Properties

Label 546.2.j.d.289.3
Level $546$
Weight $2$
Character 546.289
Analytic conductor $4.360$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.j (of order \(3\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.447703281.1
Defining polynomial: \(x^{8} - x^{7} - 2 x^{6} + 2 x^{5} + 3 x^{4} + 4 x^{3} - 8 x^{2} - 8 x + 16\)
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.3
Root \(-1.38232 - 0.298668i\) of defining polynomial
Character \(\chi\) \(=\) 546.289
Dual form 546.2.j.d.529.3

$q$-expansion

\(f(q)\) \(=\) \(q+1.00000 q^{2} +(0.500000 - 0.866025i) q^{3} +1.00000 q^{4} +(1.14553 - 1.98411i) q^{5} +(0.500000 - 0.866025i) q^{6} +(2.63641 - 0.222079i) q^{7} +1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +(0.500000 - 0.866025i) q^{3} +1.00000 q^{4} +(1.14553 - 1.98411i) q^{5} +(0.500000 - 0.866025i) q^{6} +(2.63641 - 0.222079i) q^{7} +1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +(1.14553 - 1.98411i) q^{10} +(-0.439279 + 0.760853i) q^{11} +(0.500000 - 0.866025i) q^{12} +(-0.786978 + 3.51862i) q^{13} +(2.63641 - 0.222079i) q^{14} +(-1.14553 - 1.98411i) q^{15} +1.00000 q^{16} -6.40782 q^{17} +(-0.500000 - 0.866025i) q^{18} +(-0.754098 - 1.30614i) q^{19} +(1.14553 - 1.98411i) q^{20} +(1.12588 - 2.39424i) q^{21} +(-0.439279 + 0.760853i) q^{22} +1.31752 q^{23} +(0.500000 - 0.866025i) q^{24} +(-0.124459 - 0.215569i) q^{25} +(-0.786978 + 3.51862i) q^{26} -1.00000 q^{27} +(2.63641 - 0.222079i) q^{28} +(-0.669294 - 1.15925i) q^{29} +(-1.14553 - 1.98411i) q^{30} +(-1.94748 - 3.37313i) q^{31} +1.00000 q^{32} +(0.439279 + 0.760853i) q^{33} -6.40782 q^{34} +(2.57945 - 5.48533i) q^{35} +(-0.500000 - 0.866025i) q^{36} +9.38675 q^{37} +(-0.754098 - 1.30614i) q^{38} +(2.65372 + 2.44085i) q^{39} +(1.14553 - 1.98411i) q^{40} +(1.80195 + 3.12107i) q^{41} +(1.12588 - 2.39424i) q^{42} +(-4.95801 + 8.58752i) q^{43} +(-0.439279 + 0.760853i) q^{44} -2.29105 q^{45} +1.31752 q^{46} +(-0.188939 + 0.327251i) q^{47} +(0.500000 - 0.866025i) q^{48} +(6.90136 - 1.17099i) q^{49} +(-0.124459 - 0.215569i) q^{50} +(-3.20391 + 5.54934i) q^{51} +(-0.786978 + 3.51862i) q^{52} +(-1.22356 - 2.11926i) q^{53} -1.00000 q^{54} +(1.00641 + 1.74315i) q^{55} +(2.63641 - 0.222079i) q^{56} -1.50820 q^{57} +(-0.669294 - 1.15925i) q^{58} -5.96823 q^{59} +(-1.14553 - 1.98411i) q^{60} +(-2.40782 - 4.17047i) q^{61} +(-1.94748 - 3.37313i) q^{62} +(-1.51053 - 2.17216i) q^{63} +1.00000 q^{64} +(6.07982 + 5.59212i) q^{65} +(0.439279 + 0.760853i) q^{66} +(-4.87998 + 8.45237i) q^{67} -6.40782 q^{68} +(0.658760 - 1.14101i) q^{69} +(2.57945 - 5.48533i) q^{70} +(1.02408 - 1.77376i) q^{71} +(-0.500000 - 0.866025i) q^{72} +(0.432504 + 0.749119i) q^{73} +9.38675 q^{74} -0.248918 q^{75} +(-0.754098 - 1.30614i) q^{76} +(-0.989151 + 2.10348i) q^{77} +(2.65372 + 2.44085i) q^{78} +(-4.18014 + 7.24022i) q^{79} +(1.14553 - 1.98411i) q^{80} +(-0.500000 + 0.866025i) q^{81} +(1.80195 + 3.12107i) q^{82} +8.66710 q^{83} +(1.12588 - 2.39424i) q^{84} +(-7.34033 + 12.7138i) q^{85} +(-4.95801 + 8.58752i) q^{86} -1.33859 q^{87} +(-0.439279 + 0.760853i) q^{88} -12.8339 q^{89} -2.29105 q^{90} +(-1.29339 + 9.45130i) q^{91} +1.31752 q^{92} -3.89495 q^{93} +(-0.188939 + 0.327251i) q^{94} -3.45536 q^{95} +(0.500000 - 0.866025i) q^{96} +(4.40338 - 7.62688i) q^{97} +(6.90136 - 1.17099i) q^{98} +0.878558 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8q + 8q^{2} + 4q^{3} + 8q^{4} + 2q^{5} + 4q^{6} - 3q^{7} + 8q^{8} - 4q^{9} + O(q^{10}) \) \( 8q + 8q^{2} + 4q^{3} + 8q^{4} + 2q^{5} + 4q^{6} - 3q^{7} + 8q^{8} - 4q^{9} + 2q^{10} - 6q^{11} + 4q^{12} - 11q^{13} - 3q^{14} - 2q^{15} + 8q^{16} - 8q^{17} - 4q^{18} + 6q^{19} + 2q^{20} - 3q^{21} - 6q^{22} + 20q^{23} + 4q^{24} - 18q^{25} - 11q^{26} - 8q^{27} - 3q^{28} + 2q^{29} - 2q^{30} + 6q^{31} + 8q^{32} + 6q^{33} - 8q^{34} - 18q^{35} - 4q^{36} + 56q^{37} + 6q^{38} - 10q^{39} + 2q^{40} - 3q^{42} - 6q^{43} - 6q^{44} - 4q^{45} + 20q^{46} + q^{47} + 4q^{48} + 5q^{49} - 18q^{50} - 4q^{51} - 11q^{52} + 7q^{53} - 8q^{54} + q^{55} - 3q^{56} + 12q^{57} + 2q^{58} - 4q^{59} - 2q^{60} + 24q^{61} + 6q^{62} + 8q^{64} + 22q^{65} + 6q^{66} - 15q^{67} - 8q^{68} + 10q^{69} - 18q^{70} + 6q^{71} - 4q^{72} + q^{73} + 56q^{74} - 36q^{75} + 6q^{76} - 22q^{77} - 10q^{78} - 12q^{79} + 2q^{80} - 4q^{81} - 32q^{83} - 3q^{84} - 13q^{85} - 6q^{86} + 4q^{87} - 6q^{88} - 50q^{89} - 4q^{90} - 8q^{91} + 20q^{92} + 12q^{93} + q^{94} + 16q^{95} + 4q^{96} - q^{97} + 5q^{98} + 12q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) 1.00000 0.500000
\(5\) 1.14553 1.98411i 0.512295 0.887321i −0.487604 0.873065i \(-0.662129\pi\)
0.999898 0.0142554i \(-0.00453779\pi\)
\(6\) 0.500000 0.866025i 0.204124 0.353553i
\(7\) 2.63641 0.222079i 0.996471 0.0839380i
\(8\) 1.00000 0.353553
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) 1.14553 1.98411i 0.362247 0.627430i
\(11\) −0.439279 + 0.760853i −0.132448 + 0.229406i −0.924619 0.380892i \(-0.875617\pi\)
0.792172 + 0.610298i \(0.208950\pi\)
\(12\) 0.500000 0.866025i 0.144338 0.250000i
\(13\) −0.786978 + 3.51862i −0.218268 + 0.975889i
\(14\) 2.63641 0.222079i 0.704611 0.0593532i
\(15\) −1.14553 1.98411i −0.295774 0.512295i
\(16\) 1.00000 0.250000
\(17\) −6.40782 −1.55412 −0.777062 0.629423i \(-0.783291\pi\)
−0.777062 + 0.629423i \(0.783291\pi\)
\(18\) −0.500000 0.866025i −0.117851 0.204124i
\(19\) −0.754098 1.30614i −0.173002 0.299648i 0.766466 0.642285i \(-0.222013\pi\)
−0.939468 + 0.342637i \(0.888680\pi\)
\(20\) 1.14553 1.98411i 0.256147 0.443660i
\(21\) 1.12588 2.39424i 0.245687 0.522466i
\(22\) −0.439279 + 0.760853i −0.0936545 + 0.162214i
\(23\) 1.31752 0.274722 0.137361 0.990521i \(-0.456138\pi\)
0.137361 + 0.990521i \(0.456138\pi\)
\(24\) 0.500000 0.866025i 0.102062 0.176777i
\(25\) −0.124459 0.215569i −0.0248918 0.0431139i
\(26\) −0.786978 + 3.51862i −0.154339 + 0.690058i
\(27\) −1.00000 −0.192450
\(28\) 2.63641 0.222079i 0.498235 0.0419690i
