Properties

Label 546.2.j.e.289.3
Level $546$
Weight $2$
Character 546.289
Analytic conductor $4.360$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Defining polynomial: \(x^{10} - 2 x^{9} + 15 x^{8} + 14 x^{7} + 110 x^{6} + 36 x^{5} + 233 x^{4} + 164 x^{3} + 345 x^{2} + 76 x + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.3
Root \(-0.114009 + 0.197470i\) of defining polynomial
Character \(\chi\) \(=\) 546.289
Dual form 546.2.j.e.529.3

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{2} +(0.500000 - 0.866025i) q^{3} +1.00000 q^{4} +(0.114009 - 0.197470i) q^{5} +(-0.500000 + 0.866025i) q^{6} +(-2.59452 + 0.518144i) q^{7} -1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +(0.500000 - 0.866025i) q^{3} +1.00000 q^{4} +(0.114009 - 0.197470i) q^{5} +(-0.500000 + 0.866025i) q^{6} +(-2.59452 + 0.518144i) q^{7} -1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +(-0.114009 + 0.197470i) q^{10} +(-1.70561 + 2.95420i) q^{11} +(0.500000 - 0.866025i) q^{12} +(-1.62906 - 3.21655i) q^{13} +(2.59452 - 0.518144i) q^{14} +(-0.114009 - 0.197470i) q^{15} +1.00000 q^{16} -5.41122 q^{17} +(0.500000 + 0.866025i) q^{18} +(-3.17107 - 5.49246i) q^{19} +(0.114009 - 0.197470i) q^{20} +(-0.848534 + 2.50599i) q^{21} +(1.70561 - 2.95420i) q^{22} -1.91925 q^{23} +(-0.500000 + 0.866025i) q^{24} +(2.47400 + 4.28510i) q^{25} +(1.62906 + 3.21655i) q^{26} -1.00000 q^{27} +(-2.59452 + 0.518144i) q^{28} +(0.851453 + 1.47476i) q^{29} +(0.114009 + 0.197470i) q^{30} +(-1.78052 - 3.08395i) q^{31} -1.00000 q^{32} +(1.70561 + 2.95420i) q^{33} +5.41122 q^{34} +(-0.193482 + 0.571413i) q^{35} +(-0.500000 - 0.866025i) q^{36} -4.18320 q^{37} +(3.17107 + 5.49246i) q^{38} +(-3.60014 - 0.197470i) q^{39} +(-0.114009 + 0.197470i) q^{40} +(1.59160 + 2.75673i) q^{41} +(0.848534 - 2.50599i) q^{42} +(5.17961 - 8.97135i) q^{43} +(-1.70561 + 2.95420i) q^{44} -0.228019 q^{45} +1.91925 q^{46} +(-5.57211 + 9.65117i) q^{47} +(0.500000 - 0.866025i) q^{48} +(6.46305 - 2.68867i) q^{49} +(-2.47400 - 4.28510i) q^{50} +(-2.70561 + 4.68625i) q^{51} +(-1.62906 - 3.21655i) q^{52} +(-3.31400 - 5.74001i) q^{53} +1.00000 q^{54} +(0.388911 + 0.673613i) q^{55} +(2.59452 - 0.518144i) q^{56} -6.34214 q^{57} +(-0.851453 - 1.47476i) q^{58} -14.7704 q^{59} +(-0.114009 - 0.197470i) q^{60} +(3.35999 + 5.81968i) q^{61} +(1.78052 + 3.08395i) q^{62} +(1.74599 + 1.98785i) q^{63} +1.00000 q^{64} +(-0.820899 - 0.0450268i) q^{65} +(-1.70561 - 2.95420i) q^{66} +(-5.58065 + 9.66597i) q^{67} -5.41122 q^{68} +(-0.959623 + 1.66212i) q^{69} +(0.193482 - 0.571413i) q^{70} +(-0.0390952 + 0.0677149i) q^{71} +(0.500000 + 0.866025i) q^{72} +(-6.31721 - 10.9417i) q^{73} +4.18320 q^{74} +4.94801 q^{75} +(-3.17107 - 5.49246i) q^{76} +(2.89453 - 8.54848i) q^{77} +(3.60014 + 0.197470i) q^{78} +(0.811077 - 1.40483i) q^{79} +(0.114009 - 0.197470i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(-1.59160 - 2.75673i) q^{82} -1.70291 q^{83} +(-0.848534 + 2.50599i) q^{84} +(-0.616929 + 1.06855i) q^{85} +(-5.17961 + 8.97135i) q^{86} +1.70291 q^{87} +(1.70561 - 2.95420i) q^{88} +17.5457 q^{89} +0.228019 q^{90} +(5.89325 + 7.50131i) q^{91} -1.91925 q^{92} -3.56104 q^{93} +(5.57211 - 9.65117i) q^{94} -1.44613 q^{95} +(-0.500000 + 0.866025i) q^{96} +(6.82663 - 11.8241i) q^{97} +(-6.46305 + 2.68867i) q^{98} +3.41122 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10q - 10q^{2} + 5q^{3} + 10q^{4} - 2q^{5} - 5q^{6} - 2q^{7} - 10q^{8} - 5q^{9} + O(q^{10}) \) \( 10q - 10q^{2} + 5q^{3} + 10q^{4} - 2q^{5} - 5q^{6} - 2q^{7} - 10q^{8} - 5q^{9} + 2q^{10} + 6q^{11} + 5q^{12} - 4q^{13} + 2q^{14} + 2q^{15} + 10q^{16} - 8q^{17} + 5q^{18} + 3q^{19} - 2q^{20} - 4q^{21} - 6q^{22} - 12q^{23} - 5q^{24} - q^{25} + 4q^{26} - 10q^{27} - 2q^{28} - 2q^{30} - 10q^{31} - 10q^{32} - 6q^{33} + 8q^{34} + 16q^{35} - 5q^{36} - 2q^{37} - 3q^{38} - 2q^{39} + 2q^{40} - 4q^{41} + 4q^{42} + 3q^{43} + 6q^{44} + 4q^{45} + 12q^{46} - 15q^{47} + 5q^{48} + 4q^{49} + q^{50} - 4q^{51} - 4q^{52} - 17q^{53} + 10q^{54} + 3q^{55} + 2q^{56} + 6q^{57} - 4q^{59} + 2q^{60} + 11q^{61} + 10q^{62} - 2q^{63} + 10q^{64} - 4q^{65} + 6q^{66} - q^{67} - 8q^{68} - 6q^{69} - 16q^{70} + 18q^{71} + 5q^{72} + 12q^{73} + 2q^{74} - 2q^{75} + 3q^{76} + 18q^{77} + 2q^{78} - 4q^{79} - 2q^{80} - 5q^{81} + 4q^{82} - 4q^{84} + q^{85} - 3q^{86} - 6q^{88} - 14q^{89} - 4q^{90} + 26q^{91} - 12q^{92} - 20q^{93} + 15q^{94} - 48q^{95} - 5q^{96} - 6q^{97} - 4q^{98} - 12q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) 1.00000 0.500000
\(5\) 0.114009 0.197470i 0.0509865 0.0883113i −0.839406 0.543505i \(-0.817097\pi\)
0.890392 + 0.455194i \(0.150430\pi\)
\(6\) −0.500000 + 0.866025i −0.204124 + 0.353553i
\(7\) −2.59452 + 0.518144i −0.980636 + 0.195840i
\(8\) −1.00000 −0.353553
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) −0.114009 + 0.197470i −0.0360529 + 0.0624455i
\(11\) −1.70561 + 2.95420i −0.514260 + 0.890725i 0.485603 + 0.874180i \(0.338600\pi\)
−0.999863 + 0.0165453i \(0.994733\pi\)
\(12\) 0.500000 0.866025i 0.144338 0.250000i
\(13\) −1.62906 3.21655i −0.451819 0.892110i
\(14\) 2.59452 0.518144i 0.693414 0.138480i
\(15\) −0.114009 0.197470i −0.0294371 0.0509865i
\(16\) 1.00000 0.250000
\(17\) −5.41122 −1.31241 −0.656206 0.754581i \(-0.727840\pi\)
−0.656206 + 0.754581i \(0.727840\pi\)
\(18\) 0.500000 + 0.866025i 0.117851 + 0.204124i
\(19\) −3.17107 5.49246i −0.727494 1.26006i −0.957939 0.286971i \(-0.907352\pi\)
0.230446 0.973085i \(-0.425982\pi\)
\(20\) 0.114009 0.197470i 0.0254933 0.0441556i
\(21\) −0.848534 + 2.50599i −0.185165 + 0.546852i
\(22\) 1.70561 2.95420i 0.363637 0.629838i
\(23\) −1.91925 −0.400190 −0.200095 0.979776i \(-0.564125\pi\)
−0.200095 + 0.979776i \(0.564125\pi\)
\(24\) −0.500000 + 0.866025i −0.102062 + 0.176777i
\(25\) 2.47400 + 4.28510i 0.494801 + 0.857020i
\(26\) 1.62906 + 3.21655i 0.319484 + 0.630817i
\(27\) −1.00000 −0.192450
\(28\) −2.59452 + 0.518144i −0.490318 + 0.0979200i
