# Properties

 Label 546.2.j.d.289.3 Level $546$ Weight $2$ Character 546.289 Analytic conductor $4.360$ Analytic rank $0$ Dimension $8$ CM no Inner twists $2$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$546 = 2 \cdot 3 \cdot 7 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 546.j (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

 Self dual: no Analytic conductor: $$4.35983195036$$ Analytic rank: $$0$$ Dimension: $$8$$ Relative dimension: $$4$$ over $$\Q(\zeta_{3})$$ Coefficient field: 8.0.447703281.1 Defining polynomial: $$x^{8} - x^{7} - 2 x^{6} + 2 x^{5} + 3 x^{4} + 4 x^{3} - 8 x^{2} - 8 x + 16$$ Coefficient ring: $$\Z[a_1, \ldots, a_{13}]$$ Coefficient ring index: $$1$$ Twist minimal: yes Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## Embedding invariants

 Embedding label 289.3 Root $$-1.38232 - 0.298668i$$ of defining polynomial Character $$\chi$$ $$=$$ 546.289 Dual form 546.2.j.d.529.3

## $q$-expansion

 $$f(q)$$ $$=$$ $$q+1.00000 q^{2} +(0.500000 - 0.866025i) q^{3} +1.00000 q^{4} +(1.14553 - 1.98411i) q^{5} +(0.500000 - 0.866025i) q^{6} +(2.63641 - 0.222079i) q^{7} +1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})$$ $$q+1.00000 q^{2} +(0.500000 - 0.866025i) q^{3} +1.00000 q^{4} +(1.14553 - 1.98411i) q^{5} +(0.500000 - 0.866025i) q^{6} +(2.63641 - 0.222079i) q^{7} +1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +(1.14553 - 1.98411i) q^{10} +(-0.439279 + 0.760853i) q^{11} +(0.500000 - 0.866025i) q^{12} +(-0.786978 + 3.51862i) q^{13} +(2.63641 - 0.222079i) q^{14} +(-1.14553 - 1.98411i) q^{15} +1.00000 q^{16} -6.40782 q^{17} +(-0.500000 - 0.866025i) q^{18} +(-0.754098 - 1.30614i) q^{19} +(1.14553 - 1.98411i) q^{20} +(1.12588 - 2.39424i) q^{21} +(-0.439279 + 0.760853i) q^{22} +1.31752 q^{23} +(0.500000 - 0.866025i) q^{24} +(-0.124459 - 0.215569i) q^{25} +(-0.786978 + 3.51862i) q^{26} -1.00000 q^{27} +(2.63641 - 0.222079i) q^{28} +(-0.669294 - 1.15925i) q^{29} +(-1.14553 - 1.98411i) q^{30} +(-1.94748 - 3.37313i) q^{31} +1.00000 q^{32} +(0.439279 + 0.760853i) q^{33} -6.40782 q^{34} +(2.57945 - 5.48533i) q^{35} +(-0.500000 - 0.866025i) q^{36} +9.38675 q^{37} +(-0.754098 - 1.30614i) q^{38} +(2.65372 + 2.44085i) q^{39} +(1.14553 - 1.98411i) q^{40} +(1.80195 + 3.12107i) q^{41} +(1.12588 - 2.39424i) q^{42} +(-4.95801 + 8.58752i) q^{43} +(-0.439279 + 0.760853i) q^{44} -2.29105 q^{45} +1.31752 q^{46} +(-0.188939 + 0.327251i) q^{47} +(0.500000 - 0.866025i) q^{48} +(6.90136 - 1.17099i) q^{49} +(-0.124459 - 0.215569i) q^{50} +(-3.20391 + 5.54934i) q^{51} +(-0.786978 + 3.51862i) q^{52} +(-1.22356 - 2.11926i) q^{53} -1.00000 q^{54} +(1.00641 + 1.74315i) q^{55} +(2.63641 - 0.222079i) q^{56} -1.50820 q^{57} +(-0.669294 - 1.15925i) q^{58} -5.96823 q^{59} +(-1.14553 - 1.98411i) q^{60} +(-2.40782 - 4.17047i) q^{61} +(-1.94748 - 3.37313i) q^{62} +(-1.51053 - 2.17216i) q^{63} +1.00000 q^{64} +(6.07982 + 5.59212i) q^{65} +(0.439279 + 0.760853i) q^{66} +(-4.87998 + 8.45237i) q^{67} -6.40782 q^{68} +(0.658760 - 1.14101i) q^{69} +(2.57945 - 5.48533i) q^{70} +(1.02408 - 1.77376i) q^{71} +(-0.500000 - 0.866025i) q^{72} +(0.432504 + 0.749119i) q^{73} +9.38675 q^{74} -0.248918 q^{75} +(-0.754098 - 1.30614i) q^{76} +(-0.989151 + 2.10348i) q^{77} +(2.65372 + 2.44085i) q^{78} +(-4.18014 + 7.24022i) q^{79} +(1.14553 - 1.98411i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(1.80195 + 3.12107i) q^{82} +8.66710 q^{83} +(1.12588 - 2.39424i) q^{84} +(-7.34033 + 12.7138i) q^{85} +(-4.95801 + 8.58752i) q^{86} -1.33859 q^{87} +(-0.439279 + 0.760853i) q^{88} -12.8339 q^{89} -2.29105 q^{90} +(-1.29339 + 9.45130i) q^{91} +1.31752 q^{92} -3.89495 q^{93} +(-0.188939 + 0.327251i) q^{94} -3.45536 q^{95} +(0.500000 - 0.866025i) q^{96} +(4.40338 - 7.62688i) q^{97} +(6.90136 - 1.17099i) q^{98} +0.878558 q^{99} +O(q^{100})$$ $$\operatorname{Tr}(f)(q)$$ $$=$$ $$8q + 8q^{2} + 4q^{3} + 8q^{4} + 2q^{5} + 4q^{6} - 3q^{7} + 8q^{8} - 4q^{9} + O(q^{10})$$ $$8q + 8q^{2} + 4q^{3} + 8q^{4} + 2q^{5} + 4q^{6} - 3q^{7} + 8q^{8} - 4q^{9} + 2q^{10} - 6q^{11} + 4q^{12} - 11q^{13} - 3q^{14} - 2q^{15} + 8q^{16} - 8q^{17} - 4q^{18} + 6q^{19} + 2q^{20} - 3q^{21} - 6q^{22} + 20q^{23} + 4q^{24} - 18q^{25} - 11q^{26} - 8q^{27} - 3q^{28} + 2q^{29} - 2q^{30} + 6q^{31} + 8q^{32} + 6q^{33} - 8q^{34} - 18q^{35} - 4q^{36} + 56q^{37} + 6q^{38} - 10q^{39} + 2q^{40} - 3q^{42} - 6q^{43} - 6q^{44} - 4q^{45} + 20q^{46} + q^{47} + 4q^{48} + 5q^{49} - 18q^{50} - 4q^{51} - 11q^{52} + 7q^{53} - 8q^{54} + q^{55} - 3q^{56} + 12q^{57} + 2q^{58} - 4q^{59} - 2q^{60} + 24q^{61} + 6q^{62} + 8q^{64} + 22q^{65} + 6q^{66} - 15q^{67} - 8q^{68} + 10q^{69} - 18q^{70} + 6q^{71} - 4q^{72} + q^{73} + 56q^{74} - 36q^{75} + 6q^{76} - 22q^{77} - 10q^{78} - 12q^{79} + 2q^{80} - 4q^{81} - 32q^{83} - 3q^{84} - 13q^{85} - 6q^{86} + 4q^{87} - 6q^{88} - 50q^{89} - 4q^{90} - 8q^{91} + 20q^{92} + 12q^{93} + q^{94} + 16q^{95} + 4q^{96} - q^{97} + 5q^{98} + 12q^{99} + O(q^{100})$$

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/546\mathbb{Z}\right)^\times$$.

 $$n$$ $$157$$ $$365$$ $$379$$ $$\chi(n)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$e\left(\frac{1}{3}\right)$$

## Coefficient data

For each $$n$$ we display the coefficients of the $$q$$-expansion $$a_n$$, the Satake parameters $$\alpha_p$$, and the Satake angles $$\theta_p = \textrm{Arg}(\alpha_p)$$.