\(29\) −0.669294 1.15925i −0.124285 0.215267i 0.797168 0.603757i \(-0.206330\pi\)
−0.921453 + 0.388490i \(0.872997\pi\)
\(30\) −1.14553 1.98411i −0.209143 0.362247i
\(31\) −1.94748 3.37313i −0.349777 0.605831i 0.636433 0.771332i \(-0.280409\pi\)
−0.986210 + 0.165501i \(0.947076\pi\)
\(32\) 1.00000 0.176777
\(33\) 0.439279 + 0.760853i 0.0764686 + 0.132448i
\(34\) −6.40782 −1.09893
\(35\) 2.57945 5.48533i 0.436007 0.927190i
\(36\) −0.500000 0.866025i −0.0833333 0.144338i
\(37\) 9.38675 1.54317 0.771586 0.636124i \(-0.219464\pi\)
0.771586 + 0.636124i \(0.219464\pi\)
\(38\) −0.754098 1.30614i −0.122331 0.211883i
\(39\) 2.65372 + 2.44085i 0.424936 + 0.390849i
\(40\) 1.14553 1.98411i 0.181124 0.313715i
\(41\) 1.80195 + 3.12107i 0.281417 + 0.487429i 0.971734 0.236078i \(-0.0758622\pi\)
−0.690317 + 0.723507i \(0.742529\pi\)
\(42\) 1.12588 2.39424i 0.173727 0.369439i
\(43\) −4.95801 + 8.58752i −0.756089 + 1.30959i 0.188742 + 0.982027i \(0.439559\pi\)
−0.944831 + 0.327558i \(0.893774\pi\)
\(44\) −0.439279 + 0.760853i −0.0662238 + 0.114703i
\(45\) −2.29105 −0.341530
\(46\) 1.31752 0.194258
\(47\) −0.188939 + 0.327251i −0.0275595 + 0.0477345i −0.879476 0.475943i \(-0.842107\pi\)
0.851917 + 0.523677i \(0.175440\pi\)
\(48\) 0.500000 0.866025i 0.0721688 0.125000i
\(49\) 6.90136 1.17099i 0.985909 0.167284i
\(50\) −0.124459 0.215569i −0.0176012 0.0304861i
\(51\) −3.20391 + 5.54934i −0.448637 + 0.777062i
\(52\) −0.786978 + 3.51862i −0.109134 + 0.487944i
\(53\) −1.22356 2.11926i −0.168068 0.291103i 0.769672 0.638439i \(-0.220420\pi\)
−0.937741 + 0.347336i \(0.887086\pi\)
\(54\) −1.00000 −0.136083
\(55\) 1.00641 + 1.74315i 0.135704 + 0.235047i
\(56\) 2.63641 0.222079i 0.352306 0.0296766i
\(57\) −1.50820 −0.199766
\(58\) −0.669294 1.15925i −0.0878826 0.152217i
\(59\) −5.96823 −0.776997 −0.388498 0.921449i \(-0.627006\pi\)
−0.388498 + 0.921449i \(0.627006\pi\)
\(60\) −1.14553 1.98411i −0.147887 0.256147i
\(61\) −2.40782 4.17047i −0.308290 0.533974i 0.669698 0.742633i \(-0.266423\pi\)
−0.977988 + 0.208659i \(0.933090\pi\)
\(62\) −1.94748 3.37313i −0.247330 0.428388i
\(63\) −1.51053 2.17216i −0.190309 0.273667i
\(64\) 1.00000 0.125000
\(65\) 6.07982 + 5.59212i 0.754108 + 0.693617i
\(66\) 0.439279 + 0.760853i 0.0540715 + 0.0936545i
\(67\) −4.87998 + 8.45237i −0.596184 + 1.03262i 0.397194 + 0.917735i \(0.369984\pi\)
−0.993379 + 0.114887i \(0.963349\pi\)
\(68\) −6.40782 −0.777062
\(69\) 0.658760 1.14101i 0.0793054 0.137361i
\(70\) 2.57945 5.48533i 0.308303 0.655622i
\(71\) 1.02408 1.77376i 0.121536 0.210507i −0.798837 0.601547i \(-0.794551\pi\)
0.920374 + 0.391040i \(0.127885\pi\)
\(72\) −0.500000 0.866025i −0.0589256 0.102062i
\(73\) 0.432504 + 0.749119i 0.0506207 + 0.0876777i 0.890225 0.455520i \(-0.150547\pi\)
−0.839605 + 0.543198i \(0.817213\pi\)
\(74\) 9.38675 1.09119
\(75\) −0.248918 −0.0287426
\(76\) −0.754098 1.30614i −0.0865010 0.149824i
\(77\) −0.989151 + 2.10348i −0.112724 + 0.239714i
\(78\) 2.65372 + 2.44085i 0.300475 + 0.276372i
\(79\) −4.18014 + 7.24022i −0.470303 + 0.814588i −0.999423 0.0339584i \(-0.989189\pi\)
0.529120 + 0.848547i \(0.322522\pi\)
\(80\) 1.14553 1.98411i 0.128074 0.221830i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 1.80195 + 3.12107i 0.198992 + 0.344664i
\(83\) 8.66710 0.951338 0.475669 0.879624i \(-0.342206\pi\)
0.475669 + 0.879624i \(0.342206\pi\)
\(84\) 1.12588 2.39424i 0.122844 0.261233i
\(85\) −7.34033 + 12.7138i −0.796170 + 1.37901i
\(86\) −4.95801 + 8.58752i −0.534636 + 0.926016i
\(87\) −1.33859 −0.143512
\(88\) −0.439279 + 0.760853i −0.0468273 + 0.0811072i
\(89\) −12.8339 −1.36039 −0.680194 0.733033i \(-0.738104\pi\)
−0.680194 + 0.733033i \(0.738104\pi\)
\(90\) −2.29105 −0.241498
\(91\) −1.29339 + 9.45130i −0.135584 + 0.990766i
\(92\) 1.31752 0.137361
\(93\) −3.89495 −0.403888
\(94\) −0.188939 + 0.327251i −0.0194875 + 0.0337534i
\(95\) −3.45536 −0.354512
\(96\) 0.500000 0.866025i 0.0510310 0.0883883i
\(97\) 4.40338 7.62688i 0.447096 0.774393i −0.551100 0.834439i \(-0.685792\pi\)
0.998196 + 0.0600467i \(0.0191250\pi\)
\(98\) 6.90136 1.17099i 0.697143 0.118287i
\(99\) 0.878558 0.0882984
\(100\) −0.124459 0.215569i −0.0124459 0.0215569i
\(101\) 5.02693 8.70689i 0.500198 0.866368i −0.499802 0.866140i \(-0.666594\pi\)
1.00000 0.000228594i \(-7.27637e-5\pi\)
\(102\) −3.20391 + 5.54934i −0.317234 + 0.549466i
\(103\) −6.17983 + 10.7038i −0.608916 + 1.05467i 0.382503 + 0.923954i \(0.375062\pi\)
−0.991419 + 0.130720i \(0.958271\pi\)
\(104\) −0.786978 + 3.51862i −0.0771695 + 0.345029i
\(105\) −3.46071 4.97654i −0.337731 0.485660i
\(106\) −1.22356 2.11926i −0.118842 0.205841i
\(107\) −6.80813 −0.658166 −0.329083 0.944301i \(-0.606740\pi\)
−0.329083 + 0.944301i \(0.606740\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −0.460710 0.797973i −0.0441280 0.0764320i 0.843118 0.537729i \(-0.180718\pi\)
−0.887246 + 0.461297i \(0.847384\pi\)
\(110\) 1.00641 + 1.74315i 0.0959575 + 0.166203i
\(111\) 4.69338 8.12917i 0.445476 0.771586i
\(112\) 2.63641 0.222079i 0.249118 0.0209845i
\(113\) 5.68802 9.85195i 0.535084 0.926793i −0.464075 0.885796i \(-0.653613\pi\)
0.999159 0.0409973i \(-0.0130535\pi\)
\(114\) −1.50820 −0.141256
\(115\) 1.50925 2.61410i 0.140739 0.243767i
\(116\) −0.669294 1.15925i −0.0621424 0.107634i
\(117\) 3.44070 1.07777i 0.318093 0.0996395i
\(118\) −5.96823 −0.549420
\(119\) −16.8937 + 1.42304i −1.54864 + 0.130450i
\(120\) −1.14553 1.98411i −0.104572 0.181124i
\(121\) 5.11407 + 8.85783i 0.464915 + 0.805257i
\(122\) −2.40782 4.17047i −0.217994 0.377576i
\(123\) 3.60390 0.324953
\(124\) −1.94748 3.37313i −0.174888 0.302916i
\(125\) 10.8850 0.973582
\(126\) −1.51053 2.17216i −0.134569 0.193512i
\(127\) 4.26019 + 7.37887i 0.378031 + 0.654769i 0.990776 0.135512i \(-0.0432679\pi\)
−0.612745 + 0.790281i \(0.709935\pi\)
\(128\) 1.00000 0.0883883
\(129\) 4.95801 + 8.58752i 0.436528 + 0.756089i
\(130\) 6.07982 + 5.59212i 0.533235 + 0.490461i