\(29\) 0.851453 + 1.47476i 0.158111 + 0.273856i 0.934187 0.356783i \(-0.116126\pi\)
−0.776077 + 0.630639i \(0.782793\pi\)
\(30\) 0.114009 + 0.197470i 0.0208152 + 0.0360529i
\(31\) −1.78052 3.08395i −0.319791 0.553895i 0.660653 0.750691i \(-0.270279\pi\)
−0.980444 + 0.196797i \(0.936946\pi\)
\(32\) −1.00000 −0.176777
\(33\) 1.70561 + 2.95420i 0.296908 + 0.514260i
\(34\) 5.41122 0.928016
\(35\) −0.193482 + 0.571413i −0.0327043 + 0.0965864i
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) −4.18320 −0.687713 −0.343857 0.939022i \(-0.611733\pi\)
−0.343857 + 0.939022i \(0.611733\pi\)
\(38\) 3.17107 + 5.49246i 0.514416 + 0.890994i
\(39\) −3.60014 0.197470i −0.576484 0.0316205i
\(40\) −0.114009 + 0.197470i −0.0180265 + 0.0312227i
\(41\) 1.59160 + 2.75673i 0.248566 + 0.430529i 0.963128 0.269043i \(-0.0867074\pi\)
−0.714562 + 0.699572i \(0.753374\pi\)
\(42\) 0.848534 2.50599i 0.130932 0.386683i
\(43\) 5.17961 8.97135i 0.789883 1.36812i −0.136154 0.990688i \(-0.543474\pi\)
0.926038 0.377431i \(-0.123192\pi\)
\(44\) −1.70561 + 2.95420i −0.257130 + 0.445362i
\(45\) −0.228019 −0.0339910
\(46\) 1.91925 0.282977
\(47\) −5.57211 + 9.65117i −0.812775 + 1.40777i 0.0981388 + 0.995173i \(0.468711\pi\)
−0.910914 + 0.412596i \(0.864622\pi\)
\(48\) 0.500000 0.866025i 0.0721688 0.125000i
\(49\) 6.46305 2.68867i 0.923293 0.384095i
\(50\) −2.47400 4.28510i −0.349877 0.606005i
\(51\) −2.70561 + 4.68625i −0.378861 + 0.656206i
\(52\) −1.62906 3.21655i −0.225909 0.446055i
\(53\) −3.31400 5.74001i −0.455212 0.788451i 0.543488 0.839417i \(-0.317103\pi\)
−0.998700 + 0.0509659i \(0.983770\pi\)
\(54\) 1.00000 0.136083
\(55\) 0.388911 + 0.673613i 0.0524407 + 0.0908299i
\(56\) 2.59452 0.518144i 0.346707 0.0692399i
\(57\) −6.34214 −0.840037
\(58\) −0.851453 1.47476i −0.111801 0.193646i
\(59\) −14.7704 −1.92295 −0.961474 0.274897i \(-0.911356\pi\)
−0.961474 + 0.274897i \(0.911356\pi\)
\(60\) −0.114009 0.197470i −0.0147185 0.0254933i
\(61\) 3.35999 + 5.81968i 0.430203 + 0.745134i 0.996891 0.0787991i \(-0.0251086\pi\)
−0.566687 + 0.823933i \(0.691775\pi\)
\(62\) 1.78052 + 3.08395i 0.226127 + 0.391663i
\(63\) 1.74599 + 1.98785i 0.219973 + 0.250445i
\(64\) 1.00000 0.125000
\(65\) −0.820899 0.0450268i −0.101820 0.00558489i
\(66\) −1.70561 2.95420i −0.209946 0.363637i
\(67\) −5.58065 + 9.66597i −0.681785 + 1.18089i 0.292651 + 0.956219i \(0.405463\pi\)
−0.974436 + 0.224667i \(0.927871\pi\)
\(68\) −5.41122 −0.656206
\(69\) −0.959623 + 1.66212i −0.115525 + 0.200095i
\(70\) 0.193482 0.571413i 0.0231255 0.0682969i
\(71\) −0.0390952 + 0.0677149i −0.00463975 + 0.00803628i −0.868336 0.495976i \(-0.834810\pi\)
0.863696 + 0.504013i \(0.168144\pi\)
\(72\) 0.500000 + 0.866025i 0.0589256 + 0.102062i
\(73\) −6.31721 10.9417i −0.739373 1.28063i −0.952778 0.303668i \(-0.901789\pi\)
0.213404 0.976964i \(-0.431545\pi\)
\(74\) 4.18320 0.486287
\(75\) 4.94801 0.571347
\(76\) −3.17107 5.49246i −0.363747 0.630028i
\(77\) 2.89453 8.54848i 0.329862 0.974189i
\(78\) 3.60014 + 0.197470i 0.407636 + 0.0223591i
\(79\) 0.811077 1.40483i 0.0912532 0.158055i −0.816785 0.576941i \(-0.804246\pi\)
0.908039 + 0.418886i \(0.137579\pi\)
\(80\) 0.114009 0.197470i 0.0127466 0.0220778i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) −1.59160 2.75673i −0.175763 0.304430i
\(83\) −1.70291 −0.186918 −0.0934592 0.995623i \(-0.529792\pi\)
−0.0934592 + 0.995623i \(0.529792\pi\)
\(84\) −0.848534 + 2.50599i −0.0925826 + 0.273426i
\(85\) −0.616929 + 1.06855i −0.0669154 + 0.115901i
\(86\) −5.17961 + 8.97135i −0.558532 + 0.967406i
\(87\) 1.70291 0.182571
\(88\) 1.70561 2.95420i 0.181818 0.314919i
\(89\) 17.5457 1.85984 0.929920 0.367762i \(-0.119876\pi\)
0.929920 + 0.367762i \(0.119876\pi\)
\(90\) 0.228019 0.0240353
\(91\) 5.89325 + 7.50131i 0.617780 + 0.786351i
\(92\) −1.91925 −0.200095
\(93\) −3.56104 −0.369263
\(94\) 5.57211 9.65117i 0.574719 0.995443i
\(95\) −1.44613 −0.148369
\(96\) −0.500000 + 0.866025i −0.0510310 + 0.0883883i
\(97\) 6.82663 11.8241i 0.693140 1.20055i −0.277664 0.960678i \(-0.589560\pi\)
0.970804 0.239875i \(-0.0771064\pi\)
\(98\) −6.46305 + 2.68867i −0.652867 + 0.271596i
\(99\) 3.41122 0.342840
\(100\) 2.47400 + 4.28510i 0.247400 + 0.428510i
\(101\) 8.25823 14.3037i 0.821724 1.42327i −0.0826732 0.996577i \(-0.526346\pi\)
0.904397 0.426691i \(-0.140321\pi\)
\(102\) 2.70561 4.68625i 0.267895 0.464008i
\(103\) −3.17961 + 5.50725i −0.313296 + 0.542645i −0.979074 0.203505i \(-0.934767\pi\)
0.665777 + 0.746150i \(0.268100\pi\)
\(104\) 1.62906 + 3.21655i 0.159742 + 0.315408i
\(105\) 0.398117 + 0.453266i 0.0388523 + 0.0442343i
\(106\) 3.31400 + 5.74001i 0.321884 + 0.557519i
\(107\) 6.54724 0.632945 0.316473 0.948602i \(-0.397501\pi\)
0.316473 + 0.948602i \(0.397501\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 0.797093 + 1.38061i 0.0763477 + 0.132238i 0.901672 0.432422i \(-0.142341\pi\)
−0.825324 + 0.564660i \(0.809007\pi\)
\(110\) −0.388911 0.673613i −0.0370812 0.0642265i
\(111\) −2.09160 + 3.62276i −0.198526 + 0.343857i
\(112\) −2.59452 + 0.518144i −0.245159 + 0.0489600i
\(113\) −4.12255 + 7.14047i −0.387817 + 0.671719i −0.992156 0.125009i \(-0.960104\pi\)
0.604339 + 0.796728i \(0.293437\pi\)
\(114\) 6.34214 0.593996
\(115\) −0.218812 + 0.378993i −0.0204043 + 0.0353413i
\(116\) 0.851453 + 1.47476i 0.0790555 + 0.136928i
\(117\) −1.97108 + 3.01908i −0.182227 + 0.279114i
\(118\) 14.7704 1.35973
\(119\) 14.0395 2.80379i 1.28700 0.257023i
\(120\) 0.114009 + 0.197470i 0.0104076 + 0.0180265i
\(121\) −0.318198 0.551135i −0.0289271 0.0501032i
\(122\) −3.35999 5.81968i −0.304200 0.526889i
\(123\) 3.18320 0.287019
\(124\) −1.78052 3.08395i −0.159896 0.276947i
\(125\) 2.26833 0.202886
\(126\) −1.74599 1.98785i −0.155545 0.177091i
\(127\) −6.40560 11.0948i −0.568405 0.984506i −0.996724 0.0808783i \(-0.974227\pi\)
0.428319 0.903627i \(-0.359106\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −5.17961 8.97135i −0.456039 0.789883i