Display $$a_p$$ with $$p$$ up to: 50 250 1000 Display $$a_n$$ with $$n$$ up to: 50 250 1000
$$n$$ $$a_n$$ $$a_n / n^{(k-1)/2}$$ $$\alpha_n$$ $$\theta_n$$
$$p$$ $$a_p$$ $$a_p / p^{(k-1)/2}$$ $$\alpha_p$$ $$\theta_p$$
$$2$$ 1.00000 0.707107
$$3$$ 0.500000 0.866025i 0.288675 0.500000i
$$4$$ 1.00000 0.500000
$$5$$ 1.14553 1.98411i 0.512295 0.887321i −0.487604 0.873065i $$-0.662129\pi$$
0.999898 0.0142554i $$-0.00453779\pi$$
$$6$$ 0.500000 0.866025i 0.204124 0.353553i
$$7$$ 2.63641 0.222079i 0.996471 0.0839380i
$$8$$ 1.00000 0.353553
$$9$$ −0.500000 0.866025i −0.166667 0.288675i
$$10$$ 1.14553 1.98411i 0.362247 0.627430i
$$11$$ −0.439279 + 0.760853i −0.132448 + 0.229406i −0.924619 0.380892i $$-0.875617\pi$$
0.792172 + 0.610298i $$0.208950\pi$$
$$12$$ 0.500000 0.866025i 0.144338 0.250000i
$$13$$ −0.786978 + 3.51862i −0.218268 + 0.975889i
$$14$$ 2.63641 0.222079i 0.704611 0.0593532i
$$15$$ −1.14553 1.98411i −0.295774 0.512295i
$$16$$ 1.00000 0.250000
$$17$$ −6.40782 −1.55412 −0.777062 0.629423i $$-0.783291\pi$$
−0.777062 + 0.629423i $$0.783291\pi$$
$$18$$ −0.500000 0.866025i −0.117851 0.204124i
$$19$$ −0.754098 1.30614i −0.173002 0.299648i 0.766466 0.642285i $$-0.222013\pi$$
−0.939468 + 0.342637i $$0.888680\pi$$
$$20$$ 1.14553 1.98411i 0.256147 0.443660i
$$21$$ 1.12588 2.39424i 0.245687 0.522466i
$$22$$ −0.439279 + 0.760853i −0.0936545 + 0.162214i
$$23$$ 1.31752 0.274722 0.137361 0.990521i $$-0.456138\pi$$
0.137361 + 0.990521i $$0.456138\pi$$
$$24$$ 0.500000 0.866025i 0.102062 0.176777i
$$25$$ −0.124459 0.215569i −0.0248918 0.0431139i
$$26$$ −0.786978 + 3.51862i −0.154339 + 0.690058i
$$27$$ −1.00000 −0.192450
$$28$$ 2.63641 0.222079i 0.498235 0.0419690i
$$29$$ −0.669294 1.15925i −0.124285 0.215267i 0.797168 0.603757i $$-0.206330\pi$$
−0.921453 + 0.388490i $$0.872997\pi$$
$$30$$ −1.14553 1.98411i −0.209143 0.362247i
$$31$$ −1.94748 3.37313i −0.349777 0.605831i 0.636433 0.771332i $$-0.280409\pi$$
−0.986210 + 0.165501i $$0.947076\pi$$
$$32$$ 1.00000 0.176777
$$33$$ 0.439279 + 0.760853i 0.0764686 + 0.132448i
$$34$$ −6.40782 −1.09893
$$35$$ 2.57945 5.48533i 0.436007 0.927190i
$$36$$ −0.500000 0.866025i −0.0833333 0.144338i
$$37$$ 9.38675 1.54317 0.771586 0.636124i $$-0.219464\pi$$
0.771586 + 0.636124i $$0.219464\pi$$
$$38$$ −0.754098 1.30614i −0.122331 0.211883i
$$39$$ 2.65372 + 2.44085i 0.424936 + 0.390849i
$$40$$ 1.14553 1.98411i 0.181124 0.313715i
$$41$$ 1.80195 + 3.12107i 0.281417 + 0.487429i 0.971734 0.236078i $$-0.0758622\pi$$
−0.690317 + 0.723507i $$0.742529\pi$$
$$42$$ 1.12588 2.39424i 0.173727 0.369439i
$$43$$ −4.95801 + 8.58752i −0.756089 + 1.30959i 0.188742 + 0.982027i $$0.439559\pi$$
−0.944831 + 0.327558i $$0.893774\pi$$
$$44$$ −0.439279 + 0.760853i −0.0662238 + 0.114703i
$$45$$ −2.29105 −0.341530
$$46$$ 1.31752 0.194258
$$47$$ −0.188939 + 0.327251i −0.0275595 + 0.0477345i −0.879476 0.475943i $$-0.842107\pi$$
0.851917 + 0.523677i $$0.175440\pi$$
$$48$$ 0.500000 0.866025i 0.0721688 0.125000i
$$49$$ 6.90136 1.17099i 0.985909 0.167284i
$$50$$ −0.124459 0.215569i −0.0176012 0.0304861i
$$51$$ −3.20391 + 5.54934i −0.448637 + 0.777062i
$$52$$ −0.786978 + 3.51862i −0.109134 + 0.487944i
$$53$$ −1.22356 2.11926i −0.168068 0.291103i 0.769672 0.638439i $$-0.220420\pi$$
−0.937741 + 0.347336i $$0.887086\pi$$
$$54$$ −1.00000 −0.136083
$$55$$ 1.00641 + 1.74315i 0.135704 + 0.235047i
$$56$$ 2.63641 0.222079i 0.352306 0.0296766i
$$57$$ −1.50820 −0.199766
$$58$$ −0.669294 1.15925i −0.0878826 0.152217i
$$59$$ −5.96823 −0.776997 −0.388498 0.921449i $$-0.627006\pi$$
−0.388498 + 0.921449i $$0.627006\pi$$
$$60$$ −1.14553 1.98411i −0.147887 0.256147i
$$61$$ −2.40782 4.17047i −0.308290 0.533974i 0.669698 0.742633i $$-0.266423\pi$$
−0.977988 + 0.208659i $$0.933090\pi$$
$$62$$ −1.94748 3.37313i −0.247330 0.428388i
$$63$$ −1.51053 2.17216i −0.190309 0.273667i
$$64$$ 1.00000 0.125000
$$65$$ 6.07982 + 5.59212i 0.754108 + 0.693617i
$$66$$ 0.439279 + 0.760853i 0.0540715 + 0.0936545i
$$67$$ −4.87998 + 8.45237i −0.596184 + 1.03262i 0.397194 + 0.917735i $$0.369984\pi$$
−0.993379 + 0.114887i $$0.963349\pi$$
$$68$$ −6.40782 −0.777062
$$69$$ 0.658760 1.14101i 0.0793054 0.137361i
$$70$$ 2.57945 5.48533i 0.308303 0.655622i
$$71$$ 1.02408 1.77376i 0.121536 0.210507i −0.798837 0.601547i $$-0.794551\pi$$
0.920374 + 0.391040i $$0.127885\pi$$
$$72$$ −0.500000 0.866025i −0.0589256 0.102062i
$$73$$ 0.432504 + 0.749119i 0.0506207 + 0.0876777i 0.890225 0.455520i $$-0.150547\pi$$
−0.839605 + 0.543198i $$0.817213\pi$$
$$74$$ 9.38675 1.09119
$$75$$ −0.248918 −0.0287426
$$76$$ −0.754098 1.30614i −0.0865010 0.149824i
$$77$$ −0.989151 + 2.10348i −0.112724 + 0.239714i
$$78$$ 2.65372 + 2.44085i 0.300475 + 0.276372i
$$79$$ −4.18014 + 7.24022i −0.470303 + 0.814588i −0.999423 0.0339584i $$-0.989189\pi$$
0.529120 + 0.848547i $$0.322522\pi$$
$$80$$ 1.14553 1.98411i 0.128074 0.221830i
$$81$$ −0.500000 + 0.866025i −0.0555556 + 0.0962250i
$$82$$ 1.80195 + 3.12107i 0.198992 + 0.344664i
$$83$$ 8.66710 0.951338 0.475669 0.879624i $$-0.342206\pi$$
0.475669 + 0.879624i $$0.342206\pi$$
$$84$$ 1.12588 2.39424i 0.122844 0.261233i
$$85$$ −7.34033 + 12.7138i −0.796170 + 1.37901i
$$86$$ −4.95801 + 8.58752i −0.534636 + 0.926016i
$$87$$ −1.33859 −0.143512
$$88$$ −0.439279 + 0.760853i −0.0468273 + 0.0811072i
$$89$$ −12.8339 −1.36039 −0.680194 0.733033i $$-0.738104\pi$$
−0.680194 + 0.733033i $$0.738104\pi$$
$$90$$ −2.29105 −0.241498
$$91$$ −1.29339 + 9.45130i −0.135584 + 0.990766i
$$92$$ 1.31752 0.137361
$$93$$ −3.89495 −0.403888
$$94$$ −0.188939 + 0.327251i −0.0194875 + 0.0337534i
$$95$$ −3.45536 −0.354512
$$96$$ 0.500000 0.866025i 0.0510310 0.0883883i
$$97$$ 4.40338 7.62688i 0.447096 0.774393i −0.551100 0.834439i $$-0.685792\pi$$
0.998196 + 0.0600467i $$0.0191250\pi$$
$$98$$ 6.90136 1.17099i 0.697143 0.118287i
$$99$$ 0.878558 0.0882984
$$100$$ −0.124459 0.215569i −0.0124459 0.0215569i
$$101$$ 5.02693 8.70689i 0.500198 0.866368i −0.499802 0.866140i $$-0.666594\pi$$
1.00000 0.000228594i $$-7.27637e-5\pi$$
$$102$$ −3.20391 + 5.54934i −0.317234 + 0.549466i
$$103$$ −6.17983 + 10.7038i −0.608916 + 1.05467i 0.382503 + 0.923954i $$0.375062\pi$$
