10q^{24} - q^{25} - 2q^{26} - 10q^{27} - 2q^{28} + 4q^{30} - 10q^{31} + 5q^{32} + 12q^{33} + 8q^{34} - 2q^{35} - 5q^{36} + q^{37} - 3q^{38} + 4q^{39} + 2q^{40} - 4q^{41} - 2q^{42} + 3q^{43} + 6q^{44} - 2q^{45} - 6q^{46} - 15q^{47} + 5q^{48} - 20q^{49} + q^{50} - 4q^{51} + 2q^{52} - 17q^{53} - 5q^{54} + 3q^{55} - 4q^{56} + 6q^{57} + 2q^{59} + 2q^{60} - 22q^{61} + 10q^{62} + 4q^{63} + 10q^{64} + 41q^{65} + 6q^{66} + 2q^{67} + 4q^{68} - 6q^{69} - 16q^{70} + 18q^{71} - 10q^{72} + 12q^{73} - q^{74} + q^{75} + 3q^{76} + 18q^{77} + 2q^{78} - 4q^{79} + 4q^{80} + 10q^{81} - 8q^{82} + 2q^{84} + q^{85} - 3q^{86} + 12q^{88} + 7q^{89} - 4q^{90} - 4q^{91} - 12q^{92} + 10q^{93} - 30q^{94} + 24q^{95} - 5q^{96} - 6q^{97} - 16q^{98} - 12q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) −1.00000 −0.577350
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −0.769836 + 1.33339i −0.344281 + 0.596312i −0.985223 0.171277i \(-0.945211\pi\)
0.640942 + 0.767589i \(0.278544\pi\)
\(6\) −0.500000 0.866025i −0.204124 0.353553i
\(7\) −0.131875 2.64246i −0.0498440 0.998757i
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) −1.53967 −0.486887
\(11\) −6.38352 −1.92470 −0.962352 0.271807i \(-0.912379\pi\)
−0.962352 + 0.271807i \(0.912379\pi\)
\(12\) 0.500000 0.866025i 0.144338 0.250000i
\(13\) 0.520213 3.56783i 0.144281 0.989537i
\(14\) 2.22250 1.43544i 0.593989 0.383637i
\(15\) 0.769836 1.33339i 0.198771 0.344281i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −2.19176 + 3.79624i −0.531580 + 0.920723i 0.467741 + 0.883866i \(0.345068\pi\)
−0.999321 + 0.0368575i \(0.988265\pi\)
\(18\) 0.500000 + 0.866025i 0.117851 + 0.204124i
\(19\) 0.101912 0.0233801 0.0116901 0.999932i \(-0.496279\pi\)
0.0116901 + 0.999932i \(0.496279\pi\)
\(20\) −0.769836 1.33339i −0.172141 0.298156i
\(21\) 0.131875 + 2.64246i 0.0287775 + 0.576633i
\(22\) −3.19176 5.52829i −0.680485 1.17864i
\(23\) −4.54614 7.87414i −0.947935 1.64187i −0.749765 0.661704i \(-0.769834\pi\)
−0.198170 0.980168i \(-0.563500\pi\)
\(24\) 1.00000 0.204124
\(25\) 1.31471 + 2.27714i 0.262941 + 0.455427i
\(26\) 3.34993 1.33339i 0.656976 0.261500i
\(27\) −1.00000 −0.192450
\(28\) 2.35438 + 1.20702i 0.444935 + 0.228106i
\(29\) 3.51255 6.08392i 0.652264 1.12976i −0.330308 0.943873i \(-0.607153\pi\)
0.982572 0.185882i \(-0.0595142\pi\)
\(30\) 1.53967 0.281104
\(31\) −0.611662 1.05943i −0.109858 0.190279i 0.805855 0.592113i \(-0.201706\pi\)
−0.915712 + 0.401834i \(0.868373\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 6.38352 1.11123
\(34\) −4.38352 −0.751767
\(35\) 3.62497 + 1.85842i 0.612731 + 0.314131i
\(36\) −0.500000 + 0.866025i −0.0833333 + 0.144338i
\(37\) −1.92192 3.32887i −0.315962 0.547263i 0.663679 0.748017i \(-0.268994\pi\)
−0.979642 + 0.200754i \(0.935661\pi\)
\(38\) 0.0509558 + 0.0882581i 0.00826613 + 0.0143174i
\(39\) −0.520213 + 3.56783i −0.0833008 + 0.571309i
\(40\) 0.769836 1.33339i 0.121722 0.210828i
\(41\) −2.42192 + 4.19490i −0.378241 + 0.655133i −0.990806 0.135287i \(-0.956804\pi\)
0.612565 + 0.790420i \(0.290138\pi\)
\(42\) −2.22250 + 1.43544i −0.342940 + 0.221493i
\(43\) −0.877054 1.51910i −0.133750 0.231661i 0.791370 0.611338i \(-0.209368\pi\)
−0.925119 + 0.379677i \(0.876035\pi\)
\(44\) 3.19176 5.52829i 0.481176 0.833421i
\(45\) −0.769836 + 1.33339i −0.114760 + 0.198771i
\(46\) 4.54614 7.87414i 0.670291 1.16098i
\(47\) −2.07041 + 3.58606i −0.302001 + 0.523081i −0.976589 0.215113i \(-0.930988\pi\)
0.674588 + 0.738194i \(0.264321\pi\)
\(48\) 0.500000 + 0.866025i 0.0721688 + 0.125000i
\(49\) −6.96522 + 0.696949i −0.995031 + 0.0995641i
\(50\) −1.31471 + 2.27714i −0.185927 + 0.322036i
\(51\) 2.19176 3.79624i 0.306908 0.531580i
\(52\) 2.82972 + 2.23443i 0.392412 + 0.309860i
\(53\) −4.11084 7.12019i −0.564667 0.978033i −0.997081 0.0763570i \(-0.975671\pi\)
0.432413 0.901676i \(-0.357662\pi\)
\(54\) −0.500000 0.866025i −0.0680414 0.117851i
\(55\) 4.91426 8.51175i 0.662639 1.14772i
\(56\) 0.131875 + 2.64246i 0.0176225 + 0.353114i
\(57\) −0.101912 −0.0134985
\(58\) 7.02510 0.922441
\(59\) −3.56881 + 6.18137i −0.464620 + 0.804745i −0.999184 0.0403823i \(-0.987142\pi\)
0.534564 + 0.845128i \(0.320476\pi\)
\(60\) 0.769836 + 1.33339i 0.0993854 + 0.172141i
\(61\) −6.16908 −0.789870 −0.394935 0.918709i \(-0.629233\pi\)
−0.394935 + 0.918709i \(0.629233\pi\)
\(62\) 0.611662 1.05943i 0.0776811 0.134548i
\(63\) −0.131875 2.64246i −0.0166147 0.332919i
\(64\) 1.00000 0.125000
\(65\) 4.35684 + 3.44029i 0.540400 + 0.426715i
\(66\) 3.19176 + 5.52829i 0.392878 + 0.680485i
\(67\) −1.71519 −0.209544 −0.104772 0.994496i \(-0.533411\pi\)
−0.104772 + 0.994496i \(0.533411\pi\)
\(68\) −2.19176 3.79624i −0.265790 0.460362i
\(69\) 4.54614 + 7.87414i 0.547291 + 0.947935i
\(70\) 0.203044 + 4.06852i 0.0242684 + 0.486282i
\(71\) 4.57326 + 7.92111i 0.542746 + 0.940063i 0.998745 + 0.0500831i \(0.0159486\pi\)
−0.455999 + 0.889980i \(0.650718\pi\)
\(72\) −1.00000 −0.117851
\(73\) 4.82528 + 8.35763i 0.564756 + 0.978186i 0.997072 + 0.0764641i \(0.0243631\pi\)
−0.432316 + 0.901722i \(0.642304\pi\)
\(74\) 1.92192 3.32887i 0.223419 0.386973i
\(75\) −1.31471 2.27714i −0.151809 0.262941i
\(76\) −0.0509558 + 0.0882581i −0.00584504 + 0.0101239i
\(77\) 0.841826 + 16.8682i 0.0959349 + 1.92231i
\(78\) −3.34993 + 1.33339i −0.379305 + 0.150977i
\(79\) −2.03359 + 3.52227i −0.228796 + 0.396287i −0.957452 0.288594i \(-0.906812\pi\)
0.728655 + 0.684881i \(0.240146\pi\)
\(80\) 1.53967 0.172141