\(130\) 0.820899 + 0.0450268i 0.0719976 + 0.00394912i
\(131\) −1.75964 + 3.04778i −0.153740 + 0.266286i −0.932600 0.360913i \(-0.882465\pi\)
0.778859 + 0.627199i \(0.215799\pi\)
\(132\) 1.70561 + 2.95420i 0.148454 + 0.257130i
\(133\) 11.0733 + 12.6072i 0.960176 + 1.09318i
\(134\) 5.58065 9.66597i 0.482095 0.835012i
\(135\) −0.114009 + 0.197470i −0.00981236 + 0.0169955i
\(136\) 5.41122 0.464008
\(137\) 17.6955 1.51183 0.755915 0.654669i \(-0.227192\pi\)
0.755915 + 0.654669i \(0.227192\pi\)
\(138\) 0.959623 1.66212i 0.0816885 0.141489i
\(139\) 3.98321 6.89912i 0.337851 0.585176i −0.646177 0.763188i \(-0.723633\pi\)
0.984028 + 0.178012i \(0.0569665\pi\)
\(140\) −0.193482 + 0.571413i −0.0163522 + 0.0482932i
\(141\) 5.57211 + 9.65117i 0.469256 + 0.812775i
\(142\) 0.0390952 0.0677149i 0.00328080 0.00568251i
\(143\) 12.2809 + 0.673613i 1.02698 + 0.0563303i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) 0.388295 0.0322461
\(146\) 6.31721 + 10.9417i 0.522816 + 0.905544i
\(147\) 0.903072 6.94150i 0.0744842 0.572525i
\(148\) −4.18320 −0.343857
\(149\) −1.34679 2.33271i −0.110333 0.191103i 0.805571 0.592499i \(-0.201859\pi\)
−0.915905 + 0.401396i \(0.868525\pi\)
\(150\) −4.94801 −0.404003
\(151\) 6.56432 + 11.3697i 0.534197 + 0.925256i 0.999202 + 0.0399480i \(0.0127192\pi\)
−0.465005 + 0.885308i \(0.653947\pi\)
\(152\) 3.17107 + 5.49246i 0.257208 + 0.445497i
\(153\) 2.70561 + 4.68625i 0.218735 + 0.378861i
\(154\) −2.89453 + 8.54848i −0.233248 + 0.688856i
\(155\) −0.811985 −0.0652202
\(156\) −3.60014 0.197470i −0.288242 0.0158103i
\(157\) −1.59071 2.75520i −0.126953 0.219889i 0.795542 0.605899i \(-0.207186\pi\)
−0.922495 + 0.386010i \(0.873853\pi\)
\(158\) −0.811077 + 1.40483i −0.0645258 + 0.111762i
\(159\) −6.62799 −0.525634
\(160\) −0.114009 + 0.197470i −0.00901323 + 0.0156114i
\(161\) 4.97952 0.994446i 0.392441 0.0783733i
\(162\) 0.500000 0.866025i 0.0392837 0.0680414i
\(163\) 8.14702 + 14.1111i 0.638124 + 1.10526i 0.985844 + 0.167665i \(0.0536226\pi\)
−0.347720 + 0.937598i \(0.613044\pi\)
\(164\) 1.59160 + 2.75673i 0.124283 + 0.215264i
\(165\) 0.777821 0.0605533
\(166\) 1.70291 0.132171
\(167\) 0.826739 + 1.43195i 0.0639750 + 0.110808i 0.896239 0.443572i \(-0.146289\pi\)
−0.832264 + 0.554380i \(0.812956\pi\)
\(168\) 0.848534 2.50599i 0.0654658 0.193341i
\(169\) −7.69235 + 10.4799i −0.591720 + 0.806144i
\(170\) 0.616929 1.06855i 0.0473163 0.0819543i
\(171\) −3.17107 + 5.49246i −0.242498 + 0.420019i
\(172\) 5.17961 8.97135i 0.394942 0.684059i
\(173\) −7.02100 12.1607i −0.533797 0.924563i −0.999221 0.0394751i \(-0.987431\pi\)
0.465424 0.885088i \(-0.345902\pi\)
\(174\) −1.70291 −0.129097
\(175\) −8.63915 9.83588i −0.653058 0.743523i
\(176\) −1.70561 + 2.95420i −0.128565 + 0.222681i
\(177\) −7.38522 + 12.7916i −0.555107 + 0.961474i
\(178\) −17.5457 −1.31511
\(179\) 4.66663 8.08283i 0.348800 0.604139i −0.637237 0.770668i \(-0.719923\pi\)
0.986037 + 0.166529i \(0.0532559\pi\)
\(180\) −0.228019 −0.0169955
\(181\) 1.13838 0.0846148 0.0423074 0.999105i \(-0.486529\pi\)
0.0423074 + 0.999105i \(0.486529\pi\)
\(182\) −5.89325 7.50131i −0.436837 0.556034i
\(183\) 6.71999 0.496756
\(184\) 1.91925 0.141489
\(185\) −0.476924 + 0.826056i −0.0350641 + 0.0607328i
\(186\) 3.56104 0.261108
\(187\) 9.22941 15.9858i 0.674922 1.16900i
\(188\) −5.57211 + 9.65117i −0.406388 + 0.703884i
\(189\) 2.59452 0.518144i 0.188723 0.0376894i
\(190\) 1.44613 0.104913
\(191\) −9.04253 15.6621i −0.654294 1.13327i −0.982070 0.188515i \(-0.939632\pi\)
0.327776 0.944755i \(-0.393701\pi\)
\(192\) 0.500000 0.866025i 0.0360844 0.0625000i
\(193\) 2.91296 5.04539i 0.209679 0.363175i −0.741934 0.670473i \(-0.766091\pi\)
0.951614 + 0.307297i \(0.0994246\pi\)
\(194\) −6.82663 + 11.8241i −0.490124 + 0.848919i
\(195\) −0.449444 + 0.688406i −0.0321854 + 0.0492978i
\(196\) 6.46305 2.68867i 0.461647 0.192048i
\(197\) −10.3527 17.9315i −0.737602 1.27756i −0.953572 0.301165i \(-0.902625\pi\)
0.215970 0.976400i \(-0.430709\pi\)
\(198\) −3.41122 −0.242425
\(199\) −16.3984 −1.16245 −0.581227 0.813741i \(-0.697427\pi\)
−0.581227 + 0.813741i \(0.697427\pi\)
\(200\) −2.47400 4.28510i −0.174938 0.303002i
\(201\) 5.58065 + 9.66597i 0.393629 + 0.681785i
\(202\) −8.25823 + 14.3037i −0.581047 + 1.00640i
\(203\) −2.97325 3.38512i −0.208681 0.237589i
\(204\) −2.70561 + 4.68625i −0.189430 + 0.328103i
\(205\) 0.725829 0.0506941
\(206\) 3.17961 5.50725i 0.221534 0.383708i
\(207\) 0.959623 + 1.66212i 0.0666984 + 0.115525i
\(208\) −1.62906 3.21655i −0.112955 0.223027i
\(209\) 21.6344 1.49648
\(210\) −0.398117 0.453266i −0.0274727 0.0312783i
\(211\) 3.74446 + 6.48560i 0.257779 + 0.446487i 0.965647 0.259858i \(-0.0836759\pi\)
−0.707867 + 0.706345i \(0.750343\pi\)
\(212\) −3.31400 5.74001i −0.227606 0.394226i
\(213\) 0.0390952 + 0.0677149i 0.00267876 + 0.00463975i
\(214\) −6.54724 −0.447560
\(215\) −1.18105 2.04564i −0.0805468 0.139511i
\(216\) 1.00000 0.0680414
\(217\) 6.21753 + 7.07881i 0.422073 + 0.480541i
\(218\) −0.797093 1.38061i −0.0539860 0.0935064i
\(219\) −12.6344 −0.853755
\(220\) 0.388911 + 0.673613i 0.0262203 + 0.0454150i
\(221\) 8.81517 + 17.4054i 0.592973 + 1.17082i
\(222\) 2.09160 3.62276i 0.140379 0.243143i
\(223\) −8.41325 14.5722i −0.563393 0.975825i −0.997197 0.0748181i \(-0.976162\pi\)
0.433804 0.901007i \(-0.357171\pi\)
\(224\) 2.59452 0.518144i 0.173354 0.0346199i
\(225\) 2.47400 4.28510i 0.164934 0.285673i
\(226\) 4.12255 7.14047i 0.274228 0.474977i
\(227\) −4.23214 −0.280897 −0.140449 0.990088i \(-0.544854\pi\)
−0.140449 + 0.990088i \(0.544854\pi\)
\(228\) −6.34214 −0.420019
\(229\) −6.86498 + 11.8905i −0.453650 + 0.785745i −0.998609 0.0527171i \(-0.983212\pi\)
0.544959 + 0.838463i \(0.316545\pi\)
\(230\) 0.218812 0.378993i 0.0144280 0.0249901i
\(231\) −5.95593 6.78098i −0.391872 0.446155i
\(232\) −0.851453 1.47476i −0.0559007 0.0968228i
\(233\) −3.85349 + 6.67444i −0.252450 + 0.437257i −0.964200 0.265176i \(-0.914570\pi\)