−0.991419 + 0.130720i $$0.958271\pi$$
$$104$$ −0.786978 + 3.51862i −0.0771695 + 0.345029i
$$105$$ −3.46071 4.97654i −0.337731 0.485660i
$$106$$ −1.22356 2.11926i −0.118842 0.205841i
$$107$$ −6.80813 −0.658166 −0.329083 0.944301i $$-0.606740\pi$$
−0.329083 + 0.944301i $$0.606740\pi$$
$$108$$ −1.00000 −0.0962250
$$109$$ −0.460710 0.797973i −0.0441280 0.0764320i 0.843118 0.537729i $$-0.180718\pi$$
−0.887246 + 0.461297i $$0.847384\pi$$
$$110$$ 1.00641 + 1.74315i 0.0959575 + 0.166203i
$$111$$ 4.69338 8.12917i 0.445476 0.771586i
$$112$$ 2.63641 0.222079i 0.249118 0.0209845i
$$113$$ 5.68802 9.85195i 0.535084 0.926793i −0.464075 0.885796i $$-0.653613\pi$$
0.999159 0.0409973i $$-0.0130535\pi$$
$$114$$ −1.50820 −0.141256
$$115$$ 1.50925 2.61410i 0.140739 0.243767i
$$116$$ −0.669294 1.15925i −0.0621424 0.107634i
$$117$$ 3.44070 1.07777i 0.318093 0.0996395i
$$118$$ −5.96823 −0.549420
$$119$$ −16.8937 + 1.42304i −1.54864 + 0.130450i
$$120$$ −1.14553 1.98411i −0.104572 0.181124i
$$121$$ 5.11407 + 8.85783i 0.464915 + 0.805257i
$$122$$ −2.40782 4.17047i −0.217994 0.377576i
$$123$$ 3.60390 0.324953
$$124$$ −1.94748 3.37313i −0.174888 0.302916i
$$125$$ 10.8850 0.973582
$$126$$ −1.51053 2.17216i −0.134569 0.193512i
$$127$$ 4.26019 + 7.37887i 0.378031 + 0.654769i 0.990776 0.135512i $$-0.0432679\pi$$
−0.612745 + 0.790281i $$0.709935\pi$$
$$128$$ 1.00000 0.0883883
$$129$$ 4.95801 + 8.58752i 0.436528 + 0.756089i
$$130$$ 6.07982 + 5.59212i 0.533235 + 0.490461i
$$131$$ 2.51964 4.36415i 0.220142 0.381298i −0.734709 0.678383i $$-0.762681\pi$$
0.954851 + 0.297085i $$0.0960145\pi$$
$$132$$ 0.439279 + 0.760853i 0.0382343 + 0.0662238i
$$133$$ −2.27818 3.27605i −0.197543 0.284069i
$$134$$ −4.87998 + 8.45237i −0.421566 + 0.730174i
$$135$$ −1.14553 + 1.98411i −0.0985912 + 0.170765i
$$136$$ −6.40782 −0.549466
$$137$$ −18.9452 −1.61860 −0.809300 0.587395i $$-0.800153\pi$$
−0.809300 + 0.587395i $$0.800153\pi$$
$$138$$ 0.658760 1.14101i 0.0560774 0.0971289i
$$139$$ 0.565160 0.978885i 0.0479362 0.0830280i −0.841062 0.540939i $$-0.818069\pi$$
0.888998 + 0.457911i $$0.151402\pi$$
$$140$$ 2.57945 5.48533i 0.218003 0.463595i
$$141$$ 0.188939 + 0.327251i 0.0159115 + 0.0275595i
$$142$$ 1.02408 1.77376i 0.0859392 0.148851i
$$143$$ −2.33145 2.14443i −0.194965 0.179326i
$$144$$ −0.500000 0.866025i −0.0416667 0.0721688i
$$145$$ −3.06677 −0.254682
$$146$$ 0.432504 + 0.749119i 0.0357943 + 0.0619975i
$$147$$ 2.43658 6.56225i 0.200966 0.541245i
$$148$$ 9.38675 0.771586
$$149$$ −0.802500 1.38997i −0.0657433 0.113871i 0.831280 0.555854i $$-0.187609\pi$$
−0.897023 + 0.441983i $$0.854275\pi$$
$$150$$ −0.248918 −0.0203241
$$151$$ 10.2417 + 17.7391i 0.833457 + 1.44359i 0.895281 + 0.445502i $$0.146975\pi$$
−0.0618242 + 0.998087i $$0.519692\pi$$
$$152$$ −0.754098 1.30614i −0.0611655 0.105942i
$$153$$ 3.20391 + 5.54934i 0.259021 + 0.448637i
$$154$$ −0.989151 + 2.10348i −0.0797081 + 0.169503i
$$155$$ −8.92354 −0.716756
$$156$$ 2.65372 + 2.44085i 0.212468 + 0.195425i
$$157$$ −5.16462 8.94539i −0.412182 0.713919i 0.582946 0.812511i $$-0.301900\pi$$
−0.995128 + 0.0985911i $$0.968566\pi$$
$$158$$ −4.18014 + 7.24022i −0.332554 + 0.576001i
$$159$$ −2.44711 −0.194069
$$160$$ 1.14553 1.98411i 0.0905618 0.156858i
$$161$$ 3.47353 0.292594i 0.273753 0.0230596i
$$162$$ −0.500000 + 0.866025i −0.0392837 + 0.0680414i
$$163$$ 3.44890 + 5.97367i 0.270139 + 0.467894i 0.968897 0.247464i $$-0.0795972\pi$$
−0.698759 + 0.715358i $$0.746264\pi$$
$$164$$ 1.80195 + 3.12107i 0.140709 + 0.243715i
$$165$$ 2.01282 0.156698
$$166$$ 8.66710 0.672697
$$167$$ 9.73115 + 16.8549i 0.753019 + 1.30427i 0.946353 + 0.323135i $$0.104737\pi$$
−0.193334 + 0.981133i $$0.561930\pi$$
$$168$$ 1.12588 2.39424i 0.0868636 0.184720i
$$169$$ −11.7613 5.53815i −0.904718 0.426011i
$$170$$ −7.34033 + 12.7138i −0.562977 + 0.975105i
$$171$$ −0.754098 + 1.30614i −0.0576674 + 0.0998828i
$$172$$ −4.95801 + 8.58752i −0.378045 + 0.654793i
$$173$$ −11.0069 19.0645i −0.836840 1.44945i −0.892523 0.451002i $$-0.851067\pi$$
0.0556826 0.998449i $$-0.482266\pi$$
$$174$$ −1.33859 −0.101478
$$175$$ −0.375999 0.540690i −0.0284229 0.0408724i
$$176$$ −0.439279 + 0.760853i −0.0331119 + 0.0573515i
$$177$$ −2.98411 + 5.16864i −0.224300 + 0.388498i
$$178$$ −12.8339 −0.961939
$$179$$ 4.90819 8.50123i 0.366855 0.635412i −0.622217 0.782845i $$-0.713768\pi$$
0.989072 + 0.147433i $$0.0471012\pi$$
$$180$$ −2.29105 −0.170765
$$181$$ 22.9753 1.70774 0.853869 0.520487i $$-0.174250\pi$$
0.853869 + 0.520487i $$0.174250\pi$$
$$182$$ −1.29339 + 9.45130i −0.0958723 + 0.700577i
$$183$$ −4.81564 −0.355983
$$184$$ 1.31752 0.0971289
$$185$$ 10.7528 18.6243i 0.790559 1.36929i
$$186$$ −3.89495 −0.285592
$$187$$ 2.81482 4.87541i 0.205840 0.356525i
$$188$$ −0.188939 + 0.327251i −0.0137798 + 0.0238673i
$$189$$ −2.63641 + 0.222079i −0.191771 + 0.0161539i
$$190$$ −3.45536 −0.250678
$$191$$ 4.84536 + 8.39241i 0.350598 + 0.607254i 0.986354 0.164636i $$-0.0526450\pi$$
−0.635756 + 0.771890i $$0.719312\pi$$
$$192$$ 0.500000 0.866025i 0.0360844 0.0625000i
$$193$$ 10.5533 18.2789i 0.759647 1.31575i −0.183384 0.983041i $$-0.558705\pi$$
0.943031 0.332705i $$-0.107961\pi$$
$$194$$ 4.40338 7.62688i 0.316144 0.547578i
$$195$$ 7.88282 2.46922i 0.564501 0.176824i
$$196$$ 6.90136 1.17099i 0.492954 0.0836418i
$$197$$ −6.76019 11.7090i −0.481644 0.834232i 0.518134 0.855299i $$-0.326627\pi$$
−0.999778 + 0.0210677i $$0.993293\pi$$
$$198$$ 0.878558 0.0624364
$$199$$ −7.58899 −0.537969 −0.268985 0.963144i $$-0.586688\pi$$
−0.268985 + 0.963144i $$0.586688\pi$$
$$200$$ −0.124459 0.215569i −0.00880058 0.0152431i
$$201$$ 4.87998 + 8.45237i 0.344207 + 0.596184i
$$202$$ 5.02693 8.70689i 0.353693 0.612615i
$$203$$ −2.02198 2.90763i −0.141915 0.204076i
$$204$$ −3.20391 + 5.54934i −0.224319 + 0.388531i
$$205$$ 8.25672 0.576674
$$206$$ −6.17983 + 10.7038i −0.430569 + 0.745767i
$$207$$ −0.658760 1.14101i −0.0457870 0.0793054i
$$208$$ −0.786978 + 3.51862i −0.0545671 + 0.243972i
$$209$$ 1.32504 0.0916548
$$210$$ −3.46071 4.97654i −0.238812 0.343414i
$$211$$ −6.06832 10.5106i −0.417760 0.723582i 0.577954 0.816070i $$-0.303851\pi$$
−0.995714 + 0.0924876i $$0.970518\pi$$