\(81\) 1.00000 0.111111
\(82\) −4.84385 −0.534914
\(83\) −7.02510 −0.771105 −0.385553 0.922686i \(-0.625989\pi\)
−0.385553 + 0.922686i \(0.625989\pi\)
\(84\) −2.35438 1.20702i −0.256884 0.131697i
\(85\) −3.37459 5.84496i −0.366026 0.633975i
\(86\) 0.877054 1.51910i 0.0945752 0.163809i
\(87\) −3.51255 + 6.08392i −0.376585 + 0.652264i
\(88\) 6.38352 0.680485
\(89\) 7.77395 + 13.4649i 0.824037 + 1.42727i 0.902653 + 0.430368i \(0.141616\pi\)
−0.0786167 + 0.996905i \(0.525050\pi\)
\(90\) −1.53967 −0.162296
\(91\) −9.49645 0.904138i −0.995498 0.0947794i
\(92\) 9.09227 0.947935
\(93\) 0.611662 + 1.05943i 0.0634264 + 0.109858i
\(94\) −4.14083 −0.427094
\(95\) −0.0784553 + 0.135889i −0.00804934 + 0.0139419i
\(96\) −0.500000 + 0.866025i −0.0510310 + 0.0883883i
\(97\) 0.996781 + 1.72648i 0.101208 + 0.175297i 0.912183 0.409784i \(-0.134396\pi\)
−0.810975 + 0.585081i \(0.801063\pi\)
\(98\) −4.08618 5.68358i −0.412767 0.574128i
\(99\) −6.38352 −0.641568
\(100\) −2.62941 −0.262941
\(101\) −0.741985 −0.0738303 −0.0369151 0.999318i \(-0.511753\pi\)
−0.0369151 + 0.999318i \(0.511753\pi\)
\(102\) 4.38352 0.434033
\(103\) 2.87705 4.98320i 0.283485 0.491010i −0.688756 0.724993i \(-0.741843\pi\)
0.972241 + 0.233984i \(0.0751762\pi\)
\(104\) −0.520213 + 3.56783i −0.0510111 + 0.349854i
\(105\) −3.62497 1.85842i −0.353761 0.181363i
\(106\) 4.11084 7.12019i 0.399280 0.691574i
\(107\) 1.43530 + 2.48601i 0.138755 + 0.240331i 0.927026 0.374998i \(-0.122357\pi\)
−0.788270 + 0.615329i \(0.789023\pi\)
\(108\) 0.500000 0.866025i 0.0481125 0.0833333i
\(109\) −4.52510 7.83771i −0.433426 0.750716i 0.563739 0.825953i \(-0.309362\pi\)
−0.997166 + 0.0752364i \(0.976029\pi\)
\(110\) 9.82852 0.937113
\(111\) 1.92192 + 3.32887i 0.182421 + 0.315962i
\(112\) −2.22250 + 1.43544i −0.210007 + 0.135636i
\(113\) −0.302154 0.523346i −0.0284243 0.0492323i 0.851463 0.524414i \(-0.175716\pi\)
−0.879888 + 0.475182i \(0.842382\pi\)
\(114\) −0.0509558 0.0882581i −0.00477245 0.00826613i
\(115\) 13.9991 1.30542
\(116\) 3.51255 + 6.08392i 0.326132 + 0.564878i
\(117\) 0.520213 3.56783i 0.0480937 0.329846i
\(118\) −7.13763 −0.657072
\(119\) 10.3205 + 5.29102i 0.946075 + 0.485027i
\(120\) −0.769836 + 1.33339i −0.0702761 + 0.121722i
\(121\) 29.7493 2.70448
\(122\) −3.08454 5.34258i −0.279261 0.483695i
\(123\) 2.42192 4.19490i 0.218378 0.378241i
\(124\) 1.22332 0.109858
\(125\) −11.7468 −1.05066
\(126\) 2.22250 1.43544i 0.197996 0.127879i
\(127\) −3.18892 + 5.52337i −0.282971 + 0.490119i −0.972115 0.234505i \(-0.924653\pi\)
0.689144 + 0.724624i \(0.257987\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 0.877054 + 1.51910i 0.0772203 + 0.133750i
\(130\) −0.800958 + 5.49328i −0.0702486 + 0.481793i
\(131\) 5.42681 9.39952i 0.474143 0.821240i −0.525419 0.850844i \(-0.676091\pi\)
0.999562 + 0.0296041i \(0.00942467\pi\)
\(132\) −3.19176 + 5.52829i −0.277807 + 0.481176i
\(133\) −0.0134396 0.269298i −0.00116536 0.0233511i
\(134\) −0.857596 1.48540i −0.0740850 0.128319i
\(135\) 0.769836 1.33339i 0.0662569 0.114760i
\(136\) 2.19176 3.79624i 0.187942 0.325525i
\(137\) 3.97052 6.87715i 0.339225 0.587555i −0.645062 0.764130i \(-0.723169\pi\)
0.984287 + 0.176575i \(0.0565019\pi\)
\(138\) −4.54614 + 7.87414i −0.386993 + 0.670291i
\(139\) −5.72452 9.91517i −0.485548 0.840994i 0.514314 0.857602i \(-0.328047\pi\)
−0.999862 + 0.0166083i \(0.994713\pi\)
\(140\) −3.42192 + 2.21010i −0.289205 + 0.186788i
\(141\) 2.07041 3.58606i 0.174360 0.302001i
\(142\) −4.57326 + 7.92111i −0.383779 + 0.664725i
\(143\) −3.32079 + 22.7753i −0.277699 + 1.90456i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) 5.40818 + 9.36724i 0.449125 + 0.777907i
\(146\) −4.82528 + 8.35763i −0.399343 + 0.691682i
\(147\) 6.96522 0.696949i 0.574482 0.0574834i
\(148\) 3.84385 0.315962
\(149\) −21.2136 −1.73788 −0.868941 0.494916i \(-0.835199\pi\)
−0.868941 + 0.494916i \(0.835199\pi\)
\(150\) 1.31471 2.27714i 0.107345 0.185927i
\(151\) −8.72661 15.1149i −0.710162 1.23004i −0.964796 0.262999i \(-0.915288\pi\)
0.254635 0.967037i \(-0.418045\pi\)
\(152\) −0.101912 −0.00826613
\(153\) −2.19176 + 3.79624i −0.177193 + 0.306908i
\(154\) −14.1874 + 9.16315i −1.14325 + 0.738388i
\(155\) 1.88352 0.151288
\(156\) −2.82972 2.23443i −0.226559 0.178898i
\(157\) 10.6720 + 18.4844i 0.851718 + 1.47522i 0.879657 + 0.475609i \(0.157772\pi\)
−0.0279391 + 0.999610i \(0.508894\pi\)
\(158\) −4.06717 −0.323567
\(159\) 4.11084 + 7.12019i 0.326011 + 0.564667i
\(160\) 0.769836 + 1.33339i 0.0608609 + 0.105414i
\(161\) −20.2076 + 13.0514i −1.59258 + 1.02859i
\(162\) 0.500000 + 0.866025i 0.0392837 + 0.0680414i
\(163\) −16.7477 −1.31178 −0.655889 0.754857i \(-0.727706\pi\)
−0.655889 + 0.754857i \(0.727706\pi\)
\(164\) −2.42192 4.19490i −0.189120 0.327566i
\(165\) −4.91426 + 8.51175i −0.382575 + 0.662639i
\(166\) −3.51255 6.08392i −0.272627 0.472204i
\(167\) 12.4467 21.5582i 0.963151 1.66823i 0.248648 0.968594i \(-0.420014\pi\)
0.714503 0.699632i \(-0.246653\pi\)
\(168\) −0.131875 2.64246i −0.0101744 0.203870i
\(169\) −12.4588 3.71206i −0.958366 0.285543i
\(170\) 3.37459 5.84496i 0.258819 0.448288i
\(171\) 0.101912 0.00779338
\(172\) 1.75411 0.133750
\(173\) 18.8998 1.43692 0.718462 0.695566i \(-0.244846\pi\)
0.718462 + 0.695566i \(0.244846\pi\)
\(174\) −7.02510 −0.532572
\(175\) 5.84387 3.77436i 0.441755 0.285315i
\(176\) 3.19176 + 5.52829i 0.240588 + 0.416711i
\(177\) 3.56881 6.18137i 0.268248 0.464620i