\(131\) 2.51964 4.36415i 0.220142 0.381298i −0.734709 0.678383i \(-0.762681\pi\)
0.954851 + 0.297085i \(0.0960145\pi\)
\(132\) 0.439279 + 0.760853i 0.0382343 + 0.0662238i
\(133\) −2.27818 3.27605i −0.197543 0.284069i
\(134\) −4.87998 + 8.45237i −0.421566 + 0.730174i
\(135\) −1.14553 + 1.98411i −0.0985912 + 0.170765i
\(136\) −6.40782 −0.549466
\(137\) −18.9452 −1.61860 −0.809300 0.587395i \(-0.800153\pi\)
−0.809300 + 0.587395i \(0.800153\pi\)
\(138\) 0.658760 1.14101i 0.0560774 0.0971289i
\(139\) 0.565160 0.978885i 0.0479362 0.0830280i −0.841062 0.540939i \(-0.818069\pi\)
0.888998 + 0.457911i \(0.151402\pi\)
\(140\) 2.57945 5.48533i 0.218003 0.463595i
\(141\) 0.188939 + 0.327251i 0.0159115 + 0.0275595i
\(142\) 1.02408 1.77376i 0.0859392 0.148851i
\(143\) −2.33145 2.14443i −0.194965 0.179326i
\(144\) −0.500000 0.866025i −0.0416667 0.0721688i
\(145\) −3.06677 −0.254682
\(146\) 0.432504 + 0.749119i 0.0357943 + 0.0619975i
\(147\) 2.43658 6.56225i 0.200966 0.541245i
\(148\) 9.38675 0.771586
\(149\) −0.802500 1.38997i −0.0657433 0.113871i 0.831280 0.555854i \(-0.187609\pi\)
−0.897023 + 0.441983i \(0.854275\pi\)
\(150\) −0.248918 −0.0203241
\(151\) 10.2417 + 17.7391i 0.833457 + 1.44359i 0.895281 + 0.445502i \(0.146975\pi\)
−0.0618242 + 0.998087i \(0.519692\pi\)
\(152\) −0.754098 1.30614i −0.0611655 0.105942i
\(153\) 3.20391 + 5.54934i 0.259021 + 0.448637i
\(154\) −0.989151 + 2.10348i −0.0797081 + 0.169503i
\(155\) −8.92354 −0.716756
\(156\) 2.65372 + 2.44085i 0.212468 + 0.195425i
\(157\) −5.16462 8.94539i −0.412182 0.713919i 0.582946 0.812511i \(-0.301900\pi\)
−0.995128 + 0.0985911i \(0.968566\pi\)
\(158\) −4.18014 + 7.24022i −0.332554 + 0.576001i
\(159\) −2.44711 −0.194069
\(160\) 1.14553 1.98411i 0.0905618 0.156858i
\(161\) 3.47353 0.292594i 0.273753 0.0230596i
\(162\) −0.500000 + 0.866025i −0.0392837 + 0.0680414i
\(163\) 3.44890 + 5.97367i 0.270139 + 0.467894i 0.968897 0.247464i \(-0.0795972\pi\)
−0.698759 + 0.715358i \(0.746264\pi\)
\(164\) 1.80195 + 3.12107i 0.140709 + 0.243715i
\(165\) 2.01282 0.156698
\(166\) 8.66710 0.672697
\(167\) 9.73115 + 16.8549i 0.753019 + 1.30427i 0.946353 + 0.323135i \(0.104737\pi\)
−0.193334 + 0.981133i \(0.561930\pi\)
\(168\) 1.12588 2.39424i 0.0868636 0.184720i
\(169\) −11.7613 5.53815i −0.904718 0.426011i
\(170\) −7.34033 + 12.7138i −0.562977 + 0.975105i
\(171\) −0.754098 + 1.30614i −0.0576674 + 0.0998828i
\(172\) −4.95801 + 8.58752i −0.378045 + 0.654793i
\(173\) −11.0069 19.0645i −0.836840 1.44945i −0.892523 0.451002i \(-0.851067\pi\)
0.0556826 0.998449i \(-0.482266\pi\)
\(174\) −1.33859 −0.101478
\(175\) −0.375999 0.540690i −0.0284229 0.0408724i
\(176\) −0.439279 + 0.760853i −0.0331119 + 0.0573515i
\(177\) −2.98411 + 5.16864i −0.224300 + 0.388498i
\(178\) −12.8339 −0.961939
\(179\) 4.90819 8.50123i 0.366855 0.635412i −0.622217 0.782845i \(-0.713768\pi\)
0.989072 + 0.147433i \(0.0471012\pi\)
\(180\) −2.29105 −0.170765
\(181\) 22.9753 1.70774 0.853869 0.520487i \(-0.174250\pi\)
0.853869 + 0.520487i \(0.174250\pi\)
\(182\) −1.29339 + 9.45130i −0.0958723 + 0.700577i
\(183\) −4.81564 −0.355983
\(184\) 1.31752 0.0971289
\(185\) 10.7528 18.6243i 0.790559 1.36929i
\(186\) −3.89495 −0.285592
\(187\) 2.81482 4.87541i 0.205840 0.356525i
\(188\) −0.188939 + 0.327251i −0.0137798 + 0.0238673i
\(189\) −2.63641 + 0.222079i −0.191771 + 0.0161539i
\(190\) −3.45536 −0.250678
\(191\) 4.84536 + 8.39241i 0.350598 + 0.607254i 0.986354 0.164636i \(-0.0526450\pi\)
−0.635756 + 0.771890i \(0.719312\pi\)
\(192\) 0.500000 0.866025i 0.0360844 0.0625000i
\(193\) 10.5533 18.2789i 0.759647 1.31575i −0.183384 0.983041i \(-0.558705\pi\)
0.943031 0.332705i \(-0.107961\pi\)
\(194\) 4.40338 7.62688i 0.316144 0.547578i
\(195\) 7.88282 2.46922i 0.564501 0.176824i
\(196\) 6.90136 1.17099i 0.492954 0.0836418i
\(197\) −6.76019 11.7090i −0.481644 0.834232i 0.518134 0.855299i \(-0.326627\pi\)
−0.999778 + 0.0210677i \(0.993293\pi\)
\(198\) 0.878558 0.0624364
\(199\) −7.58899 −0.537969 −0.268985 0.963144i \(-0.586688\pi\)
−0.268985 + 0.963144i \(0.586688\pi\)
\(200\) −0.124459 0.215569i −0.00880058 0.0152431i
\(201\) 4.87998 + 8.45237i 0.344207 + 0.596184i
\(202\) 5.02693 8.70689i 0.353693 0.612615i
\(203\) −2.02198 2.90763i −0.141915 0.204076i
\(204\) −3.20391 + 5.54934i −0.224319 + 0.388531i
\(205\) 8.25672 0.576674
\(206\) −6.17983 + 10.7038i −0.430569 + 0.745767i
\(207\) −0.658760 1.14101i −0.0457870 0.0793054i
\(208\) −0.786978 + 3.51862i −0.0545671 + 0.243972i
\(209\) 1.32504 0.0916548
\(210\) −3.46071 4.97654i −0.238812 0.343414i
\(211\) −6.06832 10.5106i −0.417760 0.723582i 0.577954 0.816070i \(-0.303851\pi\)
−0.995714 + 0.0924876i \(0.970518\pi\)
\(212\) −1.22356 2.11926i −0.0840341 0.145551i
\(213\) −1.02408 1.77376i −0.0701690 0.121536i
\(214\) −6.80813 −0.465394
\(215\) 11.3591 + 19.6745i 0.774681 + 1.34179i
\(216\) −1.00000 −0.0680414
\(217\) −5.88345 8.46047i −0.399395 0.574334i
\(218\) −0.460710 0.797973i −0.0312032 0.0540456i
\(219\) 0.865008 0.0584518
\(220\) 1.00641 + 1.74315i 0.0678522 + 0.117523i
\(221\) 5.04281 22.5467i 0.339216 1.51665i
\(222\) 4.69338 8.12917i 0.314999 0.545594i
\(223\) −11.0968 19.2202i −0.743094 1.28708i −0.951080 0.308945i \(-0.900024\pi\)
0.207986 0.978132i \(-0.433309\pi\)
\(224\) 2.63641 0.222079i 0.176153 0.0148383i
\(225\) −0.124459 + 0.215569i −0.00829727 + 0.0143713i
\(226\) 5.68802 9.85195i 0.378362 0.655342i
\(227\) −24.4284 −1.62137 −0.810686 0.585482i \(-0.800905\pi\)
−0.810686 + 0.585482i \(0.800905\pi\)
\(228\) −1.50820 −0.0998828
\(229\) −14.9717 + 25.9317i −0.989358 + 1.71362i −0.368670 + 0.929560i \(0.620187\pi\)
−0.620688 + 0.784058i \(0.713147\pi\)
\(230\) 1.50925 2.61410i 0.0995173 0.172369i
\(231\) 1.32709 + 1.90837i 0.0873161 + 0.125561i
\(232\) −0.669294 1.15925i −0.0439413 0.0761086i
\(233\) −11.4574 + 19.8448i −0.750600 + 1.30008i 0.196932 + 0.980417i \(0.436902\pi\)