$$212$$ −1.22356 2.11926i −0.0840341 0.145551i
$$213$$ −1.02408 1.77376i −0.0701690 0.121536i
$$214$$ −6.80813 −0.465394
$$215$$ 11.3591 + 19.6745i 0.774681 + 1.34179i
$$216$$ −1.00000 −0.0680414
$$217$$ −5.88345 8.46047i −0.399395 0.574334i
$$218$$ −0.460710 0.797973i −0.0312032 0.0540456i
$$219$$ 0.865008 0.0584518
$$220$$ 1.00641 + 1.74315i 0.0678522 + 0.117523i
$$221$$ 5.04281 22.5467i 0.339216 1.51665i
$$222$$ 4.69338 8.12917i 0.314999 0.545594i
$$223$$ −11.0968 19.2202i −0.743094 1.28708i −0.951080 0.308945i $$-0.900024\pi$$
0.207986 0.978132i $$-0.433309\pi$$
$$224$$ 2.63641 0.222079i 0.176153 0.0148383i
$$225$$ −0.124459 + 0.215569i −0.00829727 + 0.0143713i
$$226$$ 5.68802 9.85195i 0.378362 0.655342i
$$227$$ −24.4284 −1.62137 −0.810686 0.585482i $$-0.800905\pi$$
−0.810686 + 0.585482i $$0.800905\pi$$
$$228$$ −1.50820 −0.0998828
$$229$$ −14.9717 + 25.9317i −0.989358 + 1.71362i −0.368670 + 0.929560i $$0.620187\pi$$
−0.620688 + 0.784058i $$0.713147\pi$$
$$230$$ 1.50925 2.61410i 0.0995173 0.172369i
$$231$$ 1.32709 + 1.90837i 0.0873161 + 0.125561i
$$232$$ −0.669294 1.15925i −0.0439413 0.0761086i
$$233$$ −11.4574 + 19.8448i −0.750600 + 1.30008i 0.196932 + 0.980417i $$0.436902\pi$$
−0.947532 + 0.319660i $$0.896431\pi$$
$$234$$ 3.44070 1.07777i 0.224926 0.0704557i
$$235$$ 0.432868 + 0.749750i 0.0282372 + 0.0489083i
$$236$$ −5.96823 −0.388498
$$237$$ 4.18014 + 7.24022i 0.271529 + 0.470303i
$$238$$ −16.8937 + 1.42304i −1.09505 + 0.0922422i
$$239$$ −1.03992 −0.0672669 −0.0336334 0.999434i $$-0.510708\pi$$
−0.0336334 + 0.999434i $$0.510708\pi$$
$$240$$ −1.14553 1.98411i −0.0739434 0.128074i
$$241$$ 6.47888 0.417342 0.208671 0.977986i $$-0.433086\pi$$
0.208671 + 0.977986i $$0.433086\pi$$
$$242$$ 5.11407 + 8.85783i 0.328745 + 0.569403i
$$243$$ 0.500000 + 0.866025i 0.0320750 + 0.0555556i
$$244$$ −2.40782 4.17047i −0.154145 0.266987i
$$245$$ 5.58233 15.0344i 0.356642 0.960516i
$$246$$ 3.60390 0.229776
$$247$$ 5.18925 1.62548i 0.330184 0.103427i
$$248$$ −1.94748 3.37313i −0.123665 0.214194i
$$249$$ 4.33355 7.50593i 0.274628 0.475669i
$$250$$ 10.8850 0.688426
$$251$$ 5.33039 9.23251i 0.336451 0.582751i −0.647311 0.762226i $$-0.724107\pi$$
0.983763 + 0.179475i $$0.0574399\pi$$
$$252$$ −1.51053 2.17216i −0.0951547 0.136833i
$$253$$ −0.578759 + 1.00244i −0.0363863 + 0.0630229i
$$254$$ 4.26019 + 7.37887i 0.267308 + 0.462992i
$$255$$ 7.34033 + 12.7138i 0.459669 + 0.796170i
$$256$$ 1.00000 0.0625000
$$257$$ 28.0838 1.75182 0.875910 0.482475i $$-0.160262\pi$$
0.875910 + 0.482475i $$0.160262\pi$$
$$258$$ 4.95801 + 8.58752i 0.308672 + 0.534636i
$$259$$ 24.7474 2.08460i 1.53773 0.129531i
$$260$$ 6.07982 + 5.59212i 0.377054 + 0.346808i
$$261$$ −0.669294 + 1.15925i −0.0414282 + 0.0717558i
$$262$$ 2.51964 4.36415i 0.155664 0.269618i
$$263$$ 12.0885 20.9378i 0.745407 1.29108i −0.204597 0.978846i $$-0.565588\pi$$
0.950004 0.312237i $$-0.101078\pi$$
$$264$$ 0.439279 + 0.760853i 0.0270357 + 0.0468273i
$$265$$ −5.60646 −0.344402
$$266$$ −2.27818 3.27605i −0.139684 0.200867i
$$267$$ −6.41693 + 11.1145i −0.392710 + 0.680194i
$$268$$ −4.87998 + 8.45237i −0.298092 + 0.516311i
$$269$$ −7.93891 −0.484044 −0.242022 0.970271i $$-0.577811\pi$$
−0.242022 + 0.970271i $$0.577811\pi$$
$$270$$ −1.14553 + 1.98411i −0.0697145 + 0.120749i
$$271$$ −28.6694 −1.74154 −0.870770 0.491690i $$-0.836379\pi$$
−0.870770 + 0.491690i $$0.836379\pi$$
$$272$$ −6.40782 −0.388531
$$273$$ 7.53838 + 5.84576i 0.456243 + 0.353801i
$$274$$ −18.9452 −1.14452
$$275$$ 0.218689 0.0131874
$$276$$ 0.658760 1.14101i 0.0396527 0.0686805i
$$277$$ 12.4871 0.750279 0.375139 0.926968i $$-0.377595\pi$$
0.375139 + 0.926968i $$0.377595\pi$$
$$278$$ 0.565160 0.978885i 0.0338960 0.0587096i
$$279$$ −1.94748 + 3.37313i −0.116592 + 0.201944i
$$280$$ 2.57945 5.48533i 0.154152 0.327811i
$$281$$ 23.4616 1.39960 0.699800 0.714339i $$-0.253272\pi$$
0.699800 + 0.714339i $$0.253272\pi$$
$$282$$ 0.188939 + 0.327251i 0.0112511 + 0.0194875i
$$283$$ 7.89495 13.6745i 0.469306 0.812862i −0.530078 0.847949i $$-0.677837\pi$$
0.999384 + 0.0350867i $$0.0111707\pi$$
$$284$$ 1.02408 1.77376i 0.0607682 0.105254i
$$285$$ −1.72768 + 2.99243i −0.102339 + 0.177256i
$$286$$ −2.33145 2.14443i −0.137861 0.126803i
$$287$$ 5.44381 + 7.82825i 0.321338 + 0.462087i
$$288$$ −0.500000 0.866025i −0.0294628 0.0510310i
$$289$$ 24.0602 1.41530
$$290$$ −3.06677 −0.180087
$$291$$ −4.40338 7.62688i −0.258131 0.447096i
$$292$$ 0.432504 + 0.749119i 0.0253104 + 0.0438388i
$$293$$ 3.38969 5.87112i 0.198028 0.342994i −0.749861 0.661595i $$-0.769880\pi$$
0.947889 + 0.318601i $$0.103213\pi$$
$$294$$ 2.43658 6.56225i 0.142104 0.382718i
$$295$$ −6.83676 + 11.8416i −0.398051 + 0.689445i
$$296$$ 9.38675 0.545594
$$297$$ 0.439279 0.760853i 0.0254895 0.0441492i
$$298$$ −0.802500 1.38997i −0.0464876 0.0805188i
$$299$$ −1.03686 + 4.63585i −0.0599631 + 0.268098i
$$300$$ −0.248918 −0.0143713
$$301$$ −11.1643 + 23.7413i −0.643497 + 1.36843i
$$302$$ 10.2417 + 17.7391i 0.589343 + 1.02077i
$$303$$ −5.02693 8.70689i −0.288789 0.500198i
$$304$$ −0.754098 1.30614i −0.0432505 0.0749121i
$$305$$ −11.0329 −0.631741
$$306$$ 3.20391 + 5.54934i 0.183155 + 0.317234i
$$307$$ −1.27687 −0.0728749 −0.0364374 0.999336i $$-0.511601\pi$$
−0.0364374 + 0.999336i $$0.511601\pi$$
$$308$$ −0.989151 + 2.10348i −0.0563621 + 0.119857i
$$309$$ 6.17983 + 10.7038i 0.351558 + 0.608916i
$$310$$ −8.92354 −0.506823
$$311$$ −12.4336 21.5357i −0.705047 1.22118i −0.966675 0.256009i $$-0.917592\pi$$
0.261627 0.965169i $$-0.415741\pi$$
$$312$$ 2.65372 + 2.44085i 0.150237 + 0.138186i
$$313$$ 13.1601 22.7940i 0.743855 1.28839i −0.206873 0.978368i $$-0.566329\pi$$
0.950728 0.310026i $$-0.100338\pi$$
$$314$$ −5.16462 8.94539i −0.291456 0.504817i
$$315$$ −6.04016 + 0.508795i −0.340325 + 0.0286673i
$$316$$ −4.18014 + 7.24022i −0.235151 + 0.407294i
$$317$$ 9.33620 16.1708i 0.524373 0.908241i −0.475224 0.879865i $$-0.657633\pi$$
0.999597 0.0283764i $$-0.00903370\pi$$
$$318$$ −2.44711 −0.137227
$$319$$ 1.17603 0.0658448
$$320$$ 1.14553 1.98411i 0.0640368 0.110915i
$$321$$ −3.40406 + 5.89601i −0.189996 + 0.329083i
$$322$$ 3.47353 0.292594i 0.193572 0.0163056i
$$323$$ 4.83213 + 8.36949i 0.268867 + 0.465691i