\(178\) −7.77395 + 13.4649i −0.582682 + 1.00923i
\(179\) −1.58583 −0.118531 −0.0592654 0.998242i \(-0.518876\pi\)
−0.0592654 + 0.998242i \(0.518876\pi\)
\(180\) −0.769836 1.33339i −0.0573802 0.0993854i
\(181\) −13.1480 −0.977285 −0.488642 0.872484i \(-0.662508\pi\)
−0.488642 + 0.872484i \(0.662508\pi\)
\(182\) −3.96522 8.67623i −0.293922 0.643125i
\(183\) 6.16908 0.456032
\(184\) 4.54614 + 7.87414i 0.335146 + 0.580489i
\(185\) 5.91826 0.435119
\(186\) −0.611662 + 1.05943i −0.0448492 + 0.0776811i
\(187\) 13.9911 24.2334i 1.02313 1.77212i
\(188\) −2.07041 3.58606i −0.151000 0.261541i
\(189\) 0.131875 + 2.64246i 0.00959248 + 0.192211i
\(190\) −0.156911 −0.0113835
\(191\) 12.7038 0.919217 0.459608 0.888122i \(-0.347990\pi\)
0.459608 + 0.888122i \(0.347990\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −8.18276 −0.589008 −0.294504 0.955650i \(-0.595154\pi\)
−0.294504 + 0.955650i \(0.595154\pi\)
\(194\) −0.996781 + 1.72648i −0.0715647 + 0.123954i
\(195\) −4.35684 3.44029i −0.312000 0.246364i
\(196\) 2.87903 6.38053i 0.205645 0.455752i
\(197\) −2.09350 + 3.62604i −0.149155 + 0.258345i −0.930916 0.365235i \(-0.880989\pi\)
0.781760 + 0.623579i \(0.214322\pi\)
\(198\) −3.19176 5.52829i −0.226828 0.392878i
\(199\) −1.95797 + 3.39131i −0.138797 + 0.240404i −0.927042 0.374959i \(-0.877657\pi\)
0.788244 + 0.615362i \(0.210990\pi\)
\(200\) −1.31471 2.27714i −0.0929637 0.161018i
\(201\) 1.71519 0.120980
\(202\) −0.370993 0.642578i −0.0261030 0.0452116i
\(203\) −16.5397 8.47947i −1.16086 0.595142i
\(204\) 2.19176 + 3.79624i 0.153454 + 0.265790i
\(205\) −3.72897 6.45876i −0.260442 0.451099i
\(206\) 5.75411 0.400908
\(207\) −4.54614 7.87414i −0.315978 0.547291i
\(208\) −3.34993 + 1.33339i −0.232276 + 0.0924543i
\(209\) −0.650555 −0.0449998
\(210\) −0.203044 4.06852i −0.0140114 0.280755i
\(211\) 7.24076 12.5414i 0.498475 0.863384i −0.501524 0.865144i \(-0.667227\pi\)
0.999998 + 0.00176028i \(0.000560315\pi\)
\(212\) 8.22168 0.564667
\(213\) −4.57326 7.92111i −0.313354 0.542746i
\(214\) −1.43530 + 2.48601i −0.0981148 + 0.169940i
\(215\) 2.70075 0.184190
\(216\) 1.00000 0.0680414
\(217\) −2.71884 + 1.75600i −0.184567 + 0.119205i
\(218\) 4.52510 7.83771i 0.306479 0.530837i
\(219\) −4.82528 8.35763i −0.326062 0.564756i
\(220\) 4.91426 + 8.51175i 0.331319 + 0.573862i
\(221\) 12.4041 + 9.79467i 0.834393 + 0.658861i
\(222\) −1.92192 + 3.32887i −0.128991 + 0.223419i
\(223\) 5.98916 10.3735i 0.401064 0.694663i −0.592791 0.805357i \(-0.701974\pi\)
0.993855 + 0.110693i \(0.0353072\pi\)
\(224\) −2.35438 1.20702i −0.157308 0.0806477i
\(225\) 1.31471 + 2.27714i 0.0876470 + 0.151809i
\(226\) 0.302154 0.523346i 0.0200990 0.0348125i
\(227\) 2.14976 3.72349i 0.142684 0.247137i −0.785822 0.618452i \(-0.787760\pi\)
0.928507 + 0.371316i \(0.121093\pi\)
\(228\) 0.0509558 0.0882581i 0.00337463 0.00584504i
\(229\) −11.1486 + 19.3099i −0.736718 + 1.27603i 0.217248 + 0.976116i \(0.430292\pi\)
−0.953966 + 0.299916i \(0.903041\pi\)
\(230\) 6.99956 + 12.1236i 0.461537 + 0.799406i
\(231\) −0.841826 16.8682i −0.0553881 1.10985i
\(232\) −3.51255 + 6.08392i −0.230610 + 0.399429i
\(233\) −1.90691 + 3.30286i −0.124926 + 0.216378i −0.921704 0.387894i \(-0.873203\pi\)
0.796778 + 0.604272i \(0.206536\pi\)
\(234\) 3.34993 1.33339i 0.218992 0.0871667i
\(235\) −3.18776 5.52136i −0.207946 0.360174i
\(236\) −3.56881 6.18137i −0.232310 0.402373i
\(237\) 2.03359 3.52227i 0.132096 0.228796i
\(238\) 0.578076 + 11.5833i 0.0374711 + 0.750833i
\(239\) 12.9555 0.838021 0.419010 0.907981i \(-0.362377\pi\)
0.419010 + 0.907981i \(0.362377\pi\)
\(240\) −1.53967 −0.0993854
\(241\) −0.486277 + 0.842256i −0.0313238 + 0.0542545i −0.881262 0.472627i \(-0.843306\pi\)
0.849939 + 0.526882i \(0.176639\pi\)
\(242\) 14.8747 + 25.7637i 0.956179 + 1.65615i
\(243\) −1.00000 −0.0641500
\(244\) 3.08454 5.34258i 0.197468 0.342024i
\(245\) 4.43277 9.82392i 0.283199 0.627627i
\(246\) 4.84385 0.308832
\(247\) 0.0530158 0.363603i 0.00337332 0.0231355i
\(248\) 0.611662 + 1.05943i 0.0388405 + 0.0672738i
\(249\) 7.02510 0.445198
\(250\) −5.87339 10.1730i −0.371466 0.643398i
\(251\) 4.83297 + 8.37095i 0.305054 + 0.528369i 0.977273 0.211983i \(-0.0679921\pi\)
−0.672219 + 0.740352i \(0.734659\pi\)
\(252\) 2.35438 + 1.20702i 0.148312 + 0.0760354i
\(253\) 29.0204 + 50.2647i 1.82449 + 3.16012i
\(254\) −6.37783 −0.400181
\(255\) 3.37459 + 5.84496i 0.211325 + 0.366026i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −13.5595 23.4858i −0.845819 1.46500i −0.884908 0.465766i \(-0.845779\pi\)
0.0390891 0.999236i \(-0.487554\pi\)
\(258\) −0.877054 + 1.51910i −0.0546030 + 0.0945752i
\(259\) −8.54296 + 5.51761i −0.530834 + 0.342847i
\(260\) −5.15780 + 2.05299i −0.319873 + 0.127321i
\(261\) 3.51255 6.08392i 0.217421 0.376585i
\(262\) 10.8536 0.670539
\(263\) 4.72830 0.291560 0.145780 0.989317i \(-0.453431\pi\)
0.145780 + 0.989317i \(0.453431\pi\)
\(264\) −6.38352 −0.392878
\(265\) 12.6587 0.777617
\(266\) 0.226499 0.146288i 0.0138875 0.00896949i
\(267\) −7.77395 13.4649i −0.475758 0.824037i
\(268\) 0.857596 1.48540i 0.0523860 0.0907352i
\(269\) 13.3480 23.1194i 0.813841 1.40961i −0.0963164 0.995351i \(-0.530706\pi\)
0.910157 0.414263i \(-0.135961\pi\)
\(270\) 1.53967 0.0937014
\(271\) −2.40455 4.16481i −0.146066 0.252994i 0.783704 0.621134i \(-0.213328\pi\)
−0.929770 + 0.368140i \(0.879995\pi\)
\(272\) 4.38352 0.265790
\(273\) 9.49645 + 0.904138i 0.574751 + 0.0547209i
\(274\) 7.94105 0.479736