0.711749 + 0.702433i \(0.247903\pi\)
\(234\) 1.97108 3.01908i 0.128854 0.197363i
\(235\) 1.27054 + 2.20065i 0.0828812 + 0.143554i
\(236\) −14.7704 −0.961474
\(237\) −0.811077 1.40483i −0.0526851 0.0912532i
\(238\) −14.0395 + 2.80379i −0.910046 + 0.181743i
\(239\) −25.2189 −1.63128 −0.815638 0.578562i \(-0.803614\pi\)
−0.815638 + 0.578562i \(0.803614\pi\)
\(240\) −0.114009 0.197470i −0.00735927 0.0127466i
\(241\) 27.8367 1.79312 0.896560 0.442923i \(-0.146059\pi\)
0.896560 + 0.442923i \(0.146059\pi\)
\(242\) 0.318198 + 0.551135i 0.0204545 + 0.0354283i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) 3.35999 + 5.81968i 0.215102 + 0.372567i
\(245\) 0.205917 1.58279i 0.0131556 0.101121i
\(246\) −3.18320 −0.202953
\(247\) −12.5009 + 19.1474i −0.795413 + 1.21832i
\(248\) 1.78052 + 3.08395i 0.113063 + 0.195831i
\(249\) −0.851453 + 1.47476i −0.0539587 + 0.0934592i
\(250\) −2.26833 −0.143462
\(251\) 2.12395 3.67878i 0.134062 0.232203i −0.791177 0.611588i \(-0.790531\pi\)
0.925239 + 0.379385i \(0.123864\pi\)
\(252\) 1.74599 + 1.98785i 0.109987 + 0.125223i
\(253\) 3.27348 5.66984i 0.205802 0.356460i
\(254\) 6.40560 + 11.0948i 0.401923 + 0.696151i
\(255\) 0.616929 + 1.06855i 0.0386336 + 0.0669154i
\(256\) 1.00000 0.0625000
\(257\) 14.7167 0.918003 0.459002 0.888435i \(-0.348207\pi\)
0.459002 + 0.888435i \(0.348207\pi\)
\(258\) 5.17961 + 8.97135i 0.322469 + 0.558532i
\(259\) 10.8534 2.16750i 0.674396 0.134682i
\(260\) −0.820899 0.0450268i −0.0509100 0.00279245i
\(261\) 0.851453 1.47476i 0.0527036 0.0912854i
\(262\) 1.75964 3.04778i 0.108711 0.188292i
\(263\) −11.7053 + 20.2741i −0.721777 + 1.25015i 0.238510 + 0.971140i \(0.423341\pi\)
−0.960287 + 0.279015i \(0.909992\pi\)
\(264\) −1.70561 2.95420i −0.104973 0.181818i
\(265\) −1.51131 −0.0928388
\(266\) −11.0733 12.6072i −0.678947 0.772998i
\(267\) 8.77285 15.1950i 0.536890 0.929920i
\(268\) −5.58065 + 9.66597i −0.340892 + 0.590443i
\(269\) −9.35772 −0.570550 −0.285275 0.958446i \(-0.592085\pi\)
−0.285275 + 0.958446i \(0.592085\pi\)
\(270\) 0.114009 0.197470i 0.00693839 0.0120176i
\(271\) −15.1475 −0.920145 −0.460072 0.887881i \(-0.652177\pi\)
−0.460072 + 0.887881i \(0.652177\pi\)
\(272\) −5.41122 −0.328103
\(273\) 9.44295 1.35305i 0.571513 0.0818903i
\(274\) −17.6955 −1.06903
\(275\) −16.8787 −1.01783
\(276\) −0.959623 + 1.66212i −0.0577625 + 0.100048i
\(277\) −32.8782 −1.97546 −0.987731 0.156165i \(-0.950087\pi\)
−0.987731 + 0.156165i \(0.950087\pi\)
\(278\) −3.98321 + 6.89912i −0.238897 + 0.413782i
\(279\) −1.78052 + 3.08395i −0.106597 + 0.184632i
\(280\) 0.193482 0.571413i 0.0115627 0.0341484i
\(281\) −16.8072 −1.00263 −0.501316 0.865264i \(-0.667150\pi\)
−0.501316 + 0.865264i \(0.667150\pi\)
\(282\) −5.57211 9.65117i −0.331814 0.574719i
\(283\) 6.07998 10.5308i 0.361417 0.625993i −0.626777 0.779199i \(-0.715626\pi\)
0.988194 + 0.153205i \(0.0489596\pi\)
\(284\) −0.0390952 + 0.0677149i −0.00231988 + 0.00401814i
\(285\) −0.723063 + 1.25238i −0.0428306 + 0.0741847i
\(286\) −12.2809 0.673613i −0.726182 0.0398316i
\(287\) −5.55782 6.32771i −0.328067 0.373513i
\(288\) 0.500000 + 0.866025i 0.0294628 + 0.0510310i
\(289\) 12.2813 0.722427
\(290\) −0.388295 −0.0228014
\(291\) −6.82663 11.8241i −0.400184 0.693140i
\(292\) −6.31721 10.9417i −0.369687 0.640316i
\(293\) 13.8954 24.0675i 0.811778 1.40604i −0.0998407 0.995003i \(-0.531833\pi\)
0.911619 0.411037i \(-0.134833\pi\)
\(294\) −0.903072 + 6.94150i −0.0526683 + 0.404837i
\(295\) −1.68397 + 2.91672i −0.0980444 + 0.169818i
\(296\) 4.18320 0.243143
\(297\) 1.70561 2.95420i 0.0989694 0.171420i
\(298\) 1.34679 + 2.33271i 0.0780175 + 0.135130i
\(299\) 3.12656 + 6.17335i 0.180814 + 0.357014i
\(300\) 4.94801 0.285673
\(301\) −8.79015 + 25.9601i −0.506656 + 1.49632i
\(302\) −6.56432 11.3697i −0.377734 0.654255i
\(303\) −8.25823 14.3037i −0.474423 0.821724i
\(304\) −3.17107 5.49246i −0.181873 0.315014i
\(305\) 1.53228 0.0877383
\(306\) −2.70561 4.68625i −0.154669 0.267895i
\(307\) −14.6849 −0.838110 −0.419055 0.907961i \(-0.637639\pi\)
−0.419055 + 0.907961i \(0.637639\pi\)
\(308\) 2.89453 8.54848i 0.164931 0.487095i
\(309\) 3.17961 + 5.50725i 0.180882 + 0.313296i
\(310\) 0.811985 0.0461176
\(311\) 3.86348 + 6.69174i 0.219078 + 0.379453i 0.954526 0.298127i \(-0.0963619\pi\)
−0.735449 + 0.677580i \(0.763029\pi\)
\(312\) 3.60014 + 0.197470i 0.203818 + 0.0111795i
\(313\) −10.0982 + 17.4906i −0.570784 + 0.988626i 0.425702 + 0.904863i \(0.360027\pi\)
−0.996486 + 0.0837628i \(0.973306\pi\)
\(314\) 1.59071 + 2.75520i 0.0897692 + 0.155485i
\(315\) 0.591599 0.118146i 0.0333328 0.00665680i
\(316\) 0.811077 1.40483i 0.0456266 0.0790276i
\(317\) 7.36088 12.7494i 0.413428 0.716079i −0.581834 0.813308i \(-0.697665\pi\)
0.995262 + 0.0972291i \(0.0309980\pi\)
\(318\) 6.62799 0.371679
\(319\) −5.80898 −0.325241
\(320\) 0.114009 0.197470i 0.00637332 0.0110389i
\(321\) 3.27362 5.67008i 0.182716 0.316473i
\(322\) −4.97952 + 0.994446i −0.277498 + 0.0554183i
\(323\) 17.1594 + 29.7209i 0.954772 + 1.65371i
\(324\) −0.500000 + 0.866025i −0.0277778 + 0.0481125i
\(325\) 9.75294 14.9384i 0.540996 0.828634i
\(326\) −8.14702 14.1111i −0.451222 0.781539i
\(327\) 1.59419 0.0881587
\(328\) −1.59160 2.75673i −0.0878813 0.152215i
\(329\) 9.45624 27.9273i 0.521339 1.53968i
\(330\) −0.777821 −0.0428176
\(331\) −2.05436 3.55826i −0.112918 0.195579i 0.804028 0.594592i \(-0.202686\pi\)
−0.916946 + 0.399012i \(0.869353\pi\)
\(332\) −1.70291 −0.0934592
\(333\) 2.09160 + 3.62276i 0.114619 + 0.198526i
\(334\) −0.826739 1.43195i −0.0452371 0.0783530i
\(335\) 1.27249 + 2.20402i 0.0695237 + 0.120419i
\(336\) −0.848534 + 2.50599i −0.0462913 + 0.136713i
\(337\) −7.44592 −0.405605 −0.202802 0.979220i \(-0.565005\pi\)
−0.202802 + 0.979220i \(0.565005\pi\)
\(338\) 7.69235 10.4799i 0.418409 0.570030i
\(339\) 4.12255 + 7.14047i 0.223906 + 0.387817i
\(340\) −0.616929 + 1.06855i −0.0334577 + 0.0579504i
\(341\) 12.1475 0.657824