−0.947532 + 0.319660i \(0.896431\pi\)
\(234\) 3.44070 1.07777i 0.224926 0.0704557i
\(235\) 0.432868 + 0.749750i 0.0282372 + 0.0489083i
\(236\) −5.96823 −0.388498
\(237\) 4.18014 + 7.24022i 0.271529 + 0.470303i
\(238\) −16.8937 + 1.42304i −1.09505 + 0.0922422i
\(239\) −1.03992 −0.0672669 −0.0336334 0.999434i \(-0.510708\pi\)
−0.0336334 + 0.999434i \(0.510708\pi\)
\(240\) −1.14553 1.98411i −0.0739434 0.128074i
\(241\) 6.47888 0.417342 0.208671 0.977986i \(-0.433086\pi\)
0.208671 + 0.977986i \(0.433086\pi\)
\(242\) 5.11407 + 8.85783i 0.328745 + 0.569403i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) −2.40782 4.17047i −0.154145 0.266987i
\(245\) 5.58233 15.0344i 0.356642 0.960516i
\(246\) 3.60390 0.229776
\(247\) 5.18925 1.62548i 0.330184 0.103427i
\(248\) −1.94748 3.37313i −0.123665 0.214194i
\(249\) 4.33355 7.50593i 0.274628 0.475669i
\(250\) 10.8850 0.688426
\(251\) 5.33039 9.23251i 0.336451 0.582751i −0.647311 0.762226i \(-0.724107\pi\)
0.983763 + 0.179475i \(0.0574399\pi\)
\(252\) −1.51053 2.17216i −0.0951547 0.136833i
\(253\) −0.578759 + 1.00244i −0.0363863 + 0.0630229i
\(254\) 4.26019 + 7.37887i 0.267308 + 0.462992i
\(255\) 7.34033 + 12.7138i 0.459669 + 0.796170i
\(256\) 1.00000 0.0625000
\(257\) 28.0838 1.75182 0.875910 0.482475i \(-0.160262\pi\)
0.875910 + 0.482475i \(0.160262\pi\)
\(258\) 4.95801 + 8.58752i 0.308672 + 0.534636i
\(259\) 24.7474 2.08460i 1.53773 0.129531i
\(260\) 6.07982 + 5.59212i 0.377054 + 0.346808i
\(261\) −0.669294 + 1.15925i −0.0414282 + 0.0717558i
\(262\) 2.51964 4.36415i 0.155664 0.269618i
\(263\) 12.0885 20.9378i 0.745407 1.29108i −0.204597 0.978846i \(-0.565588\pi\)
0.950004 0.312237i \(-0.101078\pi\)
\(264\) 0.439279 + 0.760853i 0.0270357 + 0.0468273i
\(265\) −5.60646 −0.344402
\(266\) −2.27818 3.27605i −0.139684 0.200867i
\(267\) −6.41693 + 11.1145i −0.392710 + 0.680194i
\(268\) −4.87998 + 8.45237i −0.298092 + 0.516311i
\(269\) −7.93891 −0.484044 −0.242022 0.970271i \(-0.577811\pi\)
−0.242022 + 0.970271i \(0.577811\pi\)
\(270\) −1.14553 + 1.98411i −0.0697145 + 0.120749i
\(271\) −28.6694 −1.74154 −0.870770 0.491690i \(-0.836379\pi\)
−0.870770 + 0.491690i \(0.836379\pi\)
\(272\) −6.40782 −0.388531
\(273\) 7.53838 + 5.84576i 0.456243 + 0.353801i
\(274\) −18.9452 −1.14452
\(275\) 0.218689 0.0131874
\(276\) 0.658760 1.14101i 0.0396527 0.0686805i
\(277\) 12.4871 0.750279 0.375139 0.926968i \(-0.377595\pi\)
0.375139 + 0.926968i \(0.377595\pi\)
\(278\) 0.565160 0.978885i 0.0338960 0.0587096i
\(279\) −1.94748 + 3.37313i −0.116592 + 0.201944i
\(280\) 2.57945 5.48533i 0.154152 0.327811i
\(281\) 23.4616 1.39960 0.699800 0.714339i \(-0.253272\pi\)
0.699800 + 0.714339i \(0.253272\pi\)
\(282\) 0.188939 + 0.327251i 0.0112511 + 0.0194875i
\(283\) 7.89495 13.6745i 0.469306 0.812862i −0.530078 0.847949i \(-0.677837\pi\)
0.999384 + 0.0350867i \(0.0111707\pi\)
\(284\) 1.02408 1.77376i 0.0607682 0.105254i
\(285\) −1.72768 + 2.99243i −0.102339 + 0.177256i
\(286\) −2.33145 2.14443i −0.137861 0.126803i
\(287\) 5.44381 + 7.82825i 0.321338 + 0.462087i
\(288\) −0.500000 0.866025i −0.0294628 0.0510310i
\(289\) 24.0602 1.41530
\(290\) −3.06677 −0.180087
\(291\) −4.40338 7.62688i −0.258131 0.447096i
\(292\) 0.432504 + 0.749119i 0.0253104 + 0.0438388i
\(293\) 3.38969 5.87112i 0.198028 0.342994i −0.749861 0.661595i \(-0.769880\pi\)
0.947889 + 0.318601i \(0.103213\pi\)
\(294\) 2.43658 6.56225i 0.142104 0.382718i
\(295\) −6.83676 + 11.8416i −0.398051 + 0.689445i
\(296\) 9.38675 0.545594
\(297\) 0.439279 0.760853i 0.0254895 0.0441492i
\(298\) −0.802500 1.38997i −0.0464876 0.0805188i
\(299\) −1.03686 + 4.63585i −0.0599631 + 0.268098i
\(300\) −0.248918 −0.0143713
\(301\) −11.1643 + 23.7413i −0.643497 + 1.36843i
\(302\) 10.2417 + 17.7391i 0.589343 + 1.02077i
\(303\) −5.02693 8.70689i −0.288789 0.500198i
\(304\) −0.754098 1.30614i −0.0432505 0.0749121i
\(305\) −11.0329 −0.631741
\(306\) 3.20391 + 5.54934i 0.183155 + 0.317234i
\(307\) −1.27687 −0.0728749 −0.0364374 0.999336i \(-0.511601\pi\)
−0.0364374 + 0.999336i \(0.511601\pi\)
\(308\) −0.989151 + 2.10348i −0.0563621 + 0.119857i
\(309\) 6.17983 + 10.7038i 0.351558 + 0.608916i
\(310\) −8.92354 −0.506823
\(311\) −12.4336 21.5357i −0.705047 1.22118i −0.966675 0.256009i \(-0.917592\pi\)
0.261627 0.965169i \(-0.415741\pi\)
\(312\) 2.65372 + 2.44085i 0.150237 + 0.138186i
\(313\) 13.1601 22.7940i 0.743855 1.28839i −0.206873 0.978368i \(-0.566329\pi\)
0.950728 0.310026i \(-0.100338\pi\)
\(314\) −5.16462 8.94539i −0.291456 0.504817i
\(315\) −6.04016 + 0.508795i −0.340325 + 0.0286673i
\(316\) −4.18014 + 7.24022i −0.235151 + 0.407294i
\(317\) 9.33620 16.1708i 0.524373 0.908241i −0.475224 0.879865i \(-0.657633\pi\)
0.999597 0.0283764i \(-0.00903370\pi\)
\(318\) −2.44711 −0.137227
\(319\) 1.17603 0.0658448
\(320\) 1.14553 1.98411i 0.0640368 0.110915i
\(321\) −3.40406 + 5.89601i −0.189996 + 0.329083i
\(322\) 3.47353 0.292594i 0.193572 0.0163056i
\(323\) 4.83213 + 8.36949i 0.268867 + 0.465691i
\(324\) −0.500000 + 0.866025i −0.0277778 + 0.0481125i
\(325\) 0.856453 0.268275i 0.0475074 0.0148812i
\(326\) 3.44890 + 5.97367i 0.191017 + 0.330851i
\(327\) −0.921420 −0.0509547
\(328\) 1.80195 + 3.12107i 0.0994960 + 0.172332i
\(329\) −0.425445 + 0.904730i −0.0234555 + 0.0498794i
\(330\) 2.01282 0.110802
\(331\) −18.0242 31.2189i −0.990701 1.71594i −0.613179 0.789944i \(-0.710110\pi\)
−0.377522 0.926001i \(-0.623224\pi\)
\(332\) 8.66710 0.475669
\(333\) −4.69338 8.12917i −0.257195 0.445476i
\(334\) 9.73115 + 16.8549i 0.532465 + 0.922256i
\(335\) 11.1803 + 19.3648i 0.610844 + 1.05801i
\(336\) 1.12588 2.39424i 0.0614218 0.130617i
\(337\) 16.9888 0.925440 0.462720 0.886504i \(-0.346873\pi\)
0.462720 + 0.886504i \(0.346873\pi\)
\(338\) −11.7613 5.53815i −0.639732 0.301236i
\(339\) −5.68802 9.85195i −0.308931 0.535084i
\(340\) −7.34033 + 12.7138i −0.398085 + 0.689503i
\(341\) 3.42194 0.185308
\(342\) −0.754098 + 1.30614i −0.0407770 + 0.0706278i