\(275\) −8.39245 14.5361i −0.506084 0.876563i
\(276\) −9.09227 −0.547291
\(277\) 12.6133 21.8469i 0.757862 1.31265i −0.186077 0.982535i \(-0.559577\pi\)
0.943939 0.330120i \(-0.107089\pi\)
\(278\) 5.72452 9.91517i 0.343334 0.594672i
\(279\) −0.611662 1.05943i −0.0366192 0.0634264i
\(280\) −3.62497 1.85842i −0.216633 0.111062i
\(281\) −3.38912 −0.202178 −0.101089 0.994877i \(-0.532233\pi\)
−0.101089 + 0.994877i \(0.532233\pi\)
\(282\) 4.14083 0.246583
\(283\) −10.5072 −0.624591 −0.312296 0.949985i \(-0.601098\pi\)
−0.312296 + 0.949985i \(0.601098\pi\)
\(284\) −9.14651 −0.542746
\(285\) 0.0784553 0.135889i 0.00464729 0.00804934i
\(286\) −21.3844 + 8.51175i −1.26448 + 0.503310i
\(287\) 11.4042 + 5.84664i 0.673171 + 0.345116i
\(288\) 0.500000 0.866025i 0.0294628 0.0510310i
\(289\) −1.10762 1.91846i −0.0651542 0.112850i
\(290\) −5.40818 + 9.36724i −0.317579 + 0.550063i
\(291\) −0.996781 1.72648i −0.0584324 0.101208i
\(292\) −9.65056 −0.564756
\(293\) −6.47179 11.2095i −0.378086 0.654864i 0.612698 0.790317i \(-0.290084\pi\)
−0.990784 + 0.135453i \(0.956751\pi\)
\(294\) 4.08618 + 5.68358i 0.238311 + 0.331473i
\(295\) −5.49480 9.51728i −0.319920 0.554117i
\(296\) 1.92192 + 3.32887i 0.111710 + 0.193487i
\(297\) 6.38352 0.370409
\(298\) −10.6068 18.3715i −0.614434 1.06423i
\(299\) −30.4585 + 12.1236i −1.76146 + 0.701125i
\(300\) 2.62941 0.151809
\(301\) −3.89851 + 2.51791i −0.224706 + 0.145130i
\(302\) 8.72661 15.1149i 0.502160 0.869767i
\(303\) 0.741985 0.0426259
\(304\) −0.0509558 0.0882581i −0.00292252 0.00506195i
\(305\) 4.74918 8.22582i 0.271937 0.471009i
\(306\) −4.38352 −0.250589
\(307\) 28.9573 1.65268 0.826339 0.563173i \(-0.190419\pi\)
0.826339 + 0.563173i \(0.190419\pi\)
\(308\) −15.0292 7.70506i −0.856369 0.439037i
\(309\) −2.87705 + 4.98320i −0.163670 + 0.283485i
\(310\) 0.941758 + 1.63117i 0.0534883 + 0.0926444i
\(311\) −15.8321 27.4220i −0.897757 1.55496i −0.830355 0.557235i \(-0.811862\pi\)
−0.0674027 0.997726i \(-0.521471\pi\)
\(312\) 0.520213 3.56783i 0.0294513 0.201988i
\(313\) 1.35811 2.35231i 0.0767648 0.132961i −0.825088 0.565005i \(-0.808874\pi\)
0.901852 + 0.432044i \(0.142208\pi\)
\(314\) −10.6720 + 18.4844i −0.602255 + 1.04314i
\(315\) 3.62497 + 1.85842i 0.204244 + 0.104710i
\(316\) −2.03359 3.52227i −0.114398 0.198143i
\(317\) 15.3346 26.5603i 0.861278 1.49178i −0.00941891 0.999956i \(-0.502998\pi\)
0.870696 0.491821i \(-0.163668\pi\)
\(318\) −4.11084 + 7.12019i −0.230525 + 0.399280i
\(319\) −22.4224 + 38.8368i −1.25542 + 2.17444i
\(320\) −0.769836 + 1.33339i −0.0430351 + 0.0745390i
\(321\) −1.43530 2.48601i −0.0801104 0.138755i
\(322\) −21.4066 10.9746i −1.19295 0.611590i
\(323\) −0.223366 + 0.386881i −0.0124284 + 0.0215266i
\(324\) −0.500000 + 0.866025i −0.0277778 + 0.0481125i
\(325\) 8.80835 3.50604i 0.488600 0.194480i
\(326\) −8.37384 14.5039i −0.463784 0.803297i
\(327\) 4.52510 + 7.83771i 0.250239 + 0.433426i
\(328\) 2.42192 4.19490i 0.133728 0.231624i
\(329\) 9.74907 + 4.99808i 0.537484 + 0.275553i
\(330\) −9.82852 −0.541042
\(331\) 20.0753 1.10344 0.551719 0.834030i \(-0.313972\pi\)
0.551719 + 0.834030i \(0.313972\pi\)
\(332\) 3.51255 6.08392i 0.192776 0.333898i
\(333\) −1.92192 3.32887i −0.105321 0.182421i
\(334\) 24.8933 1.36210
\(335\) 1.32042 2.28703i 0.0721420 0.124954i
\(336\) 2.22250 1.43544i 0.121247 0.0783096i
\(337\) 29.0567 1.58282 0.791408 0.611288i \(-0.209348\pi\)
0.791408 + 0.611288i \(0.209348\pi\)
\(338\) −3.01464 12.6456i −0.163975 0.687832i
\(339\) 0.302154 + 0.523346i 0.0164108 + 0.0284243i
\(340\) 6.74918 0.366026
\(341\) 3.90455 + 6.76289i 0.211443 + 0.366231i
\(342\) 0.0509558 + 0.0882581i 0.00275538 + 0.00477245i
\(343\) 2.76020 + 18.3134i 0.149037 + 0.988832i
\(344\) 0.877054 + 1.51910i 0.0472876 + 0.0819045i
\(345\) −13.9991 −0.753687
\(346\) 9.44989 + 16.3677i 0.508029 + 0.879933i
\(347\) 4.65985 8.07109i 0.250154 0.433279i −0.713414 0.700742i \(-0.752852\pi\)
0.963568 + 0.267464i \(0.0861855\pi\)
\(348\) −3.51255 6.08392i −0.188293 0.326132i
\(349\) −12.0769 + 20.9178i −0.646461 + 1.11970i 0.337501 + 0.941325i \(0.390418\pi\)
−0.983962 + 0.178378i \(0.942915\pi\)
\(350\) 6.19063 + 3.17376i 0.330903 + 0.169645i
\(351\) −0.520213 + 3.56783i −0.0277669 + 0.190436i
\(352\) −3.19176 + 5.52829i −0.170121 + 0.294659i
\(353\) −5.17326 −0.275345 −0.137672 0.990478i \(-0.543962\pi\)
−0.137672 + 0.990478i \(0.543962\pi\)
\(354\) 7.13763 0.379361
\(355\) −14.0826 −0.747428
\(356\) −15.5479 −0.824037
\(357\) −10.3205 5.29102i −0.546217 0.280030i
\(358\) −0.792917 1.37337i −0.0419069 0.0725850i
\(359\) −16.7226 + 28.9643i −0.882584 + 1.52868i −0.0341253 + 0.999418i \(0.510865\pi\)
−0.848458 + 0.529262i \(0.822469\pi\)
\(360\) 0.769836 1.33339i 0.0405739 0.0702761i
\(361\) −18.9896 −0.999453
\(362\) −6.57401 11.3865i −0.345522 0.598462i
\(363\) −29.7493 −1.56143
\(364\) 5.53123 7.77210i 0.289915 0.407369i
\(365\) −14.8587 −0.777739
\(366\) 3.08454 + 5.34258i 0.161232 + 0.279261i
\(367\) −7.96108 −0.415565 −0.207783 0.978175i \(-0.566625\pi\)
−0.207783 + 0.978175i \(0.566625\pi\)
\(368\) −4.54614 + 7.87414i −0.236984 + 0.410468i
\(369\) −2.42192 + 4.19490i −0.126080 + 0.218378i
\(370\) 2.95913 + 5.12537i 0.153838 + 0.266455i
\(371\) −18.2727 + 11.8017i −0.948672 + 0.612715i
\(372\) −1.22332 −0.0634264
\(373\) 35.5973 1.84316 0.921579 0.388191i \(-0.126900\pi\)
0.921579 + 0.388191i \(0.126900\pi\)
\(374\) 27.9823 1.44693
\(375\) 11.7468 0.606602