$$324$$ −0.500000 + 0.866025i −0.0277778 + 0.0481125i
$$325$$ 0.856453 0.268275i 0.0475074 0.0148812i
$$326$$ 3.44890 + 5.97367i 0.191017 + 0.330851i
$$327$$ −0.921420 −0.0509547
$$328$$ 1.80195 + 3.12107i 0.0994960 + 0.172332i
$$329$$ −0.425445 + 0.904730i −0.0234555 + 0.0498794i
$$330$$ 2.01282 0.110802
$$331$$ −18.0242 31.2189i −0.990701 1.71594i −0.613179 0.789944i $$-0.710110\pi$$
−0.377522 0.926001i $$-0.623224\pi$$
$$332$$ 8.66710 0.475669
$$333$$ −4.69338 8.12917i −0.257195 0.445476i
$$334$$ 9.73115 + 16.8549i 0.532465 + 0.922256i
$$335$$ 11.1803 + 19.3648i 0.610844 + 1.05801i
$$336$$ 1.12588 2.39424i 0.0614218 0.130617i
$$337$$ 16.9888 0.925440 0.462720 0.886504i $$-0.346873\pi$$
0.462720 + 0.886504i $$0.346873\pi$$
$$338$$ −11.7613 5.53815i −0.639732 0.301236i
$$339$$ −5.68802 9.85195i −0.308931 0.535084i
$$340$$ −7.34033 + 12.7138i −0.398085 + 0.689503i
$$341$$ 3.42194 0.185308
$$342$$ −0.754098 + 1.30614i −0.0407770 + 0.0706278i
$$343$$ 17.9348 4.61985i 0.968388 0.249449i
$$344$$ −4.95801 + 8.58752i −0.267318 + 0.463008i
$$345$$ −1.50925 2.61410i −0.0812555 0.140739i
$$346$$ −11.0069 19.0645i −0.591736 1.02492i
$$347$$ 12.0361 0.646132 0.323066 0.946376i $$-0.395286\pi$$
0.323066 + 0.946376i $$0.395286\pi$$
$$348$$ −1.33859 −0.0717558
$$349$$ −11.4544 19.8396i −0.613140 1.06199i −0.990708 0.136007i $$-0.956573\pi$$
0.377568 0.925982i $$-0.376760\pi$$
$$350$$ −0.375999 0.540690i −0.0200980 0.0289011i
$$351$$ 0.786978 3.51862i 0.0420058 0.187810i
$$352$$ −0.439279 + 0.760853i −0.0234136 + 0.0405536i
$$353$$ −12.1583 + 21.0588i −0.647121 + 1.12085i 0.336686 + 0.941617i $$0.390694\pi$$
−0.983807 + 0.179230i $$0.942639\pi$$
$$354$$ −2.98411 + 5.16864i −0.158604 + 0.274710i
$$355$$ −2.34623 4.06379i −0.124525 0.215683i
$$356$$ −12.8339 −0.680194
$$357$$ −7.21444 + 15.3419i −0.381829 + 0.811978i
$$358$$ 4.90819 8.50123i 0.259406 0.449304i
$$359$$ −14.4734 + 25.0686i −0.763875 + 1.32307i 0.176965 + 0.984217i $$0.443372\pi$$
−0.940840 + 0.338853i $$0.889961\pi$$
$$360$$ −2.29105 −0.120749
$$361$$ 8.36267 14.4846i 0.440141 0.762346i
$$362$$ 22.9753 1.20755
$$363$$ 10.2281 0.536838
$$364$$ −1.29339 + 9.45130i −0.0677920 + 0.495383i
$$365$$ 1.98178 0.103731
$$366$$ −4.81564 −0.251718
$$367$$ 13.5022 23.3866i 0.704811 1.22077i −0.261948 0.965082i $$-0.584365\pi$$
0.966760 0.255687i $$-0.0823017\pi$$
$$368$$ 1.31752 0.0686805
$$369$$ 1.80195 3.12107i 0.0938058 0.162476i
$$370$$ 10.7528 18.6243i 0.559010 0.968234i
$$371$$ −3.69644 5.31552i −0.191910 0.275968i
$$372$$ −3.89495 −0.201944
$$373$$ −9.61751 16.6580i −0.497976 0.862519i 0.502021 0.864855i $$-0.332590\pi$$
−0.999997 + 0.00233570i $$0.999257\pi$$
$$374$$ 2.81482 4.87541i 0.145551 0.252101i
$$375$$ 5.44249 9.42666i 0.281049 0.486791i
$$376$$ −0.188939 + 0.327251i −0.00974377 + 0.0168767i
$$377$$ 4.60568 1.44268i 0.237205 0.0743020i
$$378$$ −2.63641 + 0.222079i −0.135603 + 0.0114225i
$$379$$ −16.1551 27.9815i −0.829834 1.43731i −0.898168 0.439652i $$-0.855102\pi$$
0.0683340 0.997662i $$-0.478232\pi$$
$$380$$ −3.45536 −0.177256
$$381$$ 8.52039 0.436513
$$382$$ 4.84536 + 8.39241i 0.247910 + 0.429393i
$$383$$ 15.7111 + 27.2125i 0.802802 + 1.39049i 0.917765 + 0.397124i $$0.129992\pi$$
−0.114963 + 0.993370i $$0.536675\pi$$
$$384$$ 0.500000 0.866025i 0.0255155 0.0441942i
$$385$$ 3.04043 + 4.37217i 0.154955 + 0.222827i
$$386$$ 10.5533 18.2789i 0.537151 0.930373i
$$387$$ 9.91602 0.504060
$$388$$ 4.40338 7.62688i 0.223548 0.387196i
$$389$$ 2.89119 + 5.00769i 0.146589 + 0.253900i 0.929965 0.367649i $$-0.119837\pi$$
−0.783375 + 0.621549i $$0.786504\pi$$
$$390$$ 7.88282 2.46922i 0.399162 0.125034i
$$391$$ −8.44244 −0.426952
$$392$$ 6.90136 1.17099i 0.348571 0.0591437i
$$393$$ −2.51964 4.36415i −0.127099 0.220142i
$$394$$ −6.76019 11.7090i −0.340574 0.589891i
$$395$$ 9.57692 + 16.5877i 0.481867 + 0.834619i
$$396$$ 0.878558 0.0441492
$$397$$ −3.49354 6.05099i −0.175336 0.303690i 0.764942 0.644100i $$-0.222768\pi$$
−0.940277 + 0.340409i $$0.889434\pi$$
$$398$$ −7.58899 −0.380402
$$399$$ −3.97623 + 0.334939i −0.199061 + 0.0167679i
$$400$$ −0.124459 0.215569i −0.00622295 0.0107785i
$$401$$ −5.93497 −0.296378 −0.148189 0.988959i $$-0.547344\pi$$
−0.148189 + 0.988959i $$0.547344\pi$$
$$402$$ 4.87998 + 8.45237i 0.243391 + 0.421566i
$$403$$ 13.4014 4.19784i 0.667569 0.209110i
$$404$$ 5.02693 8.70689i 0.250099 0.433184i
$$405$$ 1.14553 + 1.98411i 0.0569216 + 0.0985912i
$$406$$ −2.02198 2.90763i −0.100349 0.144303i
$$407$$ −4.12340 + 7.14194i −0.204389 + 0.354013i
$$408$$ −3.20391 + 5.54934i −0.158617 + 0.274733i
$$409$$ −14.7785 −0.730748 −0.365374 0.930861i $$-0.619059\pi$$
−0.365374 + 0.930861i $$0.619059\pi$$
$$410$$ 8.25672 0.407770
$$411$$ −9.47262 + 16.4071i −0.467250 + 0.809300i
$$412$$ −6.17983 + 10.7038i −0.304458 + 0.527337i
$$413$$ −15.7347 + 1.32542i −0.774255 + 0.0652196i
$$414$$ −0.658760 1.14101i −0.0323763 0.0560774i
$$415$$ 9.92839 17.1965i 0.487365 0.844142i
$$416$$ −0.786978 + 3.51862i −0.0385848 + 0.172514i
$$417$$ −0.565160 0.978885i −0.0276760 0.0479362i
$$418$$ 1.32504 0.0648097
$$419$$ −5.07336 8.78731i −0.247850 0.429288i 0.715079 0.699043i $$-0.246391\pi$$
−0.962929 + 0.269755i $$0.913057\pi$$
$$420$$ −3.46071 4.97654i −0.168865 0.242830i
$$421$$ 7.70885 0.375706 0.187853 0.982197i $$-0.439847\pi$$
0.187853 + 0.982197i $$0.439847\pi$$
$$422$$ −6.06832 10.5106i −0.295401 0.511650i
$$423$$ 0.377877 0.0183730
$$424$$ −1.22356 2.11926i −0.0594211 0.102920i
$$425$$ 0.797511 + 1.38133i 0.0386850 + 0.0670044i
$$426$$ −1.02408 1.77376i −0.0496170 0.0859392i
$$427$$ −7.27419 10.4604i −0.352023 0.506212i
$$428$$ −6.80813 −0.329083
$$429$$ −3.02285 + 0.946879i −0.145945 + 0.0457158i
$$430$$ 11.3591 + 19.6745i 0.547782 + 0.948787i
$$431$$ −17.8893 + 30.9851i −0.861696 + 1.49250i 0.00859398 + 0.999963i $$0.497264\pi$$
−0.870290 + 0.492539i $$0.836069\pi$$
$$432$$ −1.00000 −0.0481125
$$433$$ −6.32535 + 10.9558i −0.303977 + 0.526504i −0.977033 0.213088i $$-0.931648\pi$$
0.673056 + 0.739592i $$0.264981\pi$$
$$434$$ −5.88345 8.46047i −0.282415 0.406115i
$$435$$ −1.53339 + 2.65590i −0.0735203 + 0.127341i