\(343\) 17.9348 4.61985i 0.968388 0.249449i
\(344\) −4.95801 + 8.58752i −0.267318 + 0.463008i
\(345\) −1.50925 2.61410i −0.0812555 0.140739i
\(346\) −11.0069 19.0645i −0.591736 1.02492i
\(347\) 12.0361 0.646132 0.323066 0.946376i \(-0.395286\pi\)
0.323066 + 0.946376i \(0.395286\pi\)
\(348\) −1.33859 −0.0717558
\(349\) −11.4544 19.8396i −0.613140 1.06199i −0.990708 0.136007i \(-0.956573\pi\)
0.377568 0.925982i \(-0.376760\pi\)
\(350\) −0.375999 0.540690i −0.0200980 0.0289011i
\(351\) 0.786978 3.51862i 0.0420058 0.187810i
\(352\) −0.439279 + 0.760853i −0.0234136 + 0.0405536i
\(353\) −12.1583 + 21.0588i −0.647121 + 1.12085i 0.336686 + 0.941617i \(0.390694\pi\)
−0.983807 + 0.179230i \(0.942639\pi\)
\(354\) −2.98411 + 5.16864i −0.158604 + 0.274710i
\(355\) −2.34623 4.06379i −0.124525 0.215683i
\(356\) −12.8339 −0.680194
\(357\) −7.21444 + 15.3419i −0.381829 + 0.811978i
\(358\) 4.90819 8.50123i 0.259406 0.449304i
\(359\) −14.4734 + 25.0686i −0.763875 + 1.32307i 0.176965 + 0.984217i \(0.443372\pi\)
−0.940840 + 0.338853i \(0.889961\pi\)
\(360\) −2.29105 −0.120749
\(361\) 8.36267 14.4846i 0.440141 0.762346i
\(362\) 22.9753 1.20755
\(363\) 10.2281 0.536838
\(364\) −1.29339 + 9.45130i −0.0677920 + 0.495383i
\(365\) 1.98178 0.103731
\(366\) −4.81564 −0.251718
\(367\) 13.5022 23.3866i 0.704811 1.22077i −0.261948 0.965082i \(-0.584365\pi\)
0.966760 0.255687i \(-0.0823017\pi\)
\(368\) 1.31752 0.0686805
\(369\) 1.80195 3.12107i 0.0938058 0.162476i
\(370\) 10.7528 18.6243i 0.559010 0.968234i
\(371\) −3.69644 5.31552i −0.191910 0.275968i
\(372\) −3.89495 −0.201944
\(373\) −9.61751 16.6580i −0.497976 0.862519i 0.502021 0.864855i \(-0.332590\pi\)
−0.999997 + 0.00233570i \(0.999257\pi\)
\(374\) 2.81482 4.87541i 0.145551 0.252101i
\(375\) 5.44249 9.42666i 0.281049 0.486791i
\(376\) −0.188939 + 0.327251i −0.00974377 + 0.0168767i
\(377\) 4.60568 1.44268i 0.237205 0.0743020i
\(378\) −2.63641 + 0.222079i −0.135603 + 0.0114225i
\(379\) −16.1551 27.9815i −0.829834 1.43731i −0.898168 0.439652i \(-0.855102\pi\)
0.0683340 0.997662i \(-0.478232\pi\)
\(380\) −3.45536 −0.177256
\(381\) 8.52039 0.436513
\(382\) 4.84536 + 8.39241i 0.247910 + 0.429393i
\(383\) 15.7111 + 27.2125i 0.802802 + 1.39049i 0.917765 + 0.397124i \(0.129992\pi\)
−0.114963 + 0.993370i \(0.536675\pi\)
\(384\) 0.500000 0.866025i 0.0255155 0.0441942i
\(385\) 3.04043 + 4.37217i 0.154955 + 0.222827i
\(386\) 10.5533 18.2789i 0.537151 0.930373i
\(387\) 9.91602 0.504060
\(388\) 4.40338 7.62688i 0.223548 0.387196i
\(389\) 2.89119 + 5.00769i 0.146589 + 0.253900i 0.929965 0.367649i \(-0.119837\pi\)
−0.783375 + 0.621549i \(0.786504\pi\)
\(390\) 7.88282 2.46922i 0.399162 0.125034i
\(391\) −8.44244 −0.426952
\(392\) 6.90136 1.17099i 0.348571 0.0591437i
\(393\) −2.51964 4.36415i −0.127099 0.220142i
\(394\) −6.76019 11.7090i −0.340574 0.589891i
\(395\) 9.57692 + 16.5877i 0.481867 + 0.834619i
\(396\) 0.878558 0.0441492
\(397\) −3.49354 6.05099i −0.175336 0.303690i 0.764942 0.644100i \(-0.222768\pi\)
−0.940277 + 0.340409i \(0.889434\pi\)
\(398\) −7.58899 −0.380402
\(399\) −3.97623 + 0.334939i −0.199061 + 0.0167679i
\(400\) −0.124459 0.215569i −0.00622295 0.0107785i
\(401\) −5.93497 −0.296378 −0.148189 0.988959i \(-0.547344\pi\)
−0.148189 + 0.988959i \(0.547344\pi\)
\(402\) 4.87998 + 8.45237i 0.243391 + 0.421566i
\(403\) 13.4014 4.19784i 0.667569 0.209110i
\(404\) 5.02693 8.70689i 0.250099 0.433184i
\(405\) 1.14553 + 1.98411i 0.0569216 + 0.0985912i
\(406\) −2.02198 2.90763i −0.100349 0.144303i
\(407\) −4.12340 + 7.14194i −0.204389 + 0.354013i
\(408\) −3.20391 + 5.54934i −0.158617 + 0.274733i
\(409\) −14.7785 −0.730748 −0.365374 0.930861i \(-0.619059\pi\)
−0.365374 + 0.930861i \(0.619059\pi\)
\(410\) 8.25672 0.407770
\(411\) −9.47262 + 16.4071i −0.467250 + 0.809300i
\(412\) −6.17983 + 10.7038i −0.304458 + 0.527337i
\(413\) −15.7347 + 1.32542i −0.774255 + 0.0652196i
\(414\) −0.658760 1.14101i −0.0323763 0.0560774i
\(415\) 9.92839 17.1965i 0.487365 0.844142i
\(416\) −0.786978 + 3.51862i −0.0385848 + 0.172514i
\(417\) −0.565160 0.978885i −0.0276760 0.0479362i
\(418\) 1.32504 0.0648097
\(419\) −5.07336 8.78731i −0.247850 0.429288i 0.715079 0.699043i \(-0.246391\pi\)
−0.962929 + 0.269755i \(0.913057\pi\)
\(420\) −3.46071 4.97654i −0.168865 0.242830i
\(421\) 7.70885 0.375706 0.187853 0.982197i \(-0.439847\pi\)
0.187853 + 0.982197i \(0.439847\pi\)
\(422\) −6.06832 10.5106i −0.295401 0.511650i
\(423\) 0.377877 0.0183730
\(424\) −1.22356 2.11926i −0.0594211 0.102920i
\(425\) 0.797511 + 1.38133i 0.0386850 + 0.0670044i
\(426\) −1.02408 1.77376i −0.0496170 0.0859392i
\(427\) −7.27419 10.4604i −0.352023 0.506212i
\(428\) −6.80813 −0.329083
\(429\) −3.02285 + 0.946879i −0.145945 + 0.0457158i
\(430\) 11.3591 + 19.6745i 0.547782 + 0.948787i
\(431\) −17.8893 + 30.9851i −0.861696 + 1.49250i 0.00859398 + 0.999963i \(0.497264\pi\)
−0.870290 + 0.492539i \(0.836069\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −6.32535 + 10.9558i −0.303977 + 0.526504i −0.977033 0.213088i \(-0.931648\pi\)
0.673056 + 0.739592i \(0.264981\pi\)
\(434\) −5.88345 8.46047i −0.282415 0.406115i
\(435\) −1.53339 + 2.65590i −0.0735203 + 0.127341i
\(436\) −0.460710 0.797973i −0.0220640 0.0382160i
\(437\) −0.993540 1.72086i −0.0475275 0.0823200i
\(438\) 0.865008 0.0413317
\(439\) −27.2045 −1.29840 −0.649200 0.760618i \(-0.724896\pi\)
−0.649200 + 0.760618i \(0.724896\pi\)
\(440\) 1.00641 + 1.74315i 0.0479787 + 0.0831016i
\(441\) −4.46478 5.39126i −0.212609 0.256727i
\(442\) 5.04281 22.5467i 0.239862 1.07244i
\(443\) −1.74860 + 3.02867i −0.0830786 + 0.143896i −0.904571 0.426323i \(-0.859809\pi\)
0.821492 + 0.570220i \(0.193142\pi\)
\(444\) 4.69338 8.12917i 0.222738 0.385793i
\(445\) −14.7015 + 25.4638i −0.696919 + 1.20710i
\(446\) −11.0968 19.2202i −0.525447 0.910101i
\(447\) −1.60500 −0.0759139
\(448\) 2.63641 0.222079i 0.124559 0.0104923i