\(376\) 2.07041 3.58606i 0.106773 0.184937i
\(377\) −19.8791 15.6971i −1.02382 0.808442i
\(378\) −2.22250 + 1.43544i −0.114313 + 0.0738310i
\(379\) 2.29603 3.97683i 0.117939 0.204276i −0.801012 0.598649i \(-0.795705\pi\)
0.918951 + 0.394372i \(0.129038\pi\)
\(380\) −0.0784553 0.135889i −0.00402467 0.00697093i
\(381\) 3.18892 5.52337i 0.163373 0.282971i
\(382\) 6.35191 + 11.0018i 0.324992 + 0.562903i
\(383\) 10.4181 0.532341 0.266171 0.963926i \(-0.414242\pi\)
0.266171 + 0.963926i \(0.414242\pi\)
\(384\) −0.500000 0.866025i −0.0255155 0.0441942i
\(385\) −23.1401 11.8633i −1.17933 0.604608i
\(386\) −4.09138 7.08648i −0.208246 0.360692i
\(387\) −0.877054 1.51910i −0.0445832 0.0772203i
\(388\) −1.99356 −0.101208
\(389\) −6.19665 10.7329i −0.314183 0.544180i 0.665081 0.746771i \(-0.268397\pi\)
−0.979263 + 0.202591i \(0.935064\pi\)
\(390\) 0.800958 5.49328i 0.0405581 0.278163i
\(391\) 39.8562 2.01561
\(392\) 6.96522 0.696949i 0.351797 0.0352012i
\(393\) −5.42681 + 9.39952i −0.273747 + 0.474143i
\(394\) −4.18699 −0.210938
\(395\) −3.13105 5.42314i −0.157540 0.272868i
\(396\) 3.19176 5.52829i 0.160392 0.277807i
\(397\) 0.824424 0.0413766 0.0206883 0.999786i \(-0.493414\pi\)
0.0206883 + 0.999786i \(0.493414\pi\)
\(398\) −3.91595 −0.196289
\(399\) 0.0134396 + 0.269298i 0.000672821 + 0.0134818i
\(400\) 1.31471 2.27714i 0.0657353 0.113857i
\(401\) −13.4698 23.3303i −0.672648 1.16506i −0.977150 0.212550i \(-0.931823\pi\)
0.304502 0.952512i \(-0.401510\pi\)
\(402\) 0.857596 + 1.48540i 0.0427730 + 0.0740850i
\(403\) −4.09805 + 1.63117i −0.204139 + 0.0812545i
\(404\) 0.370993 0.642578i 0.0184576 0.0319695i
\(405\) −0.769836 + 1.33339i −0.0382535 + 0.0662569i
\(406\) −0.926434 18.5636i −0.0459782 0.921295i
\(407\) 12.2686 + 21.2499i 0.608134 + 1.05332i
\(408\) −2.19176 + 3.79624i −0.108508 + 0.187942i
\(409\) 5.57528 9.65666i 0.275680 0.477491i −0.694627 0.719370i \(-0.744430\pi\)
0.970306 + 0.241879i \(0.0777638\pi\)
\(410\) 3.72897 6.45876i 0.184161 0.318976i
\(411\) −3.97052 + 6.87715i −0.195852 + 0.339225i
\(412\) 2.87705 + 4.98320i 0.141742 + 0.245505i
\(413\) 16.8047 + 8.61529i 0.826904 + 0.423931i
\(414\) 4.54614 7.87414i 0.223430 0.386993i
\(415\) 5.40818 9.36724i 0.265477 0.459820i
\(416\) −2.82972 2.23443i −0.138738 0.109552i
\(417\) 5.72452 + 9.91517i 0.280331 + 0.485548i
\(418\) −0.325278 0.563397i −0.0159098 0.0275567i
\(419\) −13.2788 + 22.9995i −0.648710 + 1.12360i 0.334721 + 0.942317i \(0.391358\pi\)
−0.983431 + 0.181282i \(0.941975\pi\)
\(420\) 3.42192 2.21010i 0.166973 0.107842i
\(421\) −13.7766 −0.671432 −0.335716 0.941963i \(-0.608978\pi\)
−0.335716 + 0.941963i \(0.608978\pi\)
\(422\) 14.4815 0.704950
\(423\) −2.07041 + 3.58606i −0.100667 + 0.174360i
\(424\) 4.11084 + 7.12019i 0.199640 + 0.345787i
\(425\) −11.5261 −0.559097
\(426\) 4.57326 7.92111i 0.221575 0.383779i
\(427\) 0.813547 + 16.3016i 0.0393703 + 0.788888i
\(428\) −2.87059 −0.138755
\(429\) 3.32079 22.7753i 0.160329 1.09960i
\(430\) 1.35038 + 2.33892i 0.0651209 + 0.112793i
\(431\) −10.7549 −0.518046 −0.259023 0.965871i \(-0.583401\pi\)
−0.259023 + 0.965871i \(0.583401\pi\)
\(432\) 0.500000 + 0.866025i 0.0240563 + 0.0416667i
\(433\) −16.7913 29.0833i −0.806937 1.39766i −0.914975 0.403509i \(-0.867790\pi\)
0.108038 0.994147i \(-0.465543\pi\)
\(434\) −2.88016 1.47658i −0.138252 0.0708781i
\(435\) −5.40818 9.36724i −0.259302 0.449125i
\(436\) 9.05021 0.433426
\(437\) −0.463305 0.802467i −0.0221629 0.0383872i
\(438\) 4.82528 8.35763i 0.230561 0.399343i
\(439\) 0.605618 + 1.04896i 0.0289046 + 0.0500642i 0.880116 0.474759i \(-0.157465\pi\)
−0.851211 + 0.524823i \(0.824131\pi\)
\(440\) −4.91426 + 8.51175i −0.234278 + 0.405782i
\(441\) −6.96522 + 0.696949i −0.331677 + 0.0331880i
\(442\) −2.28037 + 15.6396i −0.108466 + 0.743901i
\(443\) −4.92357 + 8.52787i −0.233926 + 0.405171i −0.958960 0.283542i \(-0.908491\pi\)
0.725034 + 0.688713i \(0.241824\pi\)
\(444\) −3.84385 −0.182421
\(445\) −23.9386 −1.13480
\(446\) 11.9783 0.567190
\(447\) 21.2136 1.00337
\(448\) −0.131875 2.64246i −0.00623050 0.124845i
\(449\) 17.5968 + 30.4786i 0.830446 + 1.43837i 0.897685 + 0.440637i \(0.145247\pi\)
−0.0672397 + 0.997737i \(0.521419\pi\)
\(450\) −1.31471 + 2.27714i −0.0619758 + 0.107345i
\(451\) 15.4604 26.7782i 0.728002 1.26094i
\(452\) 0.604308 0.0284243
\(453\) 8.72661 + 15.1149i 0.410012 + 0.710162i
\(454\) 4.29952 0.201786
\(455\) 8.51628 11.9665i 0.399249 0.560997i
\(456\) 0.101912 0.00477245
\(457\) 17.8946 + 30.9943i 0.837073 + 1.44985i 0.892332 + 0.451380i \(0.149068\pi\)
−0.0552593 + 0.998472i \(0.517599\pi\)
\(458\) −22.2971 −1.04188
\(459\) 2.19176 3.79624i 0.102303 0.177193i
\(460\) −6.99956 + 12.1236i −0.326356 + 0.565265i
\(461\) −16.5830 28.7225i −0.772346 1.33774i −0.936274 0.351270i \(-0.885750\pi\)
0.163929 0.986472i \(-0.447583\pi\)
\(462\) 14.1874 9.16315i 0.660057 0.426308i
\(463\) −23.6423 −1.09875 −0.549374 0.835576i \(-0.685134\pi\)
−0.549374 + 0.835576i \(0.685134\pi\)
\(464\) −7.02510 −0.326132
\(465\) −1.88352 −0.0873460
\(466\) −3.81382 −0.176672
\(467\) −14.1464 + 24.5024i −0.654620 + 1.13383i 0.327369 + 0.944896i \(0.393838\pi\)
−0.981989 + 0.188938i \(0.939495\pi\)
\(468\) 2.82972 + 2.23443i 0.130804 + 0.103287i
\(469\) 0.226191 + 4.53233i 0.0104445 + 0.209284i
\(470\) 3.18776 5.52136i 0.147040 0.254681i
\(471\) −10.6720 18.4844i −0.491739 0.851718i
\(472\) 3.56881 6.18137i 0.164268 0.284520i