\(342\) 3.17107 5.49246i 0.171472 0.296998i
\(343\) −15.3754 + 10.3246i −0.830193 + 0.557475i
\(344\) −5.17961 + 8.97135i −0.279266 + 0.483703i
\(345\) 0.218812 + 0.378993i 0.0117804 + 0.0204043i
\(346\) 7.02100 + 12.1607i 0.377451 + 0.653765i
\(347\) −10.5281 −0.565180 −0.282590 0.959241i \(-0.591194\pi\)
−0.282590 + 0.959241i \(0.591194\pi\)
\(348\) 1.70291 0.0912854
\(349\) −4.74127 8.21212i −0.253794 0.439585i 0.710773 0.703422i \(-0.248345\pi\)
−0.964567 + 0.263837i \(0.915012\pi\)
\(350\) 8.63915 + 9.83588i 0.461782 + 0.525750i
\(351\) 1.62906 + 3.21655i 0.0869526 + 0.171687i
\(352\) 1.70561 2.95420i 0.0909092 0.157459i
\(353\) −2.72112 + 4.71311i −0.144830 + 0.250854i −0.929310 0.369301i \(-0.879597\pi\)
0.784479 + 0.620155i \(0.212930\pi\)
\(354\) 7.38522 12.7916i 0.392520 0.679865i
\(355\) 0.00891445 + 0.0154403i 0.000473130 + 0.000819485i
\(356\) 17.5457 0.929920
\(357\) 4.59160 13.5605i 0.243013 0.717696i
\(358\) −4.66663 + 8.08283i −0.246639 + 0.427191i
\(359\) −5.29579 + 9.17257i −0.279501 + 0.484110i −0.971261 0.238018i \(-0.923502\pi\)
0.691760 + 0.722128i \(0.256836\pi\)
\(360\) 0.228019 0.0120176
\(361\) −10.6114 + 18.3795i −0.558494 + 0.967340i
\(362\) −1.13838 −0.0598317
\(363\) −0.636396 −0.0334021
\(364\) 5.89325 + 7.50131i 0.308890 + 0.393175i
\(365\) −2.88088 −0.150792
\(366\) −6.71999 −0.351259
\(367\) 3.59896 6.23359i 0.187864 0.325391i −0.756674 0.653793i \(-0.773177\pi\)
0.944538 + 0.328402i \(0.106510\pi\)
\(368\) −1.91925 −0.100048
\(369\) 1.59160 2.75673i 0.0828553 0.143510i
\(370\) 0.476924 0.826056i 0.0247941 0.0429446i
\(371\) 11.5724 + 13.1754i 0.600808 + 0.684035i
\(372\) −3.56104 −0.184632
\(373\) 14.2762 + 24.7271i 0.739192 + 1.28032i 0.952859 + 0.303412i \(0.0981259\pi\)
−0.213667 + 0.976907i \(0.568541\pi\)
\(374\) −9.22941 + 15.9858i −0.477242 + 0.826607i
\(375\) 1.13417 1.96443i 0.0585681 0.101443i
\(376\) 5.57211 9.65117i 0.287360 0.497721i
\(377\) 3.35657 5.14121i 0.172872 0.264786i
\(378\) −2.59452 + 0.518144i −0.133448 + 0.0266504i
\(379\) 15.5638 + 26.9572i 0.799457 + 1.38470i 0.919970 + 0.391989i \(0.128213\pi\)
−0.120513 + 0.992712i \(0.538454\pi\)
\(380\) −1.44613 −0.0741847
\(381\) −12.8112 −0.656337
\(382\) 9.04253 + 15.6621i 0.462656 + 0.801343i
\(383\) −10.9760 19.0111i −0.560849 0.971420i −0.997423 0.0717509i \(-0.977141\pi\)
0.436573 0.899669i \(-0.356192\pi\)
\(384\) −0.500000 + 0.866025i −0.0255155 + 0.0441942i
\(385\) −1.35806 1.54619i −0.0692133 0.0788011i
\(386\) −2.91296 + 5.04539i −0.148266 + 0.256804i
\(387\) −10.3592 −0.526589
\(388\) 6.82663 11.8241i 0.346570 0.600277i
\(389\) 1.87365 + 3.24525i 0.0949976 + 0.164541i 0.909608 0.415468i \(-0.136382\pi\)
−0.814610 + 0.580009i \(0.803049\pi\)
\(390\) 0.449444 0.688406i 0.0227585 0.0348588i
\(391\) 10.3855 0.525215
\(392\) −6.46305 + 2.68867i −0.326434 + 0.135798i
\(393\) 1.75964 + 3.04778i 0.0887619 + 0.153740i
\(394\) 10.3527 + 17.9315i 0.521564 + 0.903375i
\(395\) −0.184941 0.320327i −0.00930537 0.0161174i
\(396\) 3.41122 0.171420
\(397\) 1.95502 + 3.38620i 0.0981198 + 0.169949i 0.910906 0.412613i \(-0.135384\pi\)
−0.812787 + 0.582562i \(0.802050\pi\)
\(398\) 16.3984 0.821979
\(399\) 16.4548 3.28614i 0.823771 0.164513i
\(400\) 2.47400 + 4.28510i 0.123700 + 0.214255i
\(401\) −26.2260 −1.30967 −0.654833 0.755774i \(-0.727261\pi\)
−0.654833 + 0.755774i \(0.727261\pi\)
\(402\) −5.58065 9.66597i −0.278337 0.482095i
\(403\) −7.01912 + 10.7511i −0.349647 + 0.535549i
\(404\) 8.25823 14.3037i 0.410862 0.711634i
\(405\) 0.114009 + 0.197470i 0.00566517 + 0.00981236i
\(406\) 2.97325 + 3.38512i 0.147560 + 0.168001i
\(407\) 7.13490 12.3580i 0.353664 0.612563i
\(408\) 2.70561 4.68625i 0.133948 0.232004i
\(409\) 4.03519 0.199527 0.0997635 0.995011i \(-0.468191\pi\)
0.0997635 + 0.995011i \(0.468191\pi\)
\(410\) −0.725829 −0.0358461
\(411\) 8.84776 15.3248i 0.436428 0.755915i
\(412\) −3.17961 + 5.50725i −0.156648 + 0.271323i
\(413\) 38.3222 7.65321i 1.88571 0.376590i
\(414\) −0.959623 1.66212i −0.0471629 0.0816885i
\(415\) −0.194147 + 0.336273i −0.00953032 + 0.0165070i
\(416\) 1.62906 + 3.21655i 0.0798710 + 0.157704i
\(417\) −3.98321 6.89912i −0.195059 0.337851i
\(418\) −21.6344 −1.05817
\(419\) 1.74139 + 3.01617i 0.0850723 + 0.147350i 0.905422 0.424513i \(-0.139555\pi\)
−0.820350 + 0.571862i \(0.806221\pi\)
\(420\) 0.398117 + 0.453266i 0.0194261 + 0.0221171i
\(421\) 18.6028 0.906647 0.453323 0.891346i \(-0.350238\pi\)
0.453323 + 0.891346i \(0.350238\pi\)
\(422\) −3.74446 6.48560i −0.182277 0.315714i
\(423\) 11.1442 0.541850
\(424\) 3.31400 + 5.74001i 0.160942 + 0.278760i
\(425\) −13.3874 23.1876i −0.649383 1.12476i
\(426\) −0.0390952 0.0677149i −0.00189417 0.00328080i
\(427\) −11.7330 13.3583i −0.567800 0.646454i
\(428\) 6.54724 0.316473
\(429\) 6.72379 10.2987i 0.324628 0.497227i
\(430\) 1.18105 + 2.04564i 0.0569552 + 0.0986493i
\(431\) 9.52662 16.5006i 0.458881 0.794806i −0.540021 0.841652i \(-0.681584\pi\)
0.998902 + 0.0468461i \(0.0149170\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −16.7336 + 28.9834i −0.804164 + 1.39285i 0.112689 + 0.993630i \(0.464053\pi\)
−0.916854 + 0.399223i \(0.869280\pi\)
\(434\) −6.21753 7.07881i −0.298451 0.339794i
\(435\) 0.194147 0.336273i 0.00930865 0.0161231i
\(436\) 0.797093 + 1.38061i 0.0381738 + 0.0661190i
\(437\) 6.08607 + 10.5414i 0.291136 + 0.504262i
\(438\) 12.6344 0.603696
\(439\) 38.0459 1.81583 0.907915 0.419154i \(-0.137673\pi\)
0.907915 + 0.419154i \(0.137673\pi\)
\(440\) −0.388911 0.673613i −0.0185406 0.0321132i
\(441\) −5.55998 4.25284i −0.264761 0.202516i
\(442\) −8.81517 17.4054i −0.419295 0.827892i
\(443\) 4.35467 7.54250i 0.206896 0.358355i −0.743839 0.668359i \(-0.766997\pi\)
0.950735 + 0.310004i \(0.100330\pi\)
\(444\) −2.09160 + 3.62276i −0.0992629 + 0.171928i
\(445\) 2.00037 3.46475i 0.0948268 0.164245i
\(446\) 8.41325 + 14.5722i 0.398379 + 0.690013i
\(447\) −2.69358 −0.127402
\(448\) −2.59452 + 0.518144i −0.122579 + 0.0244800i