\(449\) 8.08366 14.0013i 0.381491 0.660762i −0.609784 0.792567i \(-0.708744\pi\)
0.991276 + 0.131805i \(0.0420773\pi\)
\(450\) −0.124459 + 0.215569i −0.00586706 + 0.0101620i
\(451\) −3.16623 −0.149092
\(452\) 5.68802 9.85195i 0.267542 0.463397i
\(453\) 20.4834 0.962393
\(454\) −24.4284 −1.14648
\(455\) 17.2708 + 13.3929i 0.809668 + 0.627871i
\(456\) −1.50820 −0.0706278
\(457\) 26.2609 1.22843 0.614217 0.789137i \(-0.289472\pi\)
0.614217 + 0.789137i \(0.289472\pi\)
\(458\) −14.9717 + 25.9317i −0.699582 + 1.21171i
\(459\) 6.40782 0.299091
\(460\) 1.50925 2.61410i 0.0703693 0.121883i
\(461\) −4.94386 + 8.56302i −0.230259 + 0.398819i −0.957884 0.287155i \(-0.907291\pi\)
0.727626 + 0.685974i \(0.240624\pi\)
\(462\) 1.32709 + 1.90837i 0.0617418 + 0.0887854i
\(463\) −14.2082 −0.660310 −0.330155 0.943927i \(-0.607101\pi\)
−0.330155 + 0.943927i \(0.607101\pi\)
\(464\) −0.669294 1.15925i −0.0310712 0.0538169i
\(465\) −4.46177 + 7.72801i −0.206910 + 0.358378i
\(466\) −11.4574 + 19.8448i −0.530754 + 0.919293i
\(467\) −1.47500 + 2.55478i −0.0682550 + 0.118221i −0.898133 0.439723i \(-0.855076\pi\)
0.829878 + 0.557944i \(0.188410\pi\)
\(468\) 3.44070 1.07777i 0.159046 0.0498197i
\(469\) −10.9886 + 23.3677i −0.507404 + 1.07902i
\(470\) 0.432868 + 0.749750i 0.0199667 + 0.0345834i
\(471\) −10.3292 −0.475946
\(472\) −5.96823 −0.274710
\(473\) −4.35590 7.54463i −0.200284 0.346903i
\(474\) 4.18014 + 7.24022i 0.192000 + 0.332554i
\(475\) −0.187709 + 0.325121i −0.00861267 + 0.0149176i
\(476\) −16.8937 + 1.42304i −0.774320 + 0.0652251i
\(477\) −1.22356 + 2.11926i −0.0560228 + 0.0970343i
\(478\) −1.03992 −0.0475649
\(479\) −9.90480 + 17.1556i −0.452562 + 0.783861i −0.998544 0.0539362i \(-0.982823\pi\)
0.545982 + 0.837797i \(0.316157\pi\)
\(480\) −1.14553 1.98411i −0.0522859 0.0905618i
\(481\) −7.38717 + 33.0284i −0.336826 + 1.50597i
\(482\) 6.47888 0.295105
\(483\) 1.48337 3.15446i 0.0674957 0.143533i
\(484\) 5.11407 + 8.85783i 0.232458 + 0.402628i
\(485\) −10.0884 17.4736i −0.458090 0.793435i
\(486\) 0.500000 + 0.866025i 0.0226805 + 0.0392837i
\(487\) −12.5946 −0.570714 −0.285357 0.958421i \(-0.592112\pi\)
−0.285357 + 0.958421i \(0.592112\pi\)
\(488\) −2.40782 4.17047i −0.108997 0.188788i
\(489\) 6.89780 0.311929
\(490\) 5.58233 15.0344i 0.252184 0.679187i
\(491\) 5.81280 + 10.0681i 0.262328 + 0.454365i 0.966860 0.255307i \(-0.0821765\pi\)
−0.704532 + 0.709672i \(0.748843\pi\)
\(492\) 3.60390 0.162476
\(493\) 4.28872 + 7.42827i 0.193154 + 0.334553i
\(494\) 5.18925 1.62548i 0.233476 0.0731339i
\(495\) 1.00641 1.74315i 0.0452348 0.0783489i
\(496\) −1.94748 3.37313i −0.0874442 0.151458i
\(497\) 2.30599 4.90381i 0.103438 0.219966i
\(498\) 4.33355 7.50593i 0.194191 0.336349i
\(499\) 6.22713 10.7857i 0.278765 0.482834i −0.692313 0.721597i \(-0.743408\pi\)
0.971078 + 0.238763i \(0.0767418\pi\)
\(500\) 10.8850 0.486791
\(501\) 19.4623 0.869512
\(502\) 5.33039 9.23251i 0.237907 0.412067i
\(503\) −15.7073 + 27.2058i −0.700354 + 1.21305i 0.267988 + 0.963422i \(0.413641\pi\)
−0.968342 + 0.249627i \(0.919692\pi\)
\(504\) −1.51053 2.17216i −0.0672845 0.0967558i
\(505\) −11.5170 19.9479i −0.512498 0.887672i
\(506\) −0.578759 + 1.00244i −0.0257290 + 0.0445639i
\(507\) −10.6768 + 7.41654i −0.474175 + 0.329380i
\(508\) 4.26019 + 7.37887i 0.189016 + 0.327384i
\(509\) 7.19772 0.319034 0.159517 0.987195i \(-0.449006\pi\)
0.159517 + 0.987195i \(0.449006\pi\)
\(510\) 7.34033 + 12.7138i 0.325035 + 0.562977i
\(511\) 1.30662 + 1.87894i 0.0578016 + 0.0831193i
\(512\) 1.00000 0.0441942
\(513\) 0.754098 + 1.30614i 0.0332943 + 0.0576674i
\(514\) 28.0838 1.23872
\(515\) 14.1583 + 24.5229i 0.623889 + 1.08061i
\(516\) 4.95801 + 8.58752i 0.218264 + 0.378045i
\(517\) −0.165994 0.287509i −0.00730039 0.0126446i
\(518\) 24.7474 2.08460i 1.08734 0.0915922i
\(519\) −22.0138 −0.966300
\(520\) 6.07982 + 5.59212i 0.266618 + 0.245231i
\(521\) 11.2983 + 19.5692i 0.494987 + 0.857342i 0.999983 0.00577905i \(-0.00183954\pi\)
−0.504996 + 0.863121i \(0.668506\pi\)
\(522\) −0.669294 + 1.15925i −0.0292942 + 0.0507390i
\(523\) −6.07271 −0.265541 −0.132770 0.991147i \(-0.542387\pi\)
−0.132770 + 0.991147i \(0.542387\pi\)
\(524\) 2.51964 4.36415i 0.110071 0.190649i
\(525\) −0.656251 + 0.0552795i −0.0286412 + 0.00241260i
\(526\) 12.0885 20.9378i 0.527082 0.912933i
\(527\) 12.4791 + 21.6144i 0.543597 + 0.941538i
\(528\) 0.439279 + 0.760853i 0.0191172 + 0.0331119i
\(529\) −21.2641 −0.924528
\(530\) −5.60646 −0.243529
\(531\) 2.98411 + 5.16864i 0.129499 + 0.224300i
\(532\) −2.27818 3.27605i −0.0987717 0.142035i
\(533\) −12.3999 + 3.88416i −0.537101 + 0.168242i
\(534\) −6.41693 + 11.1145i −0.277688 + 0.480969i
\(535\) −7.79888 + 13.5081i −0.337175 + 0.584005i
\(536\) −4.87998 + 8.45237i −0.210783 + 0.365087i
\(537\) −4.90819 8.50123i −0.211804 0.366855i
\(538\) −7.93891 −0.342271
\(539\) −2.14067 + 5.76531i −0.0922053 + 0.248330i
\(540\) −1.14553 + 1.98411i −0.0492956 + 0.0853825i
\(541\) 3.16494 5.48183i 0.136071 0.235682i −0.789935 0.613191i \(-0.789886\pi\)
0.926006 + 0.377508i \(0.123219\pi\)
\(542\) −28.6694 −1.23146
\(543\) 11.4876 19.8972i 0.492982 0.853869i
\(544\) −6.40782 −0.274733
\(545\) −2.11102 −0.0904262
\(546\) 7.53838 + 5.84576i 0.322613 + 0.250175i
\(547\) 17.3685 0.742625 0.371312 0.928508i \(-0.378908\pi\)
0.371312 + 0.928508i \(0.378908\pi\)
\(548\) −18.9452 −0.809300
\(549\) −2.40782 + 4.17047i −0.102763 + 0.177991i
\(550\) 0.218689 0.00932492
\(551\) −1.00943 + 1.74838i −0.0430030 + 0.0744834i
\(552\) 0.658760 1.14101i 0.0280387 0.0485645i
\(553\) −9.41269 + 20.0165i −0.400268 + 0.851190i
\(554\) 12.4871 0.530527
\(555\) −10.7528 18.6243i −0.456430 0.790559i
\(556\) 0.565160 0.978885i 0.0239681 0.0415140i
\(557\) −19.9116 + 34.4879i −0.843681 + 1.46130i 0.0430813 + 0.999072i \(0.486283\pi\)
−0.886762 + 0.462226i \(0.847051\pi\)
\(558\) −1.94748 + 3.37313i −0.0824432 + 0.142796i
\(559\) −26.3144 24.2035i −1.11298 1.02370i