\(473\) 5.59869 + 9.69722i 0.257428 + 0.445879i
\(474\) 4.06717 0.186811
\(475\) 0.133984 + 0.232067i 0.00614760 + 0.0106480i
\(476\) −9.74238 + 6.29227i −0.446541 + 0.288406i
\(477\) −4.11084 7.12019i −0.188222 0.326011i
\(478\) 6.47775 + 11.2198i 0.296285 + 0.513181i
\(479\) −18.5825 −0.849056 −0.424528 0.905415i \(-0.639560\pi\)
−0.424528 + 0.905415i \(0.639560\pi\)
\(480\) −0.769836 1.33339i −0.0351380 0.0608609i
\(481\) −12.8766 + 5.12537i −0.587124 + 0.233697i
\(482\) −0.972553 −0.0442986
\(483\) 20.2076 13.0514i 0.919478 0.593859i
\(484\) −14.8747 + 25.7637i −0.676121 + 1.17108i
\(485\) −3.06943 −0.139376
\(486\) −0.500000 0.866025i −0.0226805 0.0392837i
\(487\) −14.3184 + 24.8002i −0.648827 + 1.12380i 0.334576 + 0.942369i \(0.391407\pi\)
−0.983403 + 0.181433i \(0.941926\pi\)
\(488\) 6.16908 0.279261
\(489\) 16.7477 0.757356
\(490\) 10.7241 1.07307i 0.484468 0.0484765i
\(491\) −4.18769 + 7.25330i −0.188988 + 0.327337i −0.944913 0.327321i \(-0.893854\pi\)
0.755925 + 0.654658i \(0.227187\pi\)
\(492\) 2.42192 + 4.19490i 0.109189 + 0.189120i
\(493\) 15.3973 + 26.6690i 0.693461 + 1.20111i
\(494\) 0.341397 0.135889i 0.0153602 0.00611391i
\(495\) 4.91426 8.51175i 0.220880 0.382575i
\(496\) −0.611662 + 1.05943i −0.0274644 + 0.0475698i
\(497\) 20.3282 13.1293i 0.911842 0.588928i
\(498\) 3.51255 + 6.08392i 0.157401 + 0.272627i
\(499\) 0.333676 0.577944i 0.0149374 0.0258723i −0.858460 0.512880i \(-0.828578\pi\)
0.873397 + 0.487008i \(0.161912\pi\)
\(500\) 5.87339 10.1730i 0.262666 0.454951i
\(501\) −12.4467 + 21.5582i −0.556075 + 0.963151i
\(502\) −4.83297 + 8.37095i −0.215706 + 0.373614i
\(503\) 6.58181 + 11.4000i 0.293468 + 0.508302i 0.974627 0.223833i \(-0.0718571\pi\)
−0.681159 + 0.732136i \(0.738524\pi\)
\(504\) 0.131875 + 2.64246i 0.00587417 + 0.117705i
\(505\) 0.571207 0.989359i 0.0254184 0.0440259i
\(506\) −29.0204 + 50.2647i −1.29011 + 2.23454i
\(507\) 12.4588 + 3.71206i 0.553313 + 0.164858i
\(508\) −3.18892 5.52337i −0.141485 0.245060i
\(509\) −1.30380 2.25825i −0.0577899 0.100095i 0.835683 0.549212i \(-0.185072\pi\)
−0.893473 + 0.449117i \(0.851739\pi\)
\(510\) −3.37459 + 5.84496i −0.149429 + 0.258819i
\(511\) 21.4484 13.8528i 0.948821 0.612811i
\(512\) −1.00000 −0.0441942
\(513\) −0.101912 −0.00449951
\(514\) 13.5595 23.4858i 0.598084 1.03591i
\(515\) 4.42972 + 7.67250i 0.195197 + 0.338091i
\(516\) −1.75411 −0.0772203
\(517\) 13.2165 22.8917i 0.581262 1.00678i
\(518\) −9.04987 4.63962i −0.397628 0.203853i
\(519\) −18.8998 −0.829609
\(520\) −4.35684 3.44029i −0.191060 0.150867i
\(521\) 4.42237 + 7.65976i 0.193747 + 0.335580i 0.946489 0.322736i \(-0.104602\pi\)
−0.752742 + 0.658316i \(0.771269\pi\)
\(522\) 7.02510 0.307480
\(523\) 12.1996 + 21.1303i 0.533449 + 0.923962i 0.999237 + 0.0390648i \(0.0124379\pi\)
−0.465787 + 0.884897i \(0.654229\pi\)
\(524\) 5.42681 + 9.39952i 0.237071 + 0.410620i
\(525\) −5.84387 + 3.77436i −0.255048 + 0.164726i
\(526\) 2.36415 + 4.09483i 0.103082 + 0.178543i
\(527\) 5.36246 0.233592
\(528\) −3.19176 5.52829i −0.138904 0.240588i
\(529\) −29.8347 + 51.6753i −1.29716 + 2.24675i
\(530\) 6.32935 + 10.9627i 0.274929 + 0.476191i
\(531\) −3.56881 + 6.18137i −0.154873 + 0.268248i
\(532\) 0.239939 + 0.123010i 0.0104027 + 0.00533316i
\(533\) 13.7067 + 10.8232i 0.593705 + 0.468807i
\(534\) 7.77395 13.4649i 0.336412 0.582682i
\(535\) −4.41977 −0.191083
\(536\) 1.71519 0.0740850
\(537\) 1.58583 0.0684338
\(538\) 26.6960 1.15094
\(539\) 44.4626 4.44899i 1.91514 0.191631i
\(540\) 0.769836 + 1.33339i 0.0331285 + 0.0573802i
\(541\) −17.5725 + 30.4365i −0.755501 + 1.30857i 0.189624 + 0.981857i \(0.439273\pi\)
−0.945125 + 0.326709i \(0.894060\pi\)
\(542\) 2.40455 4.16481i 0.103284 0.178894i
\(543\) 13.1480 0.564236
\(544\) 2.19176 + 3.79624i 0.0939709 + 0.162762i
\(545\) 13.9343 0.596882
\(546\) 3.96522 + 8.67623i 0.169696 + 0.371309i
\(547\) −20.9144 −0.894237 −0.447119 0.894475i \(-0.647550\pi\)
−0.447119 + 0.894475i \(0.647550\pi\)
\(548\) 3.97052 + 6.87715i 0.169612 + 0.293777i
\(549\) −6.16908 −0.263290
\(550\) 8.39245 14.5361i 0.357855 0.619823i
\(551\) 0.357970 0.620022i 0.0152500 0.0264138i
\(552\) −4.54614 7.87414i −0.193496 0.335146i
\(553\) 9.57566 + 4.90917i 0.407198 + 0.208759i
\(554\) 25.2267 1.07178
\(555\) −5.91826 −0.251216
\(556\) 11.4490 0.485548
\(557\) 16.3149 0.691286 0.345643 0.938366i \(-0.387661\pi\)
0.345643 + 0.938366i \(0.387661\pi\)
\(558\) 0.611662 1.05943i 0.0258937 0.0448492i
\(559\) −5.87615 + 2.33892i −0.248535 + 0.0989257i
\(560\) −0.203044 4.06852i −0.00858017 0.171927i
\(561\) −13.9911 + 24.2334i −0.590706 + 1.02313i
\(562\) −1.69456 2.93506i −0.0714807 0.123808i
\(563\) −3.26864 + 5.66145i −0.137757 + 0.238602i −0.926647 0.375932i \(-0.877323\pi\)
0.788890 + 0.614534i \(0.210656\pi\)
\(564\) 2.07041 + 3.58606i 0.0871802 + 0.151000i
\(565\) 0.930436 0.0391437
\(566\) −5.25362 9.09954i −0.220826 0.382482i
\(567\) −0.131875 2.64246i −0.00553822 0.110973i
\(568\) −4.57326 7.92111i −0.191890 0.332363i
\(569\) −16.3751 28.3625i −0.686480 1.18902i −0.972969 0.230935i \(-0.925821\pi\)
0.286489 0.958084i \(-0.407512\pi\)
\(570\) 0.156911 0.00657226
\(571\) 6.42470 + 11.1279i 0.268865 + 0.465688i 0.968569 0.248745i \(-0.0800180\pi\)
−0.699704 + 0.714433i \(0.746685\pi\)
\(572\) −18.0636 14.2635i −0.755276 0.596388i
\(573\) −12.7038 −0.530710
\(574\) 0.638782 + 12.7997i 0.0266622 + 0.534249i
\(575\) 11.9537 20.7044i 0.498502 0.863431i
\(576\) 1.00000 0.0416667