\(449\) −11.4930 + 19.9065i −0.542389 + 0.939445i 0.456377 + 0.889786i \(0.349147\pi\)
−0.998766 + 0.0496589i \(0.984187\pi\)
\(450\) −2.47400 + 4.28510i −0.116626 + 0.202002i
\(451\) −10.8586 −0.511310
\(452\) −4.12255 + 7.14047i −0.193908 + 0.335859i
\(453\) 13.1286 0.616837
\(454\) 4.23214 0.198624
\(455\) 2.15317 0.308521i 0.100942 0.0144637i
\(456\) 6.34214 0.296998
\(457\) 11.5899 0.542150 0.271075 0.962558i \(-0.412621\pi\)
0.271075 + 0.962558i \(0.412621\pi\)
\(458\) 6.86498 11.8905i 0.320779 0.555606i
\(459\) 5.41122 0.252574
\(460\) −0.218812 + 0.378993i −0.0102022 + 0.0176707i
\(461\) −17.4236 + 30.1785i −0.811496 + 1.40555i 0.100321 + 0.994955i \(0.468013\pi\)
−0.911817 + 0.410597i \(0.865320\pi\)
\(462\) 5.95593 + 6.78098i 0.277095 + 0.315480i
\(463\) −39.5334 −1.83727 −0.918635 0.395106i \(-0.870708\pi\)
−0.918635 + 0.395106i \(0.870708\pi\)
\(464\) 0.851453 + 1.47476i 0.0395277 + 0.0684640i
\(465\) −0.405992 + 0.703199i −0.0188274 + 0.0326101i
\(466\) 3.85349 6.67444i 0.178509 0.309187i
\(467\) −0.425191 + 0.736452i −0.0196755 + 0.0340789i −0.875695 0.482864i \(-0.839597\pi\)
0.856020 + 0.516943i \(0.172930\pi\)
\(468\) −1.97108 + 3.01908i −0.0911134 + 0.139557i
\(469\) 9.47074 27.9701i 0.437318 1.29154i
\(470\) −1.27054 2.20065i −0.0586059 0.101508i
\(471\) −3.18143 −0.146592
\(472\) 14.7704 0.679865
\(473\) 17.6688 + 30.6032i 0.812411 + 1.40714i
\(474\) 0.811077 + 1.40483i 0.0372540 + 0.0645258i
\(475\) 15.6905 27.1767i 0.719929 1.24695i
\(476\) 14.0395 2.80379i 0.643499 0.128511i
\(477\) −3.31400 + 5.74001i −0.151737 + 0.262817i
\(478\) 25.2189 1.15349
\(479\) −5.78732 + 10.0239i −0.264429 + 0.458005i −0.967414 0.253200i \(-0.918517\pi\)
0.702985 + 0.711205i \(0.251850\pi\)
\(480\) 0.114009 + 0.197470i 0.00520379 + 0.00901323i
\(481\) 6.81466 + 13.4555i 0.310722 + 0.613516i
\(482\) −27.8367 −1.26793
\(483\) 1.62854 4.80961i 0.0741014 0.218845i
\(484\) −0.318198 0.551135i −0.0144635 0.0250516i
\(485\) −1.55660 2.69611i −0.0706816 0.122424i
\(486\) −0.500000 0.866025i −0.0226805 0.0392837i
\(487\) −13.9320 −0.631321 −0.315661 0.948872i \(-0.602226\pi\)
−0.315661 + 0.948872i \(0.602226\pi\)
\(488\) −3.35999 5.81968i −0.152100 0.263445i
\(489\) 16.2940 0.736842
\(490\) −0.205917 + 1.58279i −0.00930240 + 0.0715033i
\(491\) 4.76716 + 8.25697i 0.215139 + 0.372632i 0.953316 0.301976i \(-0.0976462\pi\)
−0.738177 + 0.674608i \(0.764313\pi\)
\(492\) 3.18320 0.143510
\(493\) −4.60740 7.98025i −0.207507 0.359412i
\(494\) 12.5009 19.1474i 0.562442 0.861483i
\(495\) 0.388911 0.673613i 0.0174802 0.0302766i
\(496\) −1.78052 3.08395i −0.0799478 0.138474i
\(497\) 0.0663472 0.195945i 0.00297608 0.00878932i
\(498\) 0.851453 1.47476i 0.0381545 0.0660856i
\(499\) 21.9135 37.9553i 0.980982 1.69911i 0.322397 0.946605i \(-0.395511\pi\)
0.658585 0.752506i \(-0.271155\pi\)
\(500\) 2.26833 0.101443
\(501\) 1.65348 0.0738719
\(502\) −2.12395 + 3.67878i −0.0947963 + 0.164192i
\(503\) −7.35181 + 12.7337i −0.327801 + 0.567768i −0.982075 0.188489i \(-0.939641\pi\)
0.654274 + 0.756257i \(0.272974\pi\)
\(504\) −1.74599 1.98785i −0.0777724 0.0885457i
\(505\) −1.88303 3.26150i −0.0837937 0.145135i
\(506\) −3.27348 + 5.66984i −0.145524 + 0.252055i
\(507\) 5.22966 + 11.9017i 0.232257 + 0.528573i
\(508\) −6.40560 11.0948i −0.284202 0.492253i
\(509\) −14.4795 −0.641792 −0.320896 0.947114i \(-0.603984\pi\)
−0.320896 + 0.947114i \(0.603984\pi\)
\(510\) −0.616929 1.06855i −0.0273181 0.0473163i
\(511\) 22.0595 + 25.1153i 0.975855 + 1.11104i
\(512\) −1.00000 −0.0441942
\(513\) 3.17107 + 5.49246i 0.140006 + 0.242498i
\(514\) −14.7167 −0.649126
\(515\) 0.725011 + 1.25576i 0.0319478 + 0.0553352i
\(516\) −5.17961 8.97135i −0.228020 0.394942i
\(517\) −19.0077 32.9222i −0.835956 1.44792i
\(518\) −10.8534 + 2.16750i −0.476870 + 0.0952344i
\(519\) −14.0420 −0.616375
\(520\) 0.820899 + 0.0450268i 0.0359988 + 0.00197456i
\(521\) 7.18959 + 12.4527i 0.314982 + 0.545564i 0.979434 0.201767i \(-0.0646683\pi\)
−0.664452 + 0.747331i \(0.731335\pi\)
\(522\) −0.851453 + 1.47476i −0.0372671 + 0.0645485i
\(523\) −1.02354 −0.0447563 −0.0223781 0.999750i \(-0.507124\pi\)
−0.0223781 + 0.999750i \(0.507124\pi\)
\(524\) −1.75964 + 3.04778i −0.0768701 + 0.133143i
\(525\) −12.8377 + 2.56378i −0.560283 + 0.111893i
\(526\) 11.7053 20.2741i 0.510374 0.883993i
\(527\) 9.63479 + 16.6879i 0.419698 + 0.726938i
\(528\) 1.70561 + 2.95420i 0.0742271 + 0.128565i
\(529\) −19.3165 −0.839848
\(530\) 1.51131 0.0656470
\(531\) 7.38522 + 12.7916i 0.320491 + 0.555107i
\(532\) 11.0733 + 12.6072i 0.480088 + 0.546592i
\(533\) 6.27435 9.61032i 0.271772 0.416269i
\(534\) −8.77285 + 15.1950i −0.379638 + 0.657553i
\(535\) 0.746446 1.29288i 0.0322717 0.0558962i
\(536\) 5.58065 9.66597i 0.241047 0.417506i
\(537\) −4.66663 8.08283i −0.201380 0.348800i
\(538\) 9.35772 0.403440
\(539\) −3.08058 + 23.6790i −0.132690 + 1.01993i
\(540\) −0.114009 + 0.197470i −0.00490618 + 0.00849776i
\(541\) 0.804352 1.39318i 0.0345818 0.0598974i −0.848217 0.529650i \(-0.822323\pi\)
0.882798 + 0.469752i \(0.155657\pi\)
\(542\) 15.1475 0.650641
\(543\) 0.569188 0.985863i 0.0244262 0.0423074i
\(544\) 5.41122 0.232004
\(545\) 0.363504 0.0155708
\(546\) −9.44295 + 1.35305i −0.404121 + 0.0579052i
\(547\) 26.9289 1.15140 0.575699 0.817661i \(-0.304730\pi\)
0.575699 + 0.817661i \(0.304730\pi\)
\(548\) 17.6955 0.755915
\(549\) 3.35999 5.81968i 0.143401 0.248378i
\(550\) 16.8787 0.719711
\(551\) 5.40004 9.35314i 0.230049 0.398457i
\(552\) 0.959623 1.66212i 0.0408443 0.0707444i
\(553\) −1.37645 + 4.06510i −0.0585327 + 0.172866i
\(554\) 32.8782 1.39686
\(555\) 0.476924 + 0.826056i 0.0202443 + 0.0350641i
\(556\) 3.98321 6.89912i 0.168926 0.292588i
\(557\) 18.1841 31.4957i 0.770484 1.33452i −0.166815 0.985988i \(-0.553348\pi\)
0.937298 0.348528i \(-0.113319\pi\)
\(558\) 1.78052 3.08395i 0.0753755 0.130554i
\(559\) −37.2947 2.04564i −1.57740 0.0865212i