\(560\) 2.57945 5.48533i 0.109002 0.231798i
\(561\) −2.81482 4.87541i −0.118842 0.205840i
\(562\) 23.4616 0.989667
\(563\) −4.59171 −0.193517 −0.0967587 0.995308i \(-0.530848\pi\)
−0.0967587 + 0.995308i \(0.530848\pi\)
\(564\) 0.188939 + 0.327251i 0.00795576 + 0.0137798i
\(565\) −13.0316 22.5713i −0.548242 0.949583i
\(566\) 7.89495 13.6745i 0.331850 0.574780i
\(567\) −1.12588 + 2.39424i −0.0472826 + 0.100549i
\(568\) 1.02408 1.77376i 0.0429696 0.0744255i
\(569\) −17.4829 −0.732922 −0.366461 0.930433i \(-0.619431\pi\)
−0.366461 + 0.930433i \(0.619431\pi\)
\(570\) −1.72768 + 2.99243i −0.0723645 + 0.125339i
\(571\) 8.05500 + 13.9517i 0.337091 + 0.583859i 0.983884 0.178806i \(-0.0572235\pi\)
−0.646793 + 0.762666i \(0.723890\pi\)
\(572\) −2.33145 2.14443i −0.0974827 0.0896631i
\(573\) 9.69073 0.404836
\(574\) 5.44381 + 7.82825i 0.227220 + 0.326745i
\(575\) −0.163977 0.284017i −0.00683833 0.0118443i
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) 3.99841 + 6.92544i 0.166456 + 0.288310i 0.937171 0.348870i \(-0.113434\pi\)
−0.770716 + 0.637179i \(0.780101\pi\)
\(578\) 24.0602 1.00077
\(579\) −10.5533 18.2789i −0.438582 0.759647i
\(580\) −3.06677 −0.127341
\(581\) 22.8501 1.92478i 0.947981 0.0798534i
\(582\) −4.40338 7.62688i −0.182526 0.316144i
\(583\) 2.14993 0.0890409
\(584\) 0.432504 + 0.749119i 0.0178971 + 0.0309987i
\(585\) 1.80301 8.06133i 0.0745452 0.333295i
\(586\) 3.38969 5.87112i 0.140027 0.242534i
\(587\) 10.4049 + 18.0219i 0.429458 + 0.743842i 0.996825 0.0796223i \(-0.0253714\pi\)
−0.567367 + 0.823465i \(0.692038\pi\)
\(588\) 2.43658 6.56225i 0.100483 0.270623i
\(589\) −2.93718 + 5.08734i −0.121024 + 0.209620i
\(590\) −6.83676 + 11.8416i −0.281465 + 0.487511i
\(591\) −13.5204 −0.556154
\(592\) 9.38675 0.385793
\(593\) −12.2317 + 21.1859i −0.502296 + 0.870002i 0.497701 + 0.867349i \(0.334178\pi\)
−0.999996 + 0.00265305i \(0.999156\pi\)
\(594\) 0.439279 0.760853i 0.0180238 0.0312182i
\(595\) −16.5287 + 35.1490i −0.677609 + 1.44097i
\(596\) −0.802500 1.38997i −0.0328717 0.0569354i
\(597\) −3.79449 + 6.57226i −0.155298 + 0.268985i
\(598\) −1.03686 + 4.63585i −0.0424003 + 0.189574i
\(599\) −22.4292 38.8484i −0.916431 1.58730i −0.804793 0.593555i \(-0.797724\pi\)
−0.111638 0.993749i \(-0.535610\pi\)
\(600\) −0.248918 −0.0101620
\(601\) 12.2159 + 21.1585i 0.498296 + 0.863073i 0.999998 0.00196699i \(-0.000626114\pi\)
−0.501702 + 0.865040i \(0.667293\pi\)
\(602\) −11.1643 + 23.7413i −0.455021 + 0.967625i
\(603\) 9.75996 0.397456
\(604\) 10.2417 + 17.7391i 0.416728 + 0.721795i
\(605\) 23.4332 0.952695
\(606\) −5.02693 8.70689i −0.204205 0.353693i
\(607\) 18.0911 + 31.3347i 0.734296 + 1.27184i 0.955032 + 0.296504i \(0.0958209\pi\)
−0.220735 + 0.975334i \(0.570846\pi\)
\(608\) −0.754098 1.30614i −0.0305827 0.0529708i
\(609\) −3.52907 + 0.297272i −0.143005 + 0.0120461i
\(610\) −11.0329 −0.446709
\(611\) −1.00278 0.922343i −0.0405682 0.0373140i
\(612\) 3.20391 + 5.54934i 0.129510 + 0.224319i
\(613\) −3.10647 + 5.38056i −0.125469 + 0.217319i −0.921916 0.387389i \(-0.873377\pi\)
0.796447 + 0.604708i \(0.206710\pi\)
\(614\) −1.27687 −0.0515303
\(615\) 4.12836 7.15053i 0.166472 0.288337i
\(616\) −0.989151 + 2.10348i −0.0398540 + 0.0847516i
\(617\) 21.8788 37.8953i 0.880809 1.52561i 0.0303660 0.999539i \(-0.490333\pi\)
0.850443 0.526067i \(-0.176334\pi\)
\(618\) 6.17983 + 10.7038i 0.248589 + 0.430569i
\(619\) 9.54369 + 16.5301i 0.383593 + 0.664403i 0.991573 0.129550i \(-0.0413532\pi\)
−0.607980 + 0.793952i \(0.708020\pi\)
\(620\) −8.92354 −0.358378
\(621\) −1.31752 −0.0528703
\(622\) −12.4336 21.5357i −0.498544 0.863503i
\(623\) −33.8354 + 2.85013i −1.35559 + 0.114188i
\(624\) 2.65372 + 2.44085i 0.106234 + 0.0977123i
\(625\) 13.0913 22.6748i 0.523653 0.906993i
\(626\) 13.1601 22.7940i 0.525985 0.911032i
\(627\) 0.662519 1.14752i 0.0264585 0.0458274i
\(628\) −5.16462 8.94539i −0.206091 0.356960i
\(629\) −60.1486 −2.39828
\(630\) −6.04016 + 0.508795i −0.240646 + 0.0202709i
\(631\) −11.2873 + 19.5502i −0.449340 + 0.778280i −0.998343 0.0575405i \(-0.981674\pi\)
0.549003 + 0.835820i \(0.315008\pi\)
\(632\) −4.18014 + 7.24022i −0.166277 + 0.288000i
\(633\) −12.1366 −0.482388
\(634\) 9.33620 16.1708i 0.370788 0.642224i
\(635\) 19.5206 0.774653
\(636\) −2.44711 −0.0970343
\(637\) −1.31097 + 25.2048i −0.0519425 + 0.998650i
\(638\) 1.17603 0.0465593
\(639\) −2.04817 −0.0810242
\(640\) 1.14553 1.98411i 0.0452809 0.0784288i
\(641\) 21.8244 0.862010 0.431005 0.902349i \(-0.358159\pi\)
0.431005 + 0.902349i \(0.358159\pi\)
\(642\) −3.40406 + 5.89601i −0.134348 + 0.232697i
\(643\) 7.72503 13.3801i 0.304645 0.527661i −0.672537 0.740064i \(-0.734795\pi\)
0.977182 + 0.212402i \(0.0681287\pi\)
\(644\) 3.47353 0.292594i 0.136876 0.0115298i
\(645\) 22.7181 0.894525
\(646\) 4.83213 + 8.36949i 0.190118 + 0.329293i
\(647\) −5.39230 + 9.33974i −0.211993 + 0.367183i −0.952338 0.305044i \(-0.901329\pi\)
0.740345 + 0.672227i \(0.234662\pi\)
\(648\) −0.500000 + 0.866025i −0.0196419 + 0.0340207i
\(649\) 2.62172 4.54094i 0.102911 0.178248i
\(650\) 0.856453 0.268275i 0.0335928 0.0105226i
\(651\) −10.2687 + 0.864988i −0.402462 + 0.0339015i
\(652\) 3.44890 + 5.97367i 0.135069 + 0.233947i
\(653\) −20.3332 −0.795699 −0.397850 0.917451i \(-0.630243\pi\)
−0.397850 + 0.917451i \(0.630243\pi\)
\(654\) −0.921420 −0.0360304
\(655\) −5.77264 9.99850i −0.225556 0.390674i
\(656\) 1.80195 + 3.12107i 0.0703543 + 0.121857i
\(657\) 0.432504 0.749119i 0.0168736 0.0292259i
\(658\) −0.425445 + 0.904730i −0.0165856 + 0.0352700i
\(659\) 15.1395 26.2224i 0.589752 1.02148i −0.404512 0.914532i \(-0.632559\pi\)
0.994265 0.106948i \(-0.0341079\pi\)
\(660\) 2.01282 0.0783489
\(661\) −4.94372 + 8.56277i −0.192288 + 0.333053i −0.946008 0.324143i \(-0.894924\pi\)
0.753720 + 0.657196i \(0.228258\pi\)
\(662\) −18.0242 31.2189i −0.700531 1.21336i
\(663\) −17.0046 15.6405i −0.660403 0.607428i
\(664\) 8.66710 0.336349