\(577\) 5.71122 + 9.89213i 0.237761 + 0.411815i 0.960072 0.279755i \(-0.0902531\pi\)
−0.722310 + 0.691569i \(0.756920\pi\)
\(578\) 1.10762 1.91846i 0.0460710 0.0797973i
\(579\) 8.18276 0.340064
\(580\) −10.8164 −0.449125
\(581\) 0.926434 + 18.5636i 0.0384350 + 0.770147i
\(582\) 0.996781 1.72648i 0.0413179 0.0715647i
\(583\) 26.2416 + 45.4518i 1.08682 + 1.88242i
\(584\) −4.82528 8.35763i −0.199671 0.345841i
\(585\) 4.35684 + 3.44029i 0.180133 + 0.142238i
\(586\) 6.47179 11.2095i 0.267347 0.463059i
\(587\) −19.3637 + 33.5389i −0.799226 + 1.38430i 0.120895 + 0.992665i \(0.461424\pi\)
−0.920121 + 0.391634i \(0.871910\pi\)
\(588\) −2.87903 + 6.38053i −0.118729 + 0.263129i
\(589\) −0.0623355 0.107968i −0.00256849 0.00444875i
\(590\) 5.49480 9.51728i 0.226217 0.391820i
\(591\) 2.09350 3.62604i 0.0861149 0.149155i
\(592\) −1.92192 + 3.32887i −0.0789906 + 0.136816i
\(593\) 7.35202 12.7341i 0.301911 0.522926i −0.674658 0.738131i \(-0.735709\pi\)
0.976569 + 0.215205i \(0.0690420\pi\)
\(594\) 3.19176 + 5.52829i 0.130959 + 0.226828i
\(595\) −15.0001 + 9.68803i −0.614943 + 0.397171i
\(596\) 10.6068 18.3715i 0.434471 0.752525i
\(597\) 1.95797 3.39131i 0.0801345 0.138797i
\(598\) −25.7286 20.3161i −1.05212 0.830785i
\(599\) −17.4915 30.2961i −0.714681 1.23786i −0.963082 0.269207i \(-0.913238\pi\)
0.248401 0.968657i \(-0.420095\pi\)
\(600\) 1.31471 + 2.27714i 0.0536726 + 0.0929637i
\(601\) 18.1926 31.5105i 0.742091 1.28534i −0.209451 0.977819i \(-0.567168\pi\)
0.951542 0.307520i \(-0.0994991\pi\)
\(602\) −4.12983 2.11725i −0.168319 0.0862927i
\(603\) −1.71519 −0.0698480
\(604\) 17.4532 0.710162
\(605\) −22.9021 + 39.6676i −0.931103 + 1.61272i
\(606\) 0.370993 + 0.642578i 0.0150705 + 0.0261030i
\(607\) −21.7987 −0.884782 −0.442391 0.896822i \(-0.645870\pi\)
−0.442391 + 0.896822i \(0.645870\pi\)
\(608\) 0.0509558 0.0882581i 0.00206653 0.00357934i
\(609\) 16.5397 + 8.47947i 0.670224 + 0.343605i
\(610\) 9.49836 0.384577
\(611\) 11.7174 + 9.25239i 0.474035 + 0.374312i
\(612\) −2.19176 3.79624i −0.0885966 0.153454i
\(613\) 13.6141 0.549868 0.274934 0.961463i \(-0.411344\pi\)
0.274934 + 0.961463i \(0.411344\pi\)
\(614\) 14.4786 + 25.0777i 0.584310 + 1.01205i
\(615\) 3.72897 + 6.45876i 0.150366 + 0.260442i
\(616\) −0.841826 16.8682i −0.0339181 0.679640i
\(617\) −9.03652 15.6517i −0.363797 0.630114i 0.624786 0.780796i \(-0.285186\pi\)
−0.988582 + 0.150682i \(0.951853\pi\)
\(618\) −5.75411 −0.231464
\(619\) −17.8683 30.9488i −0.718188 1.24394i −0.961717 0.274045i \(-0.911638\pi\)
0.243529 0.969894i \(-0.421695\pi\)
\(620\) −0.941758 + 1.63117i −0.0378219 + 0.0655095i
\(621\) 4.54614 + 7.87414i 0.182430 + 0.315978i
\(622\) 15.8321 27.4220i 0.634810 1.09952i
\(623\) 34.5552 22.3180i 1.38443 0.894153i
\(624\) 3.34993 1.33339i 0.134105 0.0533785i
\(625\) 2.46957 4.27742i 0.0987828 0.171097i
\(626\) 2.71622 0.108562
\(627\) 0.650555 0.0259807
\(628\) −21.3440 −0.851718
\(629\) 16.8496 0.671837
\(630\) 0.203044 + 4.06852i 0.00808947 + 0.162094i
\(631\) −8.96088 15.5207i −0.356727 0.617870i 0.630685 0.776039i \(-0.282774\pi\)
−0.987412 + 0.158170i \(0.949441\pi\)
\(632\) 2.03359 3.52227i 0.0808917 0.140109i
\(633\) −7.24076 + 12.5414i −0.287795 + 0.498475i
\(634\) 30.6692 1.21803
\(635\) −4.90988 8.50417i −0.194843 0.337478i
\(636\) −8.22168 −0.326011
\(637\) −1.13681 + 25.2132i −0.0450419 + 0.998985i
\(638\) −44.8449 −1.77543
\(639\) 4.57326 + 7.92111i 0.180915 + 0.313354i
\(640\) −1.53967 −0.0608609
\(641\) 16.1541 27.9798i 0.638050 1.10513i −0.347810 0.937565i \(-0.613075\pi\)
0.985860 0.167570i \(-0.0535920\pi\)
\(642\) 1.43530 2.48601i 0.0566466 0.0981148i
\(643\) 7.45605 + 12.9143i 0.294038 + 0.509288i 0.974761 0.223253i \(-0.0716675\pi\)
−0.680723 + 0.732541i \(0.738334\pi\)
\(644\) −1.19904 24.0260i −0.0472489 0.946757i
\(645\) −2.70075 −0.106342
\(646\) −0.446732 −0.0175764
\(647\) 3.18530 0.125227 0.0626135 0.998038i \(-0.480056\pi\)
0.0626135 + 0.998038i \(0.480056\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 22.7816 39.4589i 0.894256 1.54890i
\(650\) 7.44050 + 5.87524i 0.291840 + 0.230446i
\(651\) 2.71884 1.75600i 0.106560 0.0688233i
\(652\) 8.37384 14.5039i 0.327945 0.568017i
\(653\) −4.09680 7.09586i −0.160320 0.277683i 0.774663 0.632374i \(-0.217919\pi\)
−0.934983 + 0.354691i \(0.884586\pi\)
\(654\) −4.52510 + 7.83771i −0.176946 + 0.306479i
\(655\) 8.35551 + 14.4722i 0.326477 + 0.565474i
\(656\) 4.84385 0.189120
\(657\) 4.82528 + 8.35763i 0.188252 + 0.326062i
\(658\) 0.546071 + 10.9420i 0.0212881 + 0.426563i
\(659\) 5.27966 + 9.14463i 0.205666 + 0.356224i 0.950345 0.311199i \(-0.100731\pi\)
−0.744679 + 0.667423i \(0.767397\pi\)
\(660\) −4.91426 8.51175i −0.191287 0.331319i
\(661\) −36.6166 −1.42422 −0.712111 0.702067i \(-0.752261\pi\)
−0.712111 + 0.702067i \(0.752261\pi\)
\(662\) 10.0377 + 17.3857i 0.390125 + 0.675715i
\(663\) −12.4041 9.79467i −0.481737 0.380393i
\(664\) 7.02510 0.272627
\(665\) 0.369427 + 0.189395i 0.0143257 + 0.00734442i
\(666\) 1.92192 3.32887i 0.0744730 0.128991i
\(667\) −63.8742 −2.47322
\(668\) 12.4467 + 21.5582i 0.481575 + 0.834113i
\(669\) −5.98916 + 10.3735i −0.231554 + 0.401064i
\(670\) 2.64083 0.102024
\(671\) 39.3805 1.52027
\(672\) 2.35438 + 1.20702i 0.0908221 + 0.0465620i
\(673\) 16.0264 27.7585i 0.617771 1.07001i −0.372120 0.928184i \(-0.621369\pi\)
0.989892 0.141827i \(-0.0452975\pi\)
\(674\) 14.5283 + 25.1638i 0.559610 + 0.969273i