$$436$$ −0.460710 0.797973i −0.0220640 0.0382160i
$$437$$ −0.993540 1.72086i −0.0475275 0.0823200i
$$438$$ 0.865008 0.0413317
$$439$$ −27.2045 −1.29840 −0.649200 0.760618i $$-0.724896\pi$$
−0.649200 + 0.760618i $$0.724896\pi$$
$$440$$ 1.00641 + 1.74315i 0.0479787 + 0.0831016i
$$441$$ −4.46478 5.39126i −0.212609 0.256727i
$$442$$ 5.04281 22.5467i 0.239862 1.07244i
$$443$$ −1.74860 + 3.02867i −0.0830786 + 0.143896i −0.904571 0.426323i $$-0.859809\pi$$
0.821492 + 0.570220i $$0.193142\pi$$
$$444$$ 4.69338 8.12917i 0.222738 0.385793i
$$445$$ −14.7015 + 25.4638i −0.696919 + 1.20710i
$$446$$ −11.0968 19.2202i −0.525447 0.910101i
$$447$$ −1.60500 −0.0759139
$$448$$ 2.63641 0.222079i 0.124559 0.0104923i
$$449$$ 8.08366 14.0013i 0.381491 0.660762i −0.609784 0.792567i $$-0.708744\pi$$
0.991276 + 0.131805i $$0.0420773\pi$$
$$450$$ −0.124459 + 0.215569i −0.00586706 + 0.0101620i
$$451$$ −3.16623 −0.149092
$$452$$ 5.68802 9.85195i 0.267542 0.463397i
$$453$$ 20.4834 0.962393
$$454$$ −24.4284 −1.14648
$$455$$ 17.2708 + 13.3929i 0.809668 + 0.627871i
$$456$$ −1.50820 −0.0706278
$$457$$ 26.2609 1.22843 0.614217 0.789137i $$-0.289472\pi$$
0.614217 + 0.789137i $$0.289472\pi$$
$$458$$ −14.9717 + 25.9317i −0.699582 + 1.21171i
$$459$$ 6.40782 0.299091
$$460$$ 1.50925 2.61410i 0.0703693 0.121883i
$$461$$ −4.94386 + 8.56302i −0.230259 + 0.398819i −0.957884 0.287155i $$-0.907291\pi$$
0.727626 + 0.685974i $$0.240624\pi$$
$$462$$ 1.32709 + 1.90837i 0.0617418 + 0.0887854i
$$463$$ −14.2082 −0.660310 −0.330155 0.943927i $$-0.607101\pi$$
−0.330155 + 0.943927i $$0.607101\pi$$
$$464$$ −0.669294 1.15925i −0.0310712 0.0538169i
$$465$$ −4.46177 + 7.72801i −0.206910 + 0.358378i
$$466$$ −11.4574 + 19.8448i −0.530754 + 0.919293i
$$467$$ −1.47500 + 2.55478i −0.0682550 + 0.118221i −0.898133 0.439723i $$-0.855076\pi$$
0.829878 + 0.557944i $$0.188410\pi$$
$$468$$ 3.44070 1.07777i 0.159046 0.0498197i
$$469$$ −10.9886 + 23.3677i −0.507404 + 1.07902i
$$470$$ 0.432868 + 0.749750i 0.0199667 + 0.0345834i
$$471$$ −10.3292 −0.475946
$$472$$ −5.96823 −0.274710
$$473$$ −4.35590 7.54463i −0.200284 0.346903i
$$474$$ 4.18014 + 7.24022i 0.192000 + 0.332554i
$$475$$ −0.187709 + 0.325121i −0.00861267 + 0.0149176i
$$476$$ −16.8937 + 1.42304i −0.774320 + 0.0652251i
$$477$$ −1.22356 + 2.11926i −0.0560228 + 0.0970343i
$$478$$ −1.03992 −0.0475649
$$479$$ −9.90480 + 17.1556i −0.452562 + 0.783861i −0.998544 0.0539362i $$-0.982823\pi$$
0.545982 + 0.837797i $$0.316157\pi$$
$$480$$ −1.14553 1.98411i −0.0522859 0.0905618i
$$481$$ −7.38717 + 33.0284i −0.336826 + 1.50597i
$$482$$ 6.47888 0.295105
$$483$$ 1.48337 3.15446i 0.0674957 0.143533i
$$484$$ 5.11407 + 8.85783i 0.232458 + 0.402628i
$$485$$ −10.0884 17.4736i −0.458090 0.793435i
$$486$$ 0.500000 + 0.866025i 0.0226805 + 0.0392837i
$$487$$ −12.5946 −0.570714 −0.285357 0.958421i $$-0.592112\pi$$
−0.285357 + 0.958421i $$0.592112\pi$$
$$488$$ −2.40782 4.17047i −0.108997 0.188788i
$$489$$ 6.89780 0.311929
$$490$$ 5.58233 15.0344i 0.252184 0.679187i
$$491$$ 5.81280 + 10.0681i 0.262328 + 0.454365i 0.966860 0.255307i $$-0.0821765\pi$$
−0.704532 + 0.709672i $$0.748843\pi$$
$$492$$ 3.60390 0.162476
$$493$$ 4.28872 + 7.42827i 0.193154 + 0.334553i
$$494$$ 5.18925 1.62548i 0.233476 0.0731339i
$$495$$ 1.00641 1.74315i 0.0452348 0.0783489i
$$496$$ −1.94748 3.37313i −0.0874442 0.151458i
$$497$$ 2.30599 4.90381i 0.103438 0.219966i
$$498$$ 4.33355 7.50593i 0.194191 0.336349i
$$499$$ 6.22713 10.7857i 0.278765 0.482834i −0.692313 0.721597i $$-0.743408\pi$$
0.971078 + 0.238763i $$0.0767418\pi$$
$$500$$ 10.8850 0.486791
$$501$$ 19.4623 0.869512
$$502$$ 5.33039 9.23251i 0.237907 0.412067i
$$503$$ −15.7073 + 27.2058i −0.700354 + 1.21305i 0.267988 + 0.963422i $$0.413641\pi$$
−0.968342 + 0.249627i $$0.919692\pi$$
$$504$$ −1.51053 2.17216i −0.0672845 0.0967558i
$$505$$ −11.5170 19.9479i −0.512498 0.887672i
$$506$$ −0.578759 + 1.00244i −0.0257290 + 0.0445639i
$$507$$ −10.6768 + 7.41654i −0.474175 + 0.329380i
$$508$$ 4.26019 + 7.37887i 0.189016 + 0.327384i
$$509$$ 7.19772 0.319034 0.159517 0.987195i $$-0.449006\pi$$
0.159517 + 0.987195i $$0.449006\pi$$
$$510$$ 7.34033 + 12.7138i 0.325035 + 0.562977i
$$511$$ 1.30662 + 1.87894i 0.0578016 + 0.0831193i
$$512$$ 1.00000 0.0441942
$$513$$ 0.754098 + 1.30614i 0.0332943 + 0.0576674i
$$514$$ 28.0838 1.23872
$$515$$ 14.1583 + 24.5229i 0.623889 + 1.08061i
$$516$$ 4.95801 + 8.58752i 0.218264 + 0.378045i
$$517$$ −0.165994 0.287509i −0.00730039 0.0126446i
$$518$$ 24.7474 2.08460i 1.08734 0.0915922i
$$519$$ −22.0138 −0.966300
$$520$$ 6.07982 + 5.59212i 0.266618 + 0.245231i
$$521$$ 11.2983 + 19.5692i 0.494987 + 0.857342i 0.999983 0.00577905i $$-0.00183954\pi$$
−0.504996 + 0.863121i $$0.668506\pi$$
$$522$$ −0.669294 + 1.15925i −0.0292942 + 0.0507390i
$$523$$ −6.07271 −0.265541 −0.132770 0.991147i $$-0.542387\pi$$
−0.132770 + 0.991147i $$0.542387\pi$$
$$524$$ 2.51964 4.36415i 0.110071 0.190649i
$$525$$ −0.656251 + 0.0552795i −0.0286412 + 0.00241260i
$$526$$ 12.0885 20.9378i 0.527082 0.912933i
$$527$$ 12.4791 + 21.6144i 0.543597 + 0.941538i
$$528$$ 0.439279 + 0.760853i 0.0191172 + 0.0331119i
$$529$$ −21.2641 −0.924528
$$530$$ −5.60646 −0.243529
$$531$$ 2.98411 + 5.16864i 0.129499 + 0.224300i
$$532$$ −2.27818 3.27605i −0.0987717 0.142035i
$$533$$ −12.3999 + 3.88416i −0.537101 + 0.168242i
$$534$$ −6.41693 + 11.1145i −0.277688 + 0.480969i
$$535$$ −7.79888 + 13.5081i −0.337175 + 0.584005i
$$536$$ −4.87998 + 8.45237i −0.210783 + 0.365087i
$$537$$ −4.90819 8.50123i −0.211804 0.366855i
$$538$$ −7.93891 −0.342271
$$539$$ −2.14067 + 5.76531i −0.0922053 + 0.248330i
$$540$$ −1.14553 + 1.98411i −0.0492956 + 0.0853825i
$$541$$ 3.16494 5.48183i 0.136071 0.235682i −0.789935 0.613191i $$-0.789886\pi$$
0.926006 + 0.377508i $$0.123219\pi$$
$$542$$ −28.6694 −1.23146
$$543$$ 11.4876 19.8972i 0.492982 0.853869i
$$544$$ −6.40782 −0.274733
$$545$$ −2.11102 −0.0904262
$$546$$ 7.53838 + 5.84576i 0.322613 + 0.250175i
$$547$$ 17.3685 0.742625 0.371312 0.928508i $$-0.378908\pi$$
0.371312 + 0.928508i $$0.378908\pi$$
$$548$$ −18.9452 −0.809300
$$549$$ −2.40782 + 4.17047i −0.102763 + 0.177991i
$$550$$ 0.218689 0.00932492