\(560\) −0.193482 + 0.571413i −0.00817609 + 0.0241466i
\(561\) −9.22941 15.9858i −0.389666 0.674922i
\(562\) 16.8072 0.708968
\(563\) −3.73021 −0.157210 −0.0786048 0.996906i \(-0.525047\pi\)
−0.0786048 + 0.996906i \(0.525047\pi\)
\(564\) 5.57211 + 9.65117i 0.234628 + 0.406388i
\(565\) 0.940019 + 1.62816i 0.0395469 + 0.0684972i
\(566\) −6.07998 + 10.5308i −0.255561 + 0.442644i
\(567\) 0.848534 2.50599i 0.0356351 0.105242i
\(568\) 0.0390952 0.0677149i 0.00164040 0.00284126i
\(569\) −15.3919 −0.645263 −0.322632 0.946525i \(-0.604567\pi\)
−0.322632 + 0.946525i \(0.604567\pi\)
\(570\) 0.723063 1.25238i 0.0302858 0.0524565i
\(571\) −10.1994 17.6659i −0.426832 0.739296i 0.569757 0.821813i \(-0.307037\pi\)
−0.996590 + 0.0825176i \(0.973704\pi\)
\(572\) 12.2809 + 0.673613i 0.513488 + 0.0281652i
\(573\) −18.0851 −0.755514
\(574\) 5.55782 + 6.32771i 0.231979 + 0.264114i
\(575\) −4.74822 8.22416i −0.198015 0.342971i
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) −5.90380 10.2257i −0.245779 0.425701i 0.716572 0.697513i \(-0.245710\pi\)
−0.962350 + 0.271813i \(0.912377\pi\)
\(578\) −12.2813 −0.510833
\(579\) −2.91296 5.04539i −0.121058 0.209679i
\(580\) 0.388295 0.0161231
\(581\) 4.41822 0.882351i 0.183299 0.0366061i
\(582\) 6.82663 + 11.8241i 0.282973 + 0.490124i
\(583\) 22.6095 0.936391
\(584\) 6.31721 + 10.9417i 0.261408 + 0.452772i
\(585\) 0.371455 + 0.733433i 0.0153578 + 0.0303237i
\(586\) −13.8954 + 24.0675i −0.574014 + 0.994221i
\(587\) −21.9241 37.9736i −0.904903 1.56734i −0.821047 0.570861i \(-0.806610\pi\)
−0.0838564 0.996478i \(-0.526724\pi\)
\(588\) 0.903072 6.94150i 0.0372421 0.286263i
\(589\) −11.2923 + 19.5589i −0.465292 + 0.805910i
\(590\) 1.68397 2.91672i 0.0693279 0.120079i
\(591\) −20.7055 −0.851710
\(592\) −4.18320 −0.171928
\(593\) −5.18125 + 8.97419i −0.212768 + 0.368526i −0.952580 0.304288i \(-0.901581\pi\)
0.739812 + 0.672814i \(0.234915\pi\)
\(594\) −1.70561 + 2.95420i −0.0699819 + 0.121212i
\(595\) 1.04697 3.09204i 0.0429216 0.126761i
\(596\) −1.34679 2.33271i −0.0551667 0.0955515i
\(597\) −8.19922 + 14.2015i −0.335572 + 0.581227i
\(598\) −3.12656 6.17335i −0.127855 0.252447i
\(599\) −19.7135 34.1448i −0.805471 1.39512i −0.915973 0.401241i \(-0.868579\pi\)
0.110501 0.993876i \(-0.464754\pi\)
\(600\) −4.94801 −0.202002
\(601\) −1.03443 1.79169i −0.0421954 0.0730845i 0.844156 0.536097i \(-0.180102\pi\)
−0.886352 + 0.463012i \(0.846769\pi\)
\(602\) 8.79015 25.9601i 0.358260 1.05806i
\(603\) 11.1613 0.454523
\(604\) 6.56432 + 11.3697i 0.267098 + 0.462628i
\(605\) −0.145110 −0.00589957
\(606\) 8.25823 + 14.3037i 0.335467 + 0.581047i
\(607\) −2.88978 5.00524i −0.117292 0.203157i 0.801401 0.598127i \(-0.204088\pi\)
−0.918694 + 0.394970i \(0.870755\pi\)
\(608\) 3.17107 + 5.49246i 0.128604 + 0.222749i
\(609\) −4.41822 + 0.882351i −0.179035 + 0.0357547i
\(610\) −1.53228 −0.0620403
\(611\) 40.1207 + 2.20065i 1.62311 + 0.0890287i
\(612\) 2.70561 + 4.68625i 0.109368 + 0.189430i
\(613\) −7.45451 + 12.9116i −0.301085 + 0.521494i −0.976382 0.216051i \(-0.930682\pi\)
0.675297 + 0.737546i \(0.264015\pi\)
\(614\) 14.6849 0.592633
\(615\) 0.362914 0.628586i 0.0146341 0.0253470i
\(616\) −2.89453 + 8.54848i −0.116624 + 0.344428i
\(617\) −1.29988 + 2.25147i −0.0523314 + 0.0906406i −0.891004 0.453995i \(-0.849999\pi\)
0.838673 + 0.544635i \(0.183332\pi\)
\(618\) −3.17961 5.50725i −0.127903 0.221534i
\(619\) 24.4693 + 42.3821i 0.983505 + 1.70348i 0.648399 + 0.761300i \(0.275439\pi\)
0.335106 + 0.942180i \(0.391228\pi\)
\(620\) −0.811985 −0.0326101
\(621\) 1.91925 0.0770167
\(622\) −3.86348 6.69174i −0.154911 0.268314i
\(623\) −45.5226 + 9.09119i −1.82383 + 0.364231i
\(624\) −3.60014 0.197470i −0.144121 0.00790513i
\(625\) −12.1114 + 20.9776i −0.484456 + 0.839103i
\(626\) 10.0982 17.4906i 0.403605 0.699064i
\(627\) 10.8172 18.7360i 0.431998 0.748242i
\(628\) −1.59071 2.75520i −0.0634764 0.109944i
\(629\) 22.6362 0.902564
\(630\) −0.591599 + 0.118146i −0.0235699 + 0.00470707i
\(631\) 14.0099 24.2659i 0.557726 0.966010i −0.439960 0.898017i \(-0.645007\pi\)
0.997686 0.0679924i \(-0.0216594\pi\)
\(632\) −0.811077 + 1.40483i −0.0322629 + 0.0558810i
\(633\) 7.48892 0.297658
\(634\) −7.36088 + 12.7494i −0.292338 + 0.506344i
\(635\) −2.92119 −0.115924
\(636\) −6.62799 −0.262817
\(637\) −19.1769 16.4087i −0.759817 0.650138i
\(638\) 5.80898 0.229980
\(639\) 0.0781905 0.00309317
\(640\) −0.114009 + 0.197470i −0.00450662 + 0.00780569i
\(641\) −35.9312 −1.41920 −0.709598 0.704607i \(-0.751123\pi\)
−0.709598 + 0.704607i \(0.751123\pi\)
\(642\) −3.27362 + 5.67008i −0.129199 + 0.223780i
\(643\) 10.6007 18.3609i 0.418050 0.724084i −0.577693 0.816254i \(-0.696047\pi\)
0.995743 + 0.0921702i \(0.0293804\pi\)
\(644\) 4.97952 0.994446i 0.196221 0.0391866i
\(645\) −2.36210 −0.0930075
\(646\) −17.1594 29.7209i −0.675126 1.16935i
\(647\) −2.06144 + 3.57052i −0.0810436 + 0.140372i −0.903698 0.428169i \(-0.859159\pi\)
0.822655 + 0.568541i \(0.192492\pi\)
\(648\) 0.500000 0.866025i 0.0196419 0.0340207i
\(649\) 25.1926 43.6348i 0.988895 1.71282i
\(650\) −9.75294 + 14.9384i −0.382542 + 0.585933i
\(651\) 9.23920 1.84513i 0.362113 0.0723165i
\(652\) 8.14702 + 14.1111i 0.319062 + 0.552632i
\(653\) −47.4371 −1.85636 −0.928179 0.372134i \(-0.878626\pi\)
−0.928179 + 0.372134i \(0.878626\pi\)
\(654\) −1.59419 −0.0623376
\(655\) 0.401230 + 0.694951i 0.0156773 + 0.0271540i
\(656\) 1.59160 + 2.75673i 0.0621415 + 0.107632i
\(657\) −6.31721 + 10.9417i −0.246458 + 0.426877i
\(658\) −9.45624 + 27.9273i −0.368643 + 1.08872i
\(659\) −12.4744 + 21.6062i −0.485932 + 0.841659i −0.999869 0.0161688i \(-0.994853\pi\)
0.513937 + 0.857828i \(0.328186\pi\)
\(660\) 0.777821 0.0302766
\(661\) 4.30765 7.46106i 0.167548 0.290202i −0.770009 0.638033i \(-0.779748\pi\)
0.937557 + 0.347831i \(0.113082\pi\)
\(662\) 2.05436 + 3.55826i 0.0798450 + 0.138296i
\(663\) 19.4811 + 1.06855i 0.756585 + 0.0414992i
\(664\) 1.70291 0.0660856