\(675\) −1.31471 2.27714i −0.0506030 0.0876470i
\(676\) 9.44412 8.93357i 0.363235 0.343599i
\(677\) −21.7427 + 37.6595i −0.835641 + 1.44737i 0.0578671 + 0.998324i \(0.481570\pi\)
−0.893508 + 0.449048i \(0.851763\pi\)
\(678\) −0.302154 + 0.523346i −0.0116042 + 0.0200990i
\(679\) 4.43070 2.86164i 0.170035 0.109820i
\(680\) 3.37459 + 5.84496i 0.129410 + 0.224144i
\(681\) −2.14976 + 3.72349i −0.0823789 + 0.142684i
\(682\) −3.90455 + 6.76289i −0.149513 + 0.258964i
\(683\) 15.4733 26.8005i 0.592069 1.02549i −0.401884 0.915691i \(-0.631644\pi\)
0.993953 0.109804i \(-0.0350222\pi\)
\(684\) −0.0509558 + 0.0882581i −0.00194835 + 0.00337463i
\(685\) 6.11330 + 10.5886i 0.233577 + 0.404568i
\(686\) −14.4798 + 11.5471i −0.552841 + 0.440871i
\(687\) 11.1486 19.3099i 0.425344 0.736718i
\(688\) −0.877054 + 1.51910i −0.0334374 + 0.0579152i
\(689\) −27.5421 + 10.9627i −1.04927 + 0.417647i
\(690\) −6.99956 12.1236i −0.266469 0.461537i
\(691\) 7.75728 + 13.4360i 0.295101 + 0.511130i 0.975008 0.222168i \(-0.0713134\pi\)
−0.679907 + 0.733298i \(0.737980\pi\)
\(692\) −9.44989 + 16.3677i −0.359231 + 0.622206i
\(693\) 0.841826 + 16.8682i 0.0319783 + 0.640770i
\(694\) 9.31969 0.353771
\(695\) 17.6278 0.668660
\(696\) 3.51255 6.08392i 0.133143 0.230610i
\(697\) −10.6166 18.3884i −0.402131 0.696511i
\(698\) −24.1538 −0.914234
\(699\) 1.90691 3.30286i 0.0721259 0.124926i
\(700\) 0.346753 + 6.94812i 0.0131060 + 0.262614i
\(701\) −12.7687 −0.482267 −0.241133 0.970492i \(-0.577519\pi\)
−0.241133 + 0.970492i \(0.577519\pi\)
\(702\) −3.34993 + 1.33339i −0.126435 + 0.0503257i
\(703\) −0.195867 0.339251i −0.00738725 0.0127951i
\(704\) −6.38352 −0.240588
\(705\) 3.18776 + 5.52136i 0.120058 + 0.207946i
\(706\) −2.58663 4.48017i −0.0973491 0.168614i
\(707\) 0.0978492 + 1.96067i 0.00368000 + 0.0737385i
\(708\) 3.56881 + 6.18137i 0.134124 + 0.232310i
\(709\) −40.4217 −1.51807 −0.759034 0.651051i \(-0.774328\pi\)
−0.759034 + 0.651051i \(0.774328\pi\)
\(710\) −7.04131 12.1959i −0.264256 0.457705i
\(711\) −2.03359 + 3.52227i −0.0762654 + 0.132096i
\(712\) −7.77395 13.4649i −0.291341 0.504617i
\(713\) −5.56139 + 9.63262i −0.208276 + 0.360744i
\(714\) −0.578076 11.5833i −0.0216340 0.433494i
\(715\) −27.8120 21.9612i −1.04011 0.821301i
\(716\) 0.792917 1.37337i 0.0296327 0.0513253i
\(717\) −12.9555 −0.483832
\(718\) −33.4451 −1.24816
\(719\) −17.4466 −0.650647 −0.325324 0.945603i \(-0.605473\pi\)
−0.325324 + 0.945603i \(0.605473\pi\)
\(720\) 1.53967 0.0573802
\(721\) −13.5473 6.94535i −0.504529 0.258658i
\(722\) −9.49481 16.4455i −0.353360 0.612038i
\(723\) 0.486277 0.842256i 0.0180848 0.0313238i
\(724\) 6.57401 11.3865i 0.244321 0.423177i
\(725\) 18.4719 0.686029
\(726\) −14.8747 25.7637i −0.552050 0.956179i
\(727\) 24.4378 0.906347 0.453173 0.891422i \(-0.350292\pi\)
0.453173 + 0.891422i \(0.350292\pi\)
\(728\) 9.49645 + 0.904138i 0.351962 + 0.0335096i
\(729\) 1.00000 0.0370370
\(730\) −7.42934 12.8680i −0.274972 0.476266i
\(731\) 7.68917 0.284394
\(732\) −3.08454 + 5.34258i −0.114008 + 0.197468i
\(733\) 17.1113 29.6376i 0.632020 1.09469i −0.355118 0.934821i \(-0.615559\pi\)
0.987138 0.159869i \(-0.0511072\pi\)
\(734\) −3.98054 6.89450i −0.146924 0.254481i
\(735\) −4.43277 + 9.82392i −0.163505 + 0.362361i
\(736\) −9.09227 −0.335146
\(737\) 10.9490 0.403310
\(738\) −4.84385 −0.178305
\(739\) −23.5714 −0.867086 −0.433543 0.901133i \(-0.642737\pi\)
−0.433543 + 0.901133i \(0.642737\pi\)
\(740\) −2.95913 + 5.12537i −0.108780 + 0.188412i
\(741\) −0.0530158 + 0.363603i −0.00194758 + 0.0133573i
\(742\) −19.3569 9.92377i −0.710616 0.364313i
\(743\) −13.4988 + 23.3807i −0.495225 + 0.857754i −0.999985 0.00550536i \(-0.998248\pi\)
0.504760 + 0.863260i \(0.331581\pi\)
\(744\) −0.611662 1.05943i −0.0224246 0.0388405i
\(745\) 16.3310 28.2860i 0.598320 1.03632i
\(746\) 17.7986 + 30.8282i 0.651655 + 1.12870i
\(747\) −7.02510 −0.257035
\(748\) 13.9911 + 24.2334i 0.511567 + 0.886060i
\(749\) 6.37990 4.12056i 0.233116 0.150562i
\(750\) 5.87339 + 10.1730i 0.214466 + 0.371466i
\(751\) 14.6335 + 25.3460i 0.533985 + 0.924889i 0.999212 + 0.0396974i \(0.0126394\pi\)
−0.465227 + 0.885191i \(0.654027\pi\)
\(752\) 4.14083 0.151000
\(753\) −4.83297 8.37095i −0.176123 0.305054i
\(754\) 3.65455 25.0643i 0.133091 0.912789i
\(755\) 26.8722 0.977981
\(756\) −2.35438 1.20702i −0.0856279 0.0438991i
\(757\) 10.2367 17.7305i 0.372059 0.644425i −0.617823 0.786317i \(-0.711985\pi\)
0.989882 + 0.141892i \(0.0453185\pi\)
\(758\) 4.59205 0.166791
\(759\) −29.0204 50.2647i −1.05337 1.82449i
\(760\) 0.0784553 0.135889i 0.00284587 0.00492919i
\(761\) 12.1860 0.441741 0.220870 0.975303i \(-0.429110\pi\)
0.220870 + 0.975303i \(0.429110\pi\)
\(762\) 6.37783 0.231045
\(763\) −20.1141 + 12.9910i −0.728179 + 0.470306i
\(764\) −6.35191 + 11.0018i −0.229804 + 0.398032i
\(765\) −3.37459 5.84496i −0.122009 0.211325i
\(766\) 5.20906 + 9.02236i 0.188211 + 0.325991i
\(767\) 20.1975 + 15.9485i 0.729289 + 0.575868i
\(768\) 0.500000 0.866025i 0.0180422 0.0312500i
\(769\) −6.71153 + 11.6247i −0.242024 + 0.419198i −0.961291 0.275536i \(-0.911145\pi\)
0.719267 + 0.694734i \(0.244478\pi\)
\(770\) −1.29614 25.9715i −0.0467095 0.935948i
\(771\) 13.5595 + 23.4858i 0.488334 + 0.845819i
\(772\) 4.09138 7.08648i 0.147252 0.255048i
\(773\) 14.9034 25.8134i 0.536037 0.928443i −0.463076 0.886319i \(-0.653254\pi\)
0.999112 0.0421240i \(-0.0134124\pi\)
\(774\) 0.877054 1.51910i 0.0315251 0.0546030i
\(775\) 1.60831 2.78567i