$$551$$ −1.00943 + 1.74838i −0.0430030 + 0.0744834i
$$552$$ 0.658760 1.14101i 0.0280387 0.0485645i
$$553$$ −9.41269 + 20.0165i −0.400268 + 0.851190i
$$554$$ 12.4871 0.530527
$$555$$ −10.7528 18.6243i −0.456430 0.790559i
$$556$$ 0.565160 0.978885i 0.0239681 0.0415140i
$$557$$ −19.9116 + 34.4879i −0.843681 + 1.46130i 0.0430813 + 0.999072i $$0.486283\pi$$
−0.886762 + 0.462226i $$0.847051\pi$$
$$558$$ −1.94748 + 3.37313i −0.0824432 + 0.142796i
$$559$$ −26.3144 24.2035i −1.11298 1.02370i
$$560$$ 2.57945 5.48533i 0.109002 0.231798i
$$561$$ −2.81482 4.87541i −0.118842 0.205840i
$$562$$ 23.4616 0.989667
$$563$$ −4.59171 −0.193517 −0.0967587 0.995308i $$-0.530848\pi$$
−0.0967587 + 0.995308i $$0.530848\pi$$
$$564$$ 0.188939 + 0.327251i 0.00795576 + 0.0137798i
$$565$$ −13.0316 22.5713i −0.548242 0.949583i
$$566$$ 7.89495 13.6745i 0.331850 0.574780i
$$567$$ −1.12588 + 2.39424i −0.0472826 + 0.100549i
$$568$$ 1.02408 1.77376i 0.0429696 0.0744255i
$$569$$ −17.4829 −0.732922 −0.366461 0.930433i $$-0.619431\pi$$
−0.366461 + 0.930433i $$0.619431\pi$$
$$570$$ −1.72768 + 2.99243i −0.0723645 + 0.125339i
$$571$$ 8.05500 + 13.9517i 0.337091 + 0.583859i 0.983884 0.178806i $$-0.0572235\pi$$
−0.646793 + 0.762666i $$0.723890\pi$$
$$572$$ −2.33145 2.14443i −0.0974827 0.0896631i
$$573$$ 9.69073 0.404836
$$574$$ 5.44381 + 7.82825i 0.227220 + 0.326745i
$$575$$ −0.163977 0.284017i −0.00683833 0.0118443i
$$576$$ −0.500000 0.866025i −0.0208333 0.0360844i
$$577$$ 3.99841 + 6.92544i 0.166456 + 0.288310i 0.937171 0.348870i $$-0.113434\pi$$
−0.770716 + 0.637179i $$0.780101\pi$$
$$578$$ 24.0602 1.00077
$$579$$ −10.5533 18.2789i −0.438582 0.759647i
$$580$$ −3.06677 −0.127341
$$581$$ 22.8501 1.92478i 0.947981 0.0798534i
$$582$$ −4.40338 7.62688i −0.182526 0.316144i
$$583$$ 2.14993 0.0890409
$$584$$ 0.432504 + 0.749119i 0.0178971 + 0.0309987i
$$585$$ 1.80301 8.06133i 0.0745452 0.333295i
$$586$$ 3.38969 5.87112i 0.140027 0.242534i
$$587$$ 10.4049 + 18.0219i 0.429458 + 0.743842i 0.996825 0.0796223i $$-0.0253714\pi$$
−0.567367 + 0.823465i $$0.692038\pi$$
$$588$$ 2.43658 6.56225i 0.100483 0.270623i
$$589$$ −2.93718 + 5.08734i −0.121024 + 0.209620i
$$590$$ −6.83676 + 11.8416i −0.281465 + 0.487511i
$$591$$ −13.5204 −0.556154
$$592$$ 9.38675 0.385793
$$593$$ −12.2317 + 21.1859i −0.502296 + 0.870002i 0.497701 + 0.867349i $$0.334178\pi$$
−0.999996 + 0.00265305i $$0.999156\pi$$
$$594$$ 0.439279 0.760853i 0.0180238 0.0312182i
$$595$$ −16.5287 + 35.1490i −0.677609 + 1.44097i
$$596$$ −0.802500 1.38997i −0.0328717 0.0569354i
$$597$$ −3.79449 + 6.57226i −0.155298 + 0.268985i
$$598$$ −1.03686 + 4.63585i −0.0424003 + 0.189574i
$$599$$ −22.4292 38.8484i −0.916431 1.58730i −0.804793 0.593555i $$-0.797724\pi$$
−0.111638 0.993749i $$-0.535610\pi$$
$$600$$ −0.248918 −0.0101620
$$601$$ 12.2159 + 21.1585i 0.498296 + 0.863073i 0.999998 0.00196699i $$-0.000626114\pi$$
−0.501702 + 0.865040i $$0.667293\pi$$
$$602$$ −11.1643 + 23.7413i −0.455021 + 0.967625i
$$603$$ 9.75996 0.397456
$$604$$ 10.2417 + 17.7391i 0.416728 + 0.721795i
$$605$$ 23.4332 0.952695
$$606$$ −5.02693 8.70689i −0.204205 0.353693i
$$607$$ 18.0911 + 31.3347i 0.734296 + 1.27184i 0.955032 + 0.296504i $$0.0958209\pi$$
−0.220735 + 0.975334i $$0.570846\pi$$
$$608$$ −0.754098 1.30614i −0.0305827 0.0529708i
$$609$$ −3.52907 + 0.297272i −0.143005 + 0.0120461i
$$610$$ −11.0329 −0.446709
$$611$$ −1.00278 0.922343i −0.0405682 0.0373140i
$$612$$ 3.20391 + 5.54934i 0.129510 + 0.224319i
$$613$$ −3.10647 + 5.38056i −0.125469 + 0.217319i −0.921916 0.387389i $$-0.873377\pi$$
0.796447 + 0.604708i $$0.206710\pi$$
$$614$$ −1.27687 −0.0515303
$$615$$ 4.12836 7.15053i 0.166472 0.288337i
$$616$$ −0.989151 + 2.10348i −0.0398540 + 0.0847516i
$$617$$ 21.8788 37.8953i 0.880809 1.52561i 0.0303660 0.999539i $$-0.490333\pi$$
0.850443 0.526067i $$-0.176334\pi$$
$$618$$ 6.17983 + 10.7038i 0.248589 + 0.430569i
$$619$$ 9.54369 + 16.5301i 0.383593 + 0.664403i 0.991573 0.129550i $$-0.0413532\pi$$
−0.607980 + 0.793952i $$0.708020\pi$$
$$620$$ −8.92354 −0.358378
$$621$$ −1.31752 −0.0528703
$$622$$ −12.4336 21.5357i −0.498544 0.863503i
$$623$$ −33.8354 + 2.85013i −1.35559 + 0.114188i
$$624$$ 2.65372 + 2.44085i 0.106234 + 0.0977123i
$$625$$ 13.0913 22.6748i 0.523653 0.906993i
$$626$$ 13.1601 22.7940i 0.525985 0.911032i
$$627$$ 0.662519 1.14752i 0.0264585 0.0458274i
$$628$$ −5.16462 8.94539i −0.206091 0.356960i
$$629$$ −60.1486 −2.39828
$$630$$ −6.04016 + 0.508795i −0.240646 + 0.0202709i
$$631$$ −11.2873 + 19.5502i −0.449340 + 0.778280i −0.998343 0.0575405i $$-0.981674\pi$$
0.549003 + 0.835820i $$0.315008\pi$$
$$632$$ −4.18014 + 7.24022i −0.166277 + 0.288000i
$$633$$ −12.1366 −0.482388
$$634$$ 9.33620 16.1708i 0.370788 0.642224i
$$635$$ 19.5206 0.774653
$$636$$ −2.44711 −0.0970343
$$637$$ −1.31097 + 25.2048i −0.0519425 + 0.998650i
$$638$$ 1.17603 0.0465593
$$639$$ −2.04817 −0.0810242
$$640$$ 1.14553 1.98411i 0.0452809 0.0784288i
$$641$$ 21.8244 0.862010 0.431005 0.902349i $$-0.358159\pi$$
0.431005 + 0.902349i $$0.358159\pi$$
$$642$$ −3.40406 + 5.89601i −0.134348 + 0.232697i
$$643$$ 7.72503 13.3801i 0.304645 0.527661i −0.672537 0.740064i $$-0.734795\pi$$
0.977182 + 0.212402i $$0.0681287\pi$$
$$644$$ 3.47353 0.292594i 0.136876 0.0115298i
$$645$$ 22.7181 0.894525
$$646$$ 4.83213 + 8.36949i 0.190118 + 0.329293i
$$647$$ −5.39230 + 9.33974i −0.211993 + 0.367183i −0.952338 0.305044i $$-0.901329\pi$$
0.740345 + 0.672227i $$0.234662\pi$$
$$648$$ −0.500000 + 0.866025i −0.0196419 + 0.0340207i
$$649$$ 2.62172 4.54094i 0.102911 0.178248i
$$650$$ 0.856453 0.268275i 0.0335928 0.0105226i
$$651$$ −10.2687 + 0.864988i −0.402462 + 0.0339015i
$$652$$ 3.44890 + 5.97367i 0.135069 + 0.233947i
$$653$$ −20.3332 −0.795699 −0.397850 0.917451i $$-0.630243\pi$$
−0.397850 + 0.917451i $$0.630243\pi$$
$$654$$ −0.921420 −0.0360304
$$655$$ −5.77264 9.99850i −0.225556 0.390674i
$$656$$ 1.80195 + 3.12107i 0.0703543 + 0.121857i
$$657$$ 0.432504 0.749119i 0.0168736 0.0292259i
$$658$$ −0.425445 + 0.904730i −0.0165856 + 0.0352700i
$$659$$ 15.1395 26.2224i 0.589752 1.02148i −0.404512 0.914532i $$-0.632559\pi$$
0.994265 0.106948i $$-0.0341079\pi$$
$$660$$ 2.01282 0.0783489