\(665\) 3.75200 0.749302i 0.145496 0.0290567i
\(666\) −2.09160 3.62276i −0.0810478 0.140379i
\(667\) −1.63415 2.83043i −0.0632745 0.109595i
\(668\) 0.826739 + 1.43195i 0.0319875 + 0.0554040i
\(669\) −16.8265 −0.650550
\(670\) −1.27249 2.20402i −0.0491607 0.0851488i
\(671\) −22.9233 −0.884946
\(672\) 0.848534 2.50599i 0.0327329 0.0966707i
\(673\) 3.15527 + 5.46509i 0.121627 + 0.210664i 0.920409 0.390956i \(-0.127856\pi\)
−0.798783 + 0.601620i \(0.794522\pi\)
\(674\) 7.44592 0.286806
\(675\) −2.47400 4.28510i −0.0952244 0.164934i
\(676\) −7.69235 + 10.4799i −0.295860 + 0.403072i
\(677\) −3.67011 + 6.35682i −0.141054 + 0.244313i −0.927894 0.372845i \(-0.878382\pi\)
0.786840 + 0.617157i \(0.211716\pi\)
\(678\) −4.12255 7.14047i −0.158326 0.274228i
\(679\) −11.5853 + 34.2150i −0.444601 + 1.31305i
\(680\) 0.616929 1.06855i 0.0236582 0.0409771i
\(681\) −2.11607 + 3.66514i −0.0810880 + 0.140449i
\(682\) −12.1475 −0.465152
\(683\) 19.9112 0.761880 0.380940 0.924600i \(-0.375600\pi\)
0.380940 + 0.924600i \(0.375600\pi\)
\(684\) −3.17107 + 5.49246i −0.121249 + 0.210009i
\(685\) 2.01746 3.49434i 0.0770830 0.133512i
\(686\) 15.3754 10.3246i 0.587035 0.394195i
\(687\) 6.86498 + 11.8905i 0.261915 + 0.453650i
\(688\) 5.17961 8.97135i 0.197471 0.342030i
\(689\) −13.0643 + 20.0104i −0.497711 + 0.762336i
\(690\) −0.218812 0.378993i −0.00833003 0.0144280i
\(691\) −19.0691 −0.725422 −0.362711 0.931902i \(-0.618149\pi\)
−0.362711 + 0.931902i \(0.618149\pi\)
\(692\) −7.02100 12.1607i −0.266898 0.462282i
\(693\) −8.85046 + 1.76750i −0.336201 + 0.0671418i
\(694\) 10.5281 0.399642
\(695\) −0.908246 1.57313i −0.0344518 0.0596722i
\(696\) −1.70291 −0.0645485
\(697\) −8.61248 14.9173i −0.326221 0.565032i
\(698\) 4.74127 + 8.21212i 0.179460 + 0.310833i
\(699\) 3.85349 + 6.67444i 0.145752 + 0.252450i
\(700\) −8.63915 9.83588i −0.326529 0.371761i
\(701\) 21.2816 0.803796 0.401898 0.915685i \(-0.368351\pi\)
0.401898 + 0.915685i \(0.368351\pi\)
\(702\) −1.62906 3.21655i −0.0614847 0.121401i
\(703\) 13.2652 + 22.9760i 0.500307 + 0.866557i
\(704\) −1.70561 + 2.95420i −0.0642825 + 0.111341i
\(705\) 2.54109 0.0957030
\(706\) 2.72112 4.71311i 0.102411 0.177380i
\(707\) −14.0148 + 41.3901i −0.527079 + 1.55663i
\(708\) −7.38522 + 12.7916i −0.277554 + 0.480737i
\(709\) 13.4109 + 23.2283i 0.503655 + 0.872357i 0.999991 + 0.00422606i \(0.00134520\pi\)
−0.496336 + 0.868131i \(0.665321\pi\)
\(710\) −0.00891445 0.0154403i −0.000334553 0.000579463i
\(711\) −1.62215 −0.0608355
\(712\) −17.5457 −0.657553
\(713\) 3.41726 + 5.91887i 0.127977 + 0.221663i
\(714\) −4.59160 + 13.5605i −0.171836 + 0.507487i
\(715\) 1.53315 2.34830i 0.0573366 0.0878215i
\(716\) 4.66663 8.08283i 0.174400 0.302070i
\(717\) −12.6095 + 21.8402i −0.470909 + 0.815638i
\(718\) 5.29579 9.17257i 0.197637 0.342317i
\(719\) 21.5853 + 37.3869i 0.804997 + 1.39430i 0.916293 + 0.400508i \(0.131166\pi\)
−0.111297 + 0.993787i \(0.535500\pi\)
\(720\) −0.228019 −0.00849776
\(721\) 5.39601 15.9362i 0.200958 0.593494i
\(722\) 10.6114 18.3795i 0.394915 0.684012i
\(723\) 13.9183 24.1073i 0.517629 0.896560i
\(724\) 1.13838 0.0423074
\(725\) −4.21300 + 7.29713i −0.156467 + 0.271008i
\(726\) 0.636396 0.0236189
\(727\) −16.1609 −0.599373 −0.299687 0.954038i \(-0.596882\pi\)
−0.299687 + 0.954038i \(0.596882\pi\)
\(728\) −5.89325 7.50131i −0.218418 0.278017i
\(729\) 1.00000 0.0370370
\(730\) 2.88088 0.106626
\(731\) −28.0280 + 48.5459i −1.03665 + 1.79554i
\(732\) 6.71999 0.248378
\(733\) 6.79983 11.7777i 0.251158 0.435018i −0.712687 0.701482i \(-0.752522\pi\)
0.963845 + 0.266464i \(0.0858554\pi\)
\(734\) −3.59896 + 6.23359i −0.132840 + 0.230086i
\(735\) −1.26778 0.969726i −0.0467628 0.0357689i
\(736\) 1.91925 0.0707444
\(737\) −19.0368 32.9727i −0.701230 1.21457i
\(738\) −1.59160 + 2.75673i −0.0585876 + 0.101477i
\(739\) −0.191803 + 0.332212i −0.00705557 + 0.0122206i −0.869532 0.493877i \(-0.835579\pi\)
0.862476 + 0.506098i \(0.168913\pi\)
\(740\) −0.476924 + 0.826056i −0.0175321 + 0.0303664i
\(741\) 10.3317 + 20.3998i 0.379545 + 0.749405i
\(742\) −11.5724 13.1754i −0.424835 0.483685i
\(743\) 10.4715 + 18.1372i 0.384162 + 0.665388i 0.991653 0.128939i \(-0.0411572\pi\)
−0.607491 + 0.794327i \(0.707824\pi\)
\(744\) 3.56104 0.130554
\(745\) −0.614187 −0.0225021
\(746\) −14.2762 24.7271i −0.522688 0.905322i
\(747\) 0.851453 + 1.47476i 0.0311531 + 0.0539587i
\(748\) 9.22941 15.9858i 0.337461 0.584499i
\(749\) −16.9869 + 3.39241i −0.620689 + 0.123956i
\(750\) −1.13417 + 1.96443i −0.0414139 + 0.0717309i
\(751\) 15.8139 0.577057 0.288529 0.957471i \(-0.406834\pi\)
0.288529 + 0.957471i \(0.406834\pi\)
\(752\) −5.57211 + 9.65117i −0.203194 + 0.351942i
\(753\) −2.12395 3.67878i −0.0774009 0.134062i
\(754\) −3.35657 + 5.14121i −0.122239 + 0.187232i
\(755\) 2.99358 0.108947
\(756\) 2.59452 0.518144i 0.0943617 0.0188447i
\(757\) −4.41633 7.64930i −0.160514 0.278019i 0.774539 0.632526i \(-0.217982\pi\)
−0.935053 + 0.354507i \(0.884649\pi\)
\(758\) −15.5638 26.9572i −0.565302 0.979131i
\(759\) −3.27348 5.66984i −0.118820 0.205802i
\(760\) 1.44613 0.0524565
\(761\) −19.3703 33.5503i −0.702172 1.21620i −0.967702 0.252096i \(-0.918880\pi\)
0.265530 0.964103i \(-0.414453\pi\)
\(762\) 12.8112 0.464100
\(763\) −2.78343 3.16900i −0.100767 0.114725i
\(764\) −9.04253 15.6621i −0.327147 0.566635i
\(765\) 1.23386 0.0446102
\(766\) 10.9760 + 19.0111i 0.396580 + 0.686897i
\(767\) 24.0619 + 47.5098i 0.868824 + 1.71548i
\(768\) 0.500000 0.866025i 0.0180422 0.0312500i
\(769\) −9.17950 15.8994i −0.331021 0.573345i 0.651691 0.758484i \(-0.274060\pi\)
−0.982712 + 0.185139i \(0.940726\pi\)
\(770\) 1.35806 + 1.54619i 0.0489412 + 0.0557208i
\(771\) 7.35836 12.7450i 0.265005 0.459002i
\(772\) 2.91296 5.04539i 0.104840 0.181588i
\(773\) 12.8481 0.462116 0.231058 0.972940i \(-0.425781\pi\)
0.231058 + 0.972940i \(0.425781\pi\)
\(774\) 10.3592 0.372355
\(775\) 8.81004 15.2594i 0.316466 0.548135i
\(776\) −6.82663 + 11.8241i