\(665\) −9.10975 + 0.767363i −0.353261 + 0.0297571i
\(666\) −4.69338 8.12917i −0.181865 0.314999i
\(667\) −0.881809 1.52734i −0.0341438 0.0591387i
\(668\) 9.73115 + 16.8549i 0.376510 + 0.652134i
\(669\) −22.1935 −0.858051
\(670\) 11.1803 + 19.3648i 0.431932 + 0.748128i
\(671\) 4.23082 0.163329
\(672\) 1.12588 2.39424i 0.0434318 0.0923599i
\(673\) −7.13518 12.3585i −0.275041 0.476385i 0.695104 0.718909i \(-0.255358\pi\)
−0.970146 + 0.242524i \(0.922025\pi\)
\(674\) 16.9888 0.654385
\(675\) 0.124459 + 0.215569i 0.00479043 + 0.00829727i
\(676\) −11.7613 5.53815i −0.452359 0.213006i
\(677\) 16.7860 29.0742i 0.645139 1.11741i −0.339130 0.940739i \(-0.610133\pi\)
0.984269 0.176674i \(-0.0565338\pi\)
\(678\) −5.68802 9.85195i −0.218447 0.378362i
\(679\) 9.91537 21.0855i 0.380517 0.809188i
\(680\) −7.34033 + 12.7138i −0.281489 + 0.487553i
\(681\) −12.2142 + 21.1556i −0.468050 + 0.810686i
\(682\) 3.42194 0.131033
\(683\) −17.6901 −0.676893 −0.338446 0.940986i \(-0.609901\pi\)
−0.338446 + 0.940986i \(0.609901\pi\)
\(684\) −0.754098 + 1.30614i −0.0288337 + 0.0499414i
\(685\) −21.7023 + 37.5894i −0.829201 + 1.43622i
\(686\) 17.9348 4.61985i 0.684754 0.176387i
\(687\) 14.9717 + 25.9317i 0.571206 + 0.989358i
\(688\) −4.95801 + 8.58752i −0.189022 + 0.327396i
\(689\) 8.41978 2.63741i 0.320768 0.100477i
\(690\) −1.50925 2.61410i −0.0574563 0.0995173i
\(691\) 38.2717 1.45593 0.727963 0.685617i \(-0.240467\pi\)
0.727963 + 0.685617i \(0.240467\pi\)
\(692\) −11.0069 19.0645i −0.418420 0.724725i
\(693\) 2.31624 0.195109i 0.0879867 0.00741159i
\(694\) 12.0361 0.456884
\(695\) −1.29481 2.24268i −0.0491149 0.0850696i
\(696\) −1.33859 −0.0507390
\(697\) −11.5466 19.9992i −0.437358 0.757526i
\(698\) −11.4544 19.8396i −0.433555 0.750940i
\(699\) 11.4574 + 19.8448i 0.433359 + 0.750600i
\(700\) −0.375999 0.540690i −0.0142114 0.0204362i
\(701\) −29.3574 −1.10882 −0.554408 0.832245i \(-0.687055\pi\)
−0.554408 + 0.832245i \(0.687055\pi\)
\(702\) 0.786978 3.51862i 0.0297026 0.132802i
\(703\) −7.07854 12.2604i −0.266972 0.462409i
\(704\) −0.439279 + 0.760853i −0.0165559 + 0.0286757i
\(705\) 0.865737 0.0326055
\(706\) −12.1583 + 21.0588i −0.457584 + 0.792558i
\(707\) 11.3194 24.0714i 0.425711 0.905296i
\(708\) −2.98411 + 5.16864i −0.112150 + 0.194249i
\(709\) 0.660813 + 1.14456i 0.0248174 + 0.0429849i 0.878167 0.478354i \(-0.158766\pi\)
−0.853350 + 0.521338i \(0.825433\pi\)
\(710\) −2.34623 4.06379i −0.0880524 0.152511i
\(711\) 8.36029 0.313535
\(712\) −12.8339 −0.480969
\(713\) −2.56584 4.44416i −0.0960915 0.166435i
\(714\) −7.21444 + 15.3419i −0.269994 + 0.574155i
\(715\) −6.92551 + 2.16935i −0.259000 + 0.0811291i
\(716\) 4.90819 8.50123i 0.183428 0.317706i
\(717\) −0.519960 + 0.900598i −0.0194183 + 0.0336334i
\(718\) −14.4734 + 25.0686i −0.540141 + 0.935552i
\(719\) −12.3591 21.4065i −0.460915 0.798328i 0.538092 0.842886i \(-0.319145\pi\)
−0.999007 + 0.0445581i \(0.985812\pi\)
\(720\) −2.29105 −0.0853825
\(721\) −13.9155 + 29.5920i −0.518240 + 1.10206i
\(722\) 8.36267 14.4846i 0.311226 0.539060i
\(723\) 3.23944 5.61088i 0.120476 0.208671i
\(724\) 22.9753 0.853869
\(725\) −0.166599 + 0.288559i −0.00618734 + 0.0107168i
\(726\) 10.2281 0.379602
\(727\) 8.76033 0.324903 0.162451 0.986717i \(-0.448060\pi\)
0.162451 + 0.986717i \(0.448060\pi\)
\(728\) −1.29339 + 9.45130i −0.0479362 + 0.350289i
\(729\) 1.00000 0.0370370
\(730\) 1.98178 0.0733489
\(731\) 31.7700 55.0273i 1.17506 2.03526i
\(732\) −4.81564 −0.177991
\(733\) −6.38026 + 11.0509i −0.235660 + 0.408176i −0.959464 0.281830i \(-0.909059\pi\)
0.723804 + 0.690006i \(0.242392\pi\)
\(734\) 13.5022 23.3866i 0.498377 0.863214i
\(735\) −10.2291 12.3517i −0.377304 0.455598i
\(736\) 1.31752 0.0485645
\(737\) −4.28734 7.42590i −0.157926 0.273536i
\(738\) 1.80195 3.12107i 0.0663307 0.114888i
\(739\) −10.8324 + 18.7623i −0.398476 + 0.690181i −0.993538 0.113499i \(-0.963794\pi\)
0.595062 + 0.803680i \(0.297128\pi\)
\(740\) 10.7528 18.6243i 0.395280 0.684645i
\(741\) 1.18692 5.30677i 0.0436025 0.194949i
\(742\) −3.69644 5.31552i −0.135701 0.195139i
\(743\) 6.46703 + 11.2012i 0.237252 + 0.410933i 0.959925 0.280258i \(-0.0904199\pi\)
−0.722673 + 0.691191i \(0.757087\pi\)
\(744\) −3.89495 −0.142796
\(745\) −3.67714 −0.134720
\(746\) −9.61751 16.6580i −0.352122 0.609893i
\(747\) −4.33355 7.50593i −0.158556 0.274628i
\(748\) 2.81482 4.87541i 0.102920 0.178263i
\(749\) −17.9490 + 1.51194i −0.655844 + 0.0552452i
\(750\) 5.44249 9.42666i 0.198732 0.344213i
\(751\) 8.60728 0.314084 0.157042 0.987592i \(-0.449804\pi\)
0.157042 + 0.987592i \(0.449804\pi\)
\(752\) −0.188939 + 0.327251i −0.00688989 + 0.0119336i
\(753\) −5.33039 9.23251i −0.194250 0.336451i
\(754\) 4.60568 1.44268i 0.167729 0.0525394i
\(755\) 46.9285 1.70790
\(756\) −2.63641 + 0.222079i −0.0958855 + 0.00807694i
\(757\) 7.93369 + 13.7416i 0.288355 + 0.499445i 0.973417 0.229039i \(-0.0735584\pi\)
−0.685062 + 0.728484i \(0.740225\pi\)
\(758\) −16.1551 27.9815i −0.586781 1.01633i
\(759\) 0.578759 + 1.00244i 0.0210076 + 0.0363863i
\(760\) −3.45536 −0.125339
\(761\) −13.0174 22.5468i −0.471880 0.817321i 0.527602 0.849492i \(-0.323091\pi\)
−0.999482 + 0.0321708i \(0.989758\pi\)
\(762\) 8.52039 0.308661
\(763\) −1.39184 2.00147i −0.0503879 0.0724582i
\(764\) 4.84536 + 8.39241i 0.175299 + 0.303627i
\(765\) 14.6807 0.530780
\(766\) 15.7111 + 27.2125i 0.567667 + 0.983228i
\(767\) 4.69686 20.9999i 0.169594 0.758263i
\(768\) 0.500000 0.866025i 0.0180422 0.0312500i
\(769\) 18.9239 + 32.7772i 0.682415 + 1.18198i 0.974242 + 0.225506i \(0.0724036\pi\)
−0.291827 + 0.956471i \(0.594263\pi\)
\(770\) 3.04043 + 4.37217i 0.109570 + 0.157562i
\(771\) 14.0419 24.3213i 0.505707 0.875910i
\(772\) 10.5533 18.2789i 0.379823 0.657873i
\(773\) 42.7258 1.53674 0.768370 0.640006i \(-0.221068\pi\)
0.768370 + 0.640006i \(0.221068\pi\)
\(774\) 9.91602 0.356424
\(775\) −0.484762 + 0.839632i −0.0174132 + 0.0301605i
\(776\) 4.40338