$$661$$ −4.94372 + 8.56277i −0.192288 + 0.333053i −0.946008 0.324143i $$-0.894924\pi$$
0.753720 + 0.657196i $$0.228258\pi$$
$$662$$ −18.0242 31.2189i −0.700531 1.21336i
$$663$$ −17.0046 15.6405i −0.660403 0.607428i
$$664$$ 8.66710 0.336349
$$665$$ −9.10975 + 0.767363i −0.353261 + 0.0297571i
$$666$$ −4.69338 8.12917i −0.181865 0.314999i
$$667$$ −0.881809 1.52734i −0.0341438 0.0591387i
$$668$$ 9.73115 + 16.8549i 0.376510 + 0.652134i
$$669$$ −22.1935 −0.858051
$$670$$ 11.1803 + 19.3648i 0.431932 + 0.748128i
$$671$$ 4.23082 0.163329
$$672$$ 1.12588 2.39424i 0.0434318 0.0923599i
$$673$$ −7.13518 12.3585i −0.275041 0.476385i 0.695104 0.718909i $$-0.255358\pi$$
−0.970146 + 0.242524i $$0.922025\pi$$
$$674$$ 16.9888 0.654385
$$675$$ 0.124459 + 0.215569i 0.00479043 + 0.00829727i
$$676$$ −11.7613 5.53815i −0.452359 0.213006i
$$677$$ 16.7860 29.0742i 0.645139 1.11741i −0.339130 0.940739i $$-0.610133\pi$$
0.984269 0.176674i $$-0.0565338\pi$$
$$678$$ −5.68802 9.85195i −0.218447 0.378362i
$$679$$ 9.91537 21.0855i 0.380517 0.809188i
$$680$$ −7.34033 + 12.7138i −0.281489 + 0.487553i
$$681$$ −12.2142 + 21.1556i −0.468050 + 0.810686i
$$682$$ 3.42194 0.131033
$$683$$ −17.6901 −0.676893 −0.338446 0.940986i $$-0.609901\pi$$
−0.338446 + 0.940986i $$0.609901\pi$$
$$684$$ −0.754098 + 1.30614i −0.0288337 + 0.0499414i
$$685$$ −21.7023 + 37.5894i −0.829201 + 1.43622i
$$686$$ 17.9348 4.61985i 0.684754 0.176387i
$$687$$ 14.9717 + 25.9317i 0.571206 + 0.989358i
$$688$$ −4.95801 + 8.58752i −0.189022 + 0.327396i
$$689$$ 8.41978 2.63741i 0.320768 0.100477i
$$690$$ −1.50925 2.61410i −0.0574563 0.0995173i
$$691$$ 38.2717 1.45593 0.727963 0.685617i $$-0.240467\pi$$
0.727963 + 0.685617i $$0.240467\pi$$
$$692$$ −11.0069 19.0645i −0.418420 0.724725i
$$693$$ 2.31624 0.195109i 0.0879867 0.00741159i
$$694$$ 12.0361 0.456884
$$695$$ −1.29481 2.24268i −0.0491149 0.0850696i
$$696$$ −1.33859 −0.0507390
$$697$$ −11.5466 19.9992i −0.437358 0.757526i
$$698$$ −11.4544 19.8396i −0.433555 0.750940i
$$699$$ 11.4574 + 19.8448i 0.433359 + 0.750600i
$$700$$ −0.375999 0.540690i −0.0142114 0.0204362i
$$701$$ −29.3574 −1.10882 −0.554408 0.832245i $$-0.687055\pi$$
−0.554408 + 0.832245i $$0.687055\pi$$
$$702$$ 0.786978 3.51862i 0.0297026 0.132802i
$$703$$ −7.07854 12.2604i −0.266972 0.462409i
$$704$$ −0.439279 + 0.760853i −0.0165559 + 0.0286757i
$$705$$ 0.865737 0.0326055
$$706$$ −12.1583 + 21.0588i −0.457584 + 0.792558i
$$707$$ 11.3194 24.0714i 0.425711 0.905296i
$$708$$ −2.98411 + 5.16864i −0.112150 + 0.194249i
$$709$$ 0.660813 + 1.14456i 0.0248174 + 0.0429849i 0.878167 0.478354i $$-0.158766\pi$$
−0.853350 + 0.521338i $$0.825433\pi$$
$$710$$ −2.34623 4.06379i −0.0880524 0.152511i
$$711$$ 8.36029 0.313535
$$712$$ −12.8339 −0.480969
$$713$$ −2.56584 4.44416i −0.0960915 0.166435i
$$714$$ −7.21444 + 15.3419i −0.269994 + 0.574155i
$$715$$ −6.92551 + 2.16935i −0.259000 + 0.0811291i
$$716$$ 4.90819 8.50123i 0.183428 0.317706i
$$717$$ −0.519960 + 0.900598i −0.0194183 + 0.0336334i
$$718$$ −14.4734 + 25.0686i −0.540141 + 0.935552i
$$719$$ −12.3591 21.4065i −0.460915 0.798328i 0.538092 0.842886i $$-0.319145\pi$$
−0.999007 + 0.0445581i $$0.985812\pi$$
$$720$$ −2.29105 −0.0853825
$$721$$ −13.9155 + 29.5920i −0.518240 + 1.10206i
$$722$$ 8.36267 14.4846i 0.311226 0.539060i
$$723$$ 3.23944 5.61088i 0.120476 0.208671i
$$724$$ 22.9753 0.853869
$$725$$ −0.166599 + 0.288559i −0.00618734 + 0.0107168i
$$726$$ 10.2281 0.379602
$$727$$ 8.76033 0.324903 0.162451 0.986717i $$-0.448060\pi$$
0.162451 + 0.986717i $$0.448060\pi$$
$$728$$ −1.29339 + 9.45130i −0.0479362 + 0.350289i
$$729$$ 1.00000 0.0370370
$$730$$ 1.98178 0.0733489
$$731$$ 31.7700 55.0273i 1.17506 2.03526i
$$732$$ −4.81564 −0.177991
$$733$$ −6.38026 + 11.0509i −0.235660 + 0.408176i −0.959464 0.281830i $$-0.909059\pi$$
0.723804 + 0.690006i $$0.242392\pi$$
$$734$$ 13.5022 23.3866i 0.498377 0.863214i
$$735$$ −10.2291 12.3517i −0.377304 0.455598i
$$736$$ 1.31752 0.0485645
$$737$$ −4.28734 7.42590i −0.157926 0.273536i
$$738$$ 1.80195 3.12107i 0.0663307 0.114888i
$$739$$ −10.8324 + 18.7623i −0.398476 + 0.690181i −0.993538 0.113499i $$-0.963794\pi$$
0.595062 + 0.803680i $$0.297128\pi$$
$$740$$ 10.7528 18.6243i 0.395280 0.684645i
$$741$$ 1.18692 5.30677i 0.0436025 0.194949i
$$742$$ −3.69644 5.31552i −0.135701 0.195139i
$$743$$ 6.46703 + 11.2012i 0.237252 + 0.410933i 0.959925 0.280258i $$-0.0904199\pi$$
−0.722673 + 0.691191i $$0.757087\pi$$
$$744$$ −3.89495 −0.142796
$$745$$ −3.67714 −0.134720
$$746$$ −9.61751 16.6580i −0.352122 0.609893i
$$747$$ −4.33355 7.50593i −0.158556 0.274628i
$$748$$ 2.81482 4.87541i 0.102920 0.178263i
$$749$$ −17.9490 + 1.51194i −0.655844 + 0.0552452i
$$750$$ 5.44249 9.42666i 0.198732 0.344213i
$$751$$ 8.60728 0.314084 0.157042 0.987592i $$-0.449804\pi$$
0.157042 + 0.987592i $$0.449804\pi$$
$$752$$ −0.188939 + 0.327251i −0.00688989 + 0.0119336i
$$753$$ −5.33039 9.23251i −0.194250 0.336451i
$$754$$ 4.60568 1.44268i 0.167729 0.0525394i
$$755$$ 46.9285 1.70790
$$756$$ −2.63641 + 0.222079i −0.0958855 + 0.00807694i
$$757$$ 7.93369 + 13.7416i 0.288355 + 0.499445i 0.973417 0.229039i $$-0.0735584\pi$$
−0.685062 + 0.728484i $$0.740225\pi$$
$$758$$ −16.1551 27.9815i −0.586781 1.01633i
$$759$$ 0.578759 + 1.00244i 0.0210076 + 0.0363863i
$$760$$ −3.45536 −0.125339
$$761$$ −13.0174 22.5468i −0.471880 0.817321i 0.527602 0.849492i $$-0.323091\pi$$
−0.999482 + 0.0321708i $$0.989758\pi$$
$$762$$ 8.52039 0.308661
$$763$$ −1.39184 2.00147i −0.0503879 0.0724582i
$$764$$ 4.84536 + 8.39241i 0.175299 + 0.303627i
$$765$$ 14.6807 0.530780
$$766$$ 15.7111 + 27.2125i 0.567667 + 0.983228i
$$767$$ 4.69686 20.9999i 0.169594 0.758263i
$$768$$ 0.500000 0.866025i 0.0180422 0.0312500i
$$769$$ 18.9239 + 32.7772i 0.682415 + 1.18198i 0.974242 + 0.225506i $$0.0724036\pi$$
−0.291827 + 0.956471i $$0.594263\pi$$
$$770$$ 3.04043 + 4.37217i 0.109570 + 0.157562i
$$771$$ 14.0419 24.3213i 0.505707 0.875910i
$$772$$ 10.5533 18.2789i 0.379823 0.657873i
$$773$$ 42.7258 1.53674 0.768370 0.640006i $$-0.221068\pi$$
0.768370 + 0.640006i $$0.221068\pi$$
$$774$$ 9.91602 0.356424
$$775$$ −0.484762 + 0.839632i −0.0174132 + 0.0301605i
$$776$$ 4